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Представлен анализ индуктивной характеристики спинтронного наноосциллятора с легкой плоскостью

намагниченности свободного слоя, основанный на исследовании его малосигнальной эквивалентной схемы

колебательной системы. Определена зависимость эффективной индуктивности от силы тока и построены

индуктивные характеристики для различных значений внешнего магнитного поля. Показано, что с ростом

величины внешнего магнитного поля крутизна индуктивной характеристики спинтронного наноосциллятора

увеличивается. Представленные результаты могут быть использованы при проектировании радиотехнических

моделей спинтронных генераторов, а также в разработке новой компонентной базы современной радиоэлек-

троники.
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Развитие современной радиоэлектроники характе-

ризуется устойчивой тенденцией к миниатюризации

устройств, снижению их энергопотребления и повыше-

нию быстродействия [1]. В связи с этим особую актуаль-

ность приобретают исследования в области спинтрони-

ки, направленные на создание новой энергоэффективной

компонентной базы [2–5]. Одним из ключевых элемен-

тов спинтроники является наноразмерный спинтрон-

ный осциллятор (СО), объединяющий в себе функции

генерации СВЧ-колебаний и перестройки по частоте

электрическим током и магнитным полем в широ-

ком диапазоне. Инженерный анализ, а также разра-

ботка радиотехнических моделей СО позволит созда-

вать методики расчета схем с элементами спинтронной

компонентной базы [6–9]. Реализация такого подхода

обеспечит возможность комплексного проектирования

радиоэлектронных устройств на основе спинтроники и

будет способствовать их последующему внедрению в

промышленность. В [7,8] была получена эквивалент-

ная электрическая схема спинтронного осциллятора в

виде нелинейного колебательного контура с потерями

и источниками тока и напряжения, характеризующими

действие спинового вращающего момента, компенсиру-

ющего собственное затухание. Вместе с тем для непо-

средственного использования эквивалентных схем СО

в SPICE-моделировании (SPICE — Simulation Program

with Integrated Circuit Emphasis) необходимо, чтобы

параметры колебательной системы зависели от напря-

жений и токов соответствующих элементов (емкости

и катушки индуктивности). Целью настоящей работы

является получение и анализ зависимости индуктивно-

сти колебательного контура СО с легкой плоскостью

намагниченности свободного слоя от протекающего тока

в режиме малого сигнала.

Динамика СО описывается уравнением Ландау–
Лифшица–Гильберта–Слончевского для вектора намаг-

ниченности свободного слоя [7,8], траектория которого

представляет собой прецессию волчка. Колебательную

систему свободного слоя СО можно представить в виде

эквивалентного LC-контура (рис. 1, а) с нелинейной за-

висимостью индуктивности и емкости от азимутального

угла прецессии вектора намагниченности (рис. 1, b).
Выражение, связывающее дифференциальную индуктив-

ность L колебательного контура и азимутальный угол ϕ

для свободного слоя типа
”
легкая плоскость“ (ЛП),

имеет вид [7]:

L(ϕ) =
Zs

γ

1

Be,x cosϕ + Be,y sinϕ + Ba cos 2ϕ
, (1)

где γ — гиромагнитное отношение, Be,x , Be,y — про-

екции внешнего магнитного поля на направления x , y ,

Ba — эффективное поле анизотропии вдоль оси x ,

ϕ — азимутальный угол направления намагниченности,

Zs =
(

~

e

)2 γ

MsVs
— характерная величина (сопротивле-

ние), связанная с преобразованием спиновых единиц

в электрические, Ms — намагниченность насыщения,

Vs — объем свободного ферромагнитного слоя, ~ —

приведенная постоянная, e — элементарный заряд. При

этом ток, протекающий через индуктивность, также свя-

зан с параметрами прецессии вектора намагниченности

следующим образом:

IL(ϕ) ≈
γ~

eZs

[

Be,x sinϕ − Be,y cosϕ +
1

2
Ba sin 2ϕ

]

. (2)
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Рис. 1. Спинтронный наноосциллятор (а) и эквивалентная

схема (b) его колебательной системы.

Выражения (1), (2) представляют собой периодиче-

ские нелинейные функции азимутального угла ϕ. В гео-

метрии ЛП вектор намагниченности прецессирует в

плоскости xy , а полярный угол θ = π/2, и равновесный

вектор намагниченности (основное состояние) направ-

лен по оси x . Выражение для емкости эквивалентного

колебательного контура СО (рис. 1) в геометрии ЛП

практически не зависит от угла ϕ и имеет вид [7]:

C ≈

1

γBdZs

, (3)

где Bd — поле анизотропии вдоль трудной оси. Ем-

кость эквивалентной схемы СО связана с прецессией

вектора намагниченности преимущественно через по-

лярный угол θ, поэтому в случае ЛП емкость можно

рассматривать как константу, а нелинейные свойства

СО проявляются индуктивностью L(ϕ), что напоминает

свойства джозефсоновского перехода [10].
Рассмотрим малосигнальную модель колебательной

характеристики СО, в которой азимутальный угол ϕ

меняется вблизи нуля, что описывает большой спектр

различных задач, в частности собственные колебания

намагниченности СО вблизи положения равновесия в

задаче детектирования микроволновых колебаний, нели-

нейный ферромагнитный резонанс и т. д. В этом при-

ближении тригонометрические функции в (1), (2) могут

быть разложены в ряд Тейлора вблизи ϕ ≈ 0. В этом

случае (1) и (2) принимают вид

L(ϕ) =
Zs

γ

1

Be,x + Be,yϕ + Ba

, (4)

IL(ϕ) ≈
γ~

eZs

[

Be,xϕ − Be,y + Baϕ

]

. (5)

Зависимость L(ϕ) в общем случае (1) представлена

на рис. 2, а сплошной линией, а для аппроксимации

малосигнальным режимом (4) — штриховой. Как видно,

с ростом ϕ индуктивность в общем случае растет, а при

увеличении внешнего магнитного поля индуктивность

уменьшается, как и крутизна характеристики. Зависи-

мость IL представлена на рис. 2, b как в общем случае (2)

(сплошная линия), так и в случае аппроксимации ма-

лосигнальным режимом (5) (штриховая линия). Видно,
что ток через индуктивность увеличивается с ростом ϕ,

а при увеличении внешнего магнитного поля индуктив-

ный ток уменьшается. Как и ожидалось, аппроксимация

малосигнальным режимом совпадает с общим случаем

при малых углах ϕ как для зависимости L(ϕ) (рис. 2, а),
так и для IL(ϕ) (рис. 2, b).
Таким образом, выражение для индуктивности в ли-

нейном по ϕ приближении (в режиме малого сигнала)
может быть представлено как функция протекающего

через нее тока в виде

L(IL)=
Zs

γ

1

Be,x +Be,y

[

IL+ γ~

eZs
Be,y

/

γ~

eZs

(

Be,x +Ba

)

]

+Ba

.

(6)
Как видно из (6), зависимость L(IL) носит характер

гиперболы и уменьшается при увеличении тока через
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Рис. 2. Зависимости индуктивности катушки (а) и тока через

нее (b) от азимутального угла для общего случая (сплошные
кривые) и линеаризации (штриховые) при различных значе-

ниях внешнего поля. 1 — Be,x = 0.1 Т, Be,y = 0.1 Т; 2 —

Be,x = 0.5 Т, Be,y = 0.5 Т; 3 — Be,x = 0.8 Т, Be,y = 0.8 Т.
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Рис. 3. Зависимость индуктивности катушки от проходящего

через нее тока при различных значениях внешнего поля. 1 —

Be,x = 0.1 Т, Be,y = 0.1 Т; 2 — Be,x = 0.5 Т, Be,y = 0.5 Т; 3 —

Be,x = 0.8 Т, Be,y = 0.8 Т.

индуктивность L. Из рис. 3 видно, что с увеличением

тока уменьшается индуктивность катушки, что соответ-

ствует росту частоты собственных колебаний СО при

увеличении силы тока через нее. При этом с ростом

величины постоянного магнитного поля крутизна индук-

тивной характеристики увеличивается, и необходимая

величина индуктивности катушки достигается за счет

меньшей величины протекающего тока.

Таким образом, исследована модель эквивалентного

колебательного контура спинтронного осциллятора. По-

лучены выражения для индуктивности и тока через

нее в зависимости от азимутального угла прецессии

вектора намагниченности в малосигнальном приближе-

нии в геометрии типа
”
легкая плоскость“. Построены

индуктивные характеристики для различных значений

внешнего магнитного поля. Показано, что с ростом вели-

чины внешнего магнитного поля крутизна индуктивной

характеристики спинтронного осциллятора увеличивает-

ся. Проведенное исследование открывает возможность

для схемотехнического SPICE-исследования спинтрон-

ных осцилляторов в режиме малого сигнала. Такое ис-

следование позволит разрабатывать радиоэлектронные

устройства, включающие в себя спинтронные элементы

в виде интегральных блоков, для их последующего

анализа.
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