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Экспериментальная регистрация индикатрисы рассеянного лазерного

излучения от плазмы на многоканальной мощной лазерной

установке нового поколения
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На многоканальной мощной лазерной установке нового поколения зарегистрирована индикатриса

рассеянного лазерной плазмой излучения. Плоские мишени облучались лазерным импульсом с длиной

волны 532 nm, энергией 2.1−3.65 kJ и длительностью 3−5 ns. Индикатриса определена в диапазоне углов

от 2 до 90◦ от вектора нормали к поверхности мишени. Показано, что при интенсивности ≤ 2.6 · 1014 W/cm2

боковое рассеяние (в области углов больше 45◦) отсутствует, а регистрируется рассеяние назад в

виде двойного конуса. При интенсивности ≥ 3.4 · 1014 W/cm2 появляется заметное боковое рассеяние,

направленное перпендикулярно плоскости поляризации.
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Несмотря на недавний прорыв в достижении ла-

зерного термоядерного синтеза (ЛТС) [1,2], наличие

нелинейных процессов в лазер-плазменных взаимодей-

ствиях рассматривается как один из факторов, пре-

пятствующих эффективному зажиганию термоядерной

реакции в ЛТС [3,4]. Например, вынужденное рассея-

ние Мандельштама−Бриллюэна (ВРМБ) и вынужденное

комбинационное рассеяние (ВКР) [5] приводят к потере

лазерной энергии и к снижению эффективности нагрева

плазмы.

Теоретические исследования нелинейных процессов в

лазерной плазме, проведенные в 70−90-х годах про-

шлого века [6], в основном были сосредоточены на

стимулированном обратном комбинационном рассеянии

(обратное ВКР) и ВРМБ, которые направлены назад

в фокусирующую оптику. Работ, посвященных исследо-

ванию рассеяния излучения в боковые направления с

углами отклонения выше 45◦ от нормали к поверхности

мишени, было ограниченное количество по следующим

причинам: 1) экспериментальные сложности получения

диаграммы направленности в широком диапазоне углов,

поскольку для этого необходимо использовать большое

количество приемников излучения, что накладывает до-

полнительные требования на конструкцию камеры и

на методики измерения [4]; 2) возникновение бокового

рассеяния наблюдалось на мощных лазерных установ-

ках, позволяющих получать величину произведения I0L

выше 1017 W·µm/cm2 (здесь I0 — пороговое значение

потока лазерного излучения [W/cm2], L — характерный

размер плазмы [µm]) [7,8]. Это достигается только на

современных высокоэнергетических установках, исполь-

зуемых в экспериментах по ЛТС, где обеспечивается

требуемая плотность мощности (1014−1015 W/cm2) при

достаточно большом размере пятна (больше 500 µm)
и наносекундной длительности. Такие условия могут

быть достигнуты на многоканальной мощной лазерной

установке нового поколения [9].

В качестве примера, иллюстрирующего состояние ис-

следований рассеяния в боковые направления, которые

были выполнены еще в 80-х годах прошлого века,

можно привести работу [10]. В этой публикации авторы

используют ∼ 10 фотоприемников, что недостаточно

для получения подробной информации об индикатрисе

рассеянного излучения с высоким разрешением и в

широком диапазоне углов. Также в указанной работе

не зафиксировано поперечное рассеяние, распростра-

няющееся в направлении углов, близких к 90◦, из-за

отсутствия в этой области углов фотоприемников. При

этом зарегистрированная рассеянная световая энергия

составляет ∼ 1% от лазерной энергии, в то время

как в настоящей работе величина рассеяния составляет

∼ 30%.

В работе [11] впервые экспериментально наблюдалось

распространение излучения из плазмы в области углов

75−90◦, которое было названо поперечным рассеянием.

Впоследствии поперечное рассеяние, получившее в ино-

странной литературе название
”
tangential side scatter“,

исследовали в экспериментах с прямым облучением

плоской мишени с использованием одного либо несколь-

ких пучков [4,7].

В последние годы было подтверждено [12], что в

экспериментах на NIF возникает боковое рассеяние

из-за больших размеров фокального пятна лазера и

высокой лазерной интенсивности. Поэтому необходимо
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Рис. 1. Схема эксперимента.

более полное понимание этого процесса, из-за которого

возникает дополнительная потеря энергии. В настоящее

время в исследовательский арсенал внедряются

новые методы диагностики, позволяющие проводить

измерения под различными углами наблюдения вплоть

до 90◦ [4]. Однако в полной мере получить диаграмму

направленности рассеянного излучения в широком

диапазоне углов до сих пор не удавалось.

Роль поляризации лазерного излучения (ЛИ) в фор-

мировании диаграммы направленности рассеянного из-

лучения в литературе практически не обсуждается. В ра-

боте [4] наблюдалось, что боковое рассеяние направ-

лено перпендикулярно плоскости поляризации, однако

целенаправленных исследований по выяснению роли

поляризации в процессе рассеяния ЛИ не проводилось.

В работе [13] экспериментально исследовалось взаимное

влияние направления векторов поляризации двух лазер-

ных пучков, сфокусированных в общее пятно на мише-

ни, на величину рассеянной энергии в фокусирующую

оптику.

Целью настоящей работы является регистрация ин-

дикатрисы рассеянного из лазерной плазмы излучения

в широком диапазоне углов, а также оценка энерге-

тических потерь на рассеяние с помощью методики,

изложенной в [14].

Эксперименты по исследованию рассеяния лазерного

излучения от плазмы проводились на стенде много-

канальной мощной лазерной установки нового поко-

ления [9] с использованием одного лазерного канала.

Излучение имеет длину волны λ = 532 nm, энергию в

импульсе E = 2.1−3.65 kJ и длительность τ = 3−5 ns.

Размер фокального пятна контролировался с помощью

камеры-обскуры и составлял ∼ 500µm. Использовалась

плоская медная мишень, расположенная перпендикуляр-

но падающему излучению и имеющая размеры в длину

20mm, в ширину 17mm и в толщину 2mm.

Для построения пространственной картины рассеяния

излучения из плазмы в телесном угле ∼ 2π исполь-

зовалась калиброванная фотобумага (ФБ) [14]. С ее

помощью можно регистрировать излучение в широком

диапазоне частот от УФ- до ИК-области при пороговой

величине плотности энергии, требуемой для образова-

ния видимого ожога, составляющей 0.05 J/cm2.

Описание методики калибровки чувствительности ФБ

приведено в работе [14], где показано, что динамический

диапазон регистрации плотности энергии равен 10 при

длительности излучения ∼ 1 ns.

Оптическая схема экспериментов по исследованию

нелинейного рассеяния приведена на рис. 1. Фокусиров-

ка ЛИ на мишень осуществлялась с помощью линзы

с фокусным расстоянием f = 7m. Лазерный пучок на

входе в линзу имеет размер 330× 330mm. Давление

остаточного газа в камере не превышало величины

10−5 mm Hg.

Регистрация рассеянного излучения в диапазоне углов

от 12 до 90◦ производилась с помощью ФБ, распо-

ложенной по внутренней поверхности цилиндрического

бокса, внутренние размеры которого были следующими:
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Рис. 2. Ожоги на фотобумаге: а−с — расположенной на экране (на расстоянии 84 cm от мишени); d — расположенной со

стороны фокусирующей оптики (в торце бокса на расстоянии 40 cm от мишени и на экране на расстоянии 84 cm от мишени)
и на боковой поверхности цилиндра (в развертке). а — E = 2.1 kJ, τ = 4.1 ns, I = 2.6 · 1014 W/cm2, поперечного рассеяния нет;

b — E = 3.2 kJ, τ = 4.3 ns, I = 3.8 · 1014 W/cm2, поперечное рассеяние есть; c — E = 3.65 kJ, τ = 5.4 ns, I = 3.4 · 1014 W/cm2,

поперечное рассеяние есть; d — I = 3.4 · 1014 W/cm2, поперечное рассеяние есть.

диаметр 34 cm, длина 45 cm. Мишень внутри бокса

располагалась на его оси и находилась на расстоянии

5 cm от заднего торца.

Для регистрации рассеянного излучения в области

углов от 2 до 12◦ использовался экран с ФБ, отстоящей

на расстояние 84 cm от мишени.

При потоке лазерного излучения I , равном

2.6 · 1014W/cm2, не наблюдались видимые ожоги

на фотобумаге, расположенной на боковой стенке

цилиндрического бокса, что указывает на отсутствие

поперечного рассеяния. В то же время, как это

видно на рис. 2, наблюдались сильные ожоги на ФБ,

расположенной на экране, установленном напротив

мишени на расстоянии 84 cm от нее.

Начиная с величины потока I = 3.4 · 1014W/cm2 и

выше возникло сильное поперечное рассеяние. При этом

произведение I на характерный размер плазменного

образования (2000 µm, которая получается из произве-

дения характерной скорости разлета лазерной плазмы

на длительность лазерного импульса) дает величину

∼ 1017 W·µm/cm2, что согласуется с работами [7,8].
В центре экрана имелось круглое отверстие диаметром

60mm или квадрат 50× 50mm для пропускания лазер-
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Рис. 3. Диаграмма направленности рассеянного излучения.
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Рис. 4. Индикатриса рассеянного лазерной плазмой излучения (в J/sr), I = 3.4 · 1014 W/cm2 . а — в диапазоне углов θ от 0 до 30◦,

b — в диапазоне углов θ от 30 до 90◦.

ного пучка. На фотографиях ожогов, представленных

на рис. 2, a−c, это отверстие закрыто черной бумагой.

На рис. 2, d представлены фотографии ожогов на

фотобумаге, расположенной на торцевой стенке бокса

и на экране (совмещенный вид), а также внутри бокса

(развернутая боковая поверхность цилиндра), в услови-

ях возникновения поперечного рассеяния.

На приведенных фотографиях ожогов видно, что ин-

дикатриса рассеяния излучения имеет несколько выде-

ленных направлений.

1. Диаграмма направленности излучения, рассеянного

в сторону фокусирующей оптики, имеет вид двух кону-

сов с углами раствора, отсчитываемыми от нормали к

поверхности мишени. При этом угол внутреннего конуса

растет в диапазоне от 6 до 20◦ с увеличением энергии

лазерного излучения от 2.1 до 3.65 kJ. В то же время

угол внешнего конуса мало меняется с изменением

энергии лазерного излучения, а его угловой размер

составляет ∼ 30−40◦ .

2. При интенсивности ЛИ выше 3.4 · 1014 W/cm2 появ-

ляются сильные ожоги в направлении, перпендикуляр-

ном лазерному пучку и вектору поляризации (попереч-
ное рассеяние), как это видно на рис. 2, d.

На основании полученной в экспериментах картины

ожогов на фотобумаге построена схематичная диаграм-

ма направленности, которая представлена на рис. 3.

Письма в ЖТФ, 2026, том 52, вып. 5
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На рис. 3 символом k обозначен волновой вектор

лазерного излучения, E — вектор электрического поля

лазерной волны, совершающий линейные колебания в

плоскости xy , � — вектор направления распростране-

ния рассеянного излучения, �xz — проекция вектора

� на плоскость xz , θ (зенитный угол) — угол между

осью y и вектором �, ϕ (азимутальный угол) — угол

между �xz и осью x . Результаты экспериментов [15]
показывают, что направление поперечного рассеяния не

связано с геометрией пучка в фокальной области, а во

всех случаях перпендикулярно плоскости поляризации.

Используя полученные ожоги на фотобумаге и ре-

зультаты калибровки ее чувствительности, изложенные

в работе [14], можно определить величину энергии,

рассеянную в различные направления (индикатрису).
На рис. 4 представлена индикатриса, полученная при

лазерном импульсе с E = 3.65 kJ и τ = 5.4 ns. Угол θ

отсчитывается от вектора нормали к поверхности мише-

ни и является зенитным углом, ϕ — азимутальный угол.

Индикатриса представлена на рис. 4, a и b.

На рис. 4, а отчетливо видны два конуса. Это соответ-

ствует картине ожогов, приведенных на рис. 2, d. Первый

конус лежит в диапазоне углов θ от 2 до 11◦ (угол
раствора конуса от 4 до 22◦). Второй конус лежит в

диапазоне углов от 13 до 23◦ (угол раствора конуса

от 26 до 46◦).
На рис. 4, b видно два выделенных направления

распространения излучения, соответствующие попереч-

ному рассеянию. Первое направление соответствует

углу ϕ = 90◦ и углам θ от 45 до 90◦ . Второе на-

правление практически диаметрально противоположно

первому направлению и соответствует углу ϕ = 285◦

и углу θ = 80◦ . Это согласуется с картиной ожогов,

приведенной на рис. 2, d.

С помощью полученной индикатрисы определены ве-

личины энергии, рассеянной в различные направления и

в телесном угле 2π: 1) во внутренний конус рассеялось

325 J; 2) во внешний конус — 233 J; 3) в боковые

направления — 502 J; 4) в телесный угол 2π рассеялось

1060 J (29% от энергии лазерного импульса). При этом

не учитывалась величина энергии, идущей в фокусирую-

щую оптику. Полученная величина потерь на рассеяние

лазерного излучения хорошо согласуется с результатами

работ [11,15–18].
В работе [4] картина поперечного рассеяния каче-

ственно и количественно соответствует картине попе-

речного рассеяния, полученной в настоящей работе. Од-

нако следует отметить, что в индикатрисе, полученной в

работе [4], не наблюдалось рассеяния излучения в виде

конусов.

В настоящее время в научной литературе относитель-

но мало информации о механизмах возникновения и

формирования бокового и поперечного рассеяния, что

не позволяет однозначно сделать вывод о полученной

индикатрисе. Тем не менее отметим теоретическую

работу [19], в которой расчетным путем определены

факторы, влияющие на процесс возникновения ВКР

под большими углами (45 < θ ≤ 90◦). Показано, что

такое рассеяние связано с возникновением в разре-

женной плазме периодической модуляции электронной

плотности, вызванной пондеромоторными силами. Для

подтверждения предложенной модели необходимо нали-

чие детальной картины рассеяния в широком диапазоне

углов.

В представленной работе впервые получена диаграм-

ма направленности рассеянного из лазерной плазмы

излучения с высоким пространственным разрешением и

в широком диапазоне телесных углов (∼ 2π).

С помощью картины ожогов на фотобумаге и с

использованием результатов калибровки ее чувствитель-

ности получена индикатриса рассеяния. Показано, что

существенная часть рассеянной энергии идет в обратном

направлении в виде двух конусов и в направлении,

перпендикулярном плоскости поляризации. С исполь-

зованием полученной индикатрисы показано, что 29%

лазерной энергии преобразуется в энергию рассеянного

излучения.

Определен порог интенсивности лазерного излучения,

равный ∼ 3 · 1014 W/cm2, при котором возникает замет-

ное поперечное рассеяние в области углов 75−90◦ в на-

правлении, перпендикулярном плоскости поляризации.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.
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