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Обсуждена новая методика учета шероховатости поверхности термокатода и разброса начальных тепловых

скоростей при выполнении траекторного анализа в электронно-оптической системе гиротрона. С использова-

нием этой методики определены параметры винтового электронного потока в гиротроне средней мощности

четырехмиллиметрового диапазона длин волн излучения. На основе метода крупных частиц проведено

моделирование коллективных процессов в электронном пространственном заряде, захваченном в ловушку

между катодом и магнитной пробкой. Определены пороговые условия возбуждения и амплитудно-частотные

характеристики низкочастотных колебаний, связанных с развитием неустойчивости в пространственном за-

ряде в ловушке. Обсуждена возможная связь этих колебаний с резонансными структурами, существующими

в электронно-оптической системе.
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Введение

Гиротроны являются наиболее эффективными устрой-

ствами для генерации мощного СВЧ-излучения в милли-

метровом и субмиллиметровом диапазонах длин волн.

Одним из ключевых направлений их использования

является нагрев плазмы и управление электрическим

током в установках, предназначенных для осуществле-

ния управляемого термоядерного синтеза. Частотный

диапазон 110 − 170GHz наиболее распространен для

гиротронов, используемых в современных термоядерных

установках. Эти гиротроны способны выдавать мега-

ваттную мощность в квазинепрерывном режиме, при

этом длительность импульсов может достигать десят-

ков минут [1,2]. Помимо термоядерных исследований,

гиротроны находят применение в таких областях, как

дальняя радиолокация, обработка материалов, высоко-

точная спектроскопия, ускорение заряженных частиц и

ряд других современных технологий.

Важным фактором, влияющим на эффективность и

предельные достижимые параметры гиротронов, явля-

ется качество формируемого в электронно-оптической

системе (ЭОС) электронного пучка с винтообразными

траекториями частиц. В высококачественных винтовых

электронных потоках (ВЭП) сочетается большое значе-

ние осцилляторной энергии электронов, которую приня-

то характеризовать величиной питч-фактора α = v⊥/v‖,

где v⊥ и v‖ — поперечная и продольная компонен-

ты скорости, с малым скоростным и энергетическим

разбросом и требуемой поперечной структурой пучка

(см., например, [3]). В большинстве случаев в гиро-

тронах электронный поток формируется с помощью

магнетронно-инжекторной пушки (МИП) [4]. Необходи-
мая величина поперечной энергии достигается в обла-

сти магнитной компрессии между пушкой и резонато-

ром, где продольная энергия частиц перекачивается в

поперечную. Параметры ВЭП определяются на этапе

проектирования прибора в результате численного тра-

екторного анализа, в рамках которого рассчитываются

самосогласованные траектории частиц в статических

электрическом и магнитном полях. Важными факторами,

которые влияют на скоростной разброс электронов в

ВЭП и которые должны быть учтены при проведении

такого траекторного анализа, являются шероховатость

эмитирующей поверхности термокатода и разброс на-

чальных тепловых скоростей электронов.

При наличии скоростного разброса в ВЭП повы-

шение среднего питч-фактора электронов в конечном

итоге приведет к отражению части потока от магнит-

ной пробки и к накоплению пространственного заряда

в ловушке между катодом и пробкой. Накопленный

пространственный заряд неустойчив, в нем могут раз-

виваться паразитные низкочастотные колебания (НЧК,
LFO), негативно влияющие на качество поступающего

в резонатор первичного ВЭП. В ряде лабораторий

теоретически и экспериментально исследовались про-

цессы накопления заряда в ловушке и характеристики

паразитных НЧК [3,5–21]. В частности, в расчетах
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была показана важная роль вторичной эмиссии с ка-

тода в этих процессах, предложен механизм группи-

ровки электронов в ловушке, ответственный за разви-

тие НЧК, определены способы снижения инкремента

нарастания возмущений в накопленном пространствен-

ном заряде [7,10,11,13,16,19]. В экспериментах выявле-

на возможная связь параметров НЧК со свойствами

резонансных электродинамических структур, которыми

выступают элементы электронно-оптической системы

гиротрона [8,9,18].

Моделирование динамических процессов в ловушке

осуществляется на базе метода крупных частиц (Particle-
In-Cell, PIC) [22]. PIC-моделирование длительных во

времени процессов требует значительных затрат вычис-

лительных ресурсов. С целью сокращения этих затрат

в предыдущих исследованиях применяли упрощенное

одномерное [7,16,17] и двумерное [10,11,13] моделиро-

вание. Однако современные вычислительные системы

позволяют при разумных затратах машинного време-

ни провести полноценное трехмерное моделирование

динамических процессов для больших временных ин-

тервалов, составляющих сотни периодов осцилляций

одиночных частиц в ловушке. При таком моделировании,

очевидно, может быть выявлена связь характеристик

НЧК с параметрами резонансных структур в ЭОС

гиротрона.

В настоящей работе трехмерное численное модели-

рование с учетом отражения части ВЭП от магнитной

пробки было проведено для гиротрона СПбПУ с ра-

бочей частотой 74.2 GHz и выходной СВЧ-мощностью

примерно 100 kW [12,20,23]. Ранее в экспериментах

с этим гиротроном были подробно изучены характе-

ристики НЧК, определено их влияние на параметры

ВЭП и предложены способы подавления. Все расчеты

в настоящей работе были выполнены с помощью про-

граммы CST Studio Suite [24]. Некоторые особенности

использованных расчетных моделей описаны в [25,26].

1. Учет разброса начальных скоростей
электронов при траекторном
анализе в ЭОС гиротрона

Заметное влияние на качество ВЭП, формируемо-

го в ЭОС гиротрона, оказывает разброс начальных

скоростей электронов, который возникает вследствие

разброса тепловых скоростей при выходе электронов

с поверхности катода, а также из-за шероховатости

этой поверхности [3,26–28]. Типичный размер таких

шероховатостей — единицы-десятки микрон. При та-

ком размере шероховатостей их влияние на скоростной

разброс электронов в ВЭП заметно больше влияния

разброса тепловых скоростей. Очевидны трудности про-

ведения траекторного анализа в ЭОС с длиной в сотни

миллиметров, если на поверхности катода присутству-

ют неоднородности микронных размеров. Предложены

различные алгоритмы учета разброса начальных ско-

ростей при расчете электронных траекторий в модели

гиротрона с гладким катодом [27,28]. В работе [26]
показано, что спектр поперечных скоростей в модели

катода с полусферами микронного размера близок по

форме к спектру скоростей для гладкого катода, если

для него задавать максвелловское распределение началь-

ных скоростей с помощью инструментов, доступных в

CST Studio Suite при установке свойств термоэмиттера.

Эффективная температура, как параметр этого распреде-

ления, должна быть заметно больше типичных значений

температуры термокатодов для того, чтобы разброс

поперечных скоростей был близок к разбросу, получен-

ному в эксперименте. Однако при таком простейшем

способе задания параметров термоэлектронной эмиссии

электроны, стартующие с катода, будут иметь аномально

большую начальную энергию (полную скорость), что не

соответствует реальным условиям. Это обусловливает

паразитный энергетический разброс электронов в ВЭП,

а также не позволяет корректно рассчитывать процессы

накопления частиц в ловушке гиротрона при отраже-

нии части потока от магнитной пробки в рамках PIC-

моделирования.

В настоящей работе подход, предложенный в [26],
был скорректирован с тем, чтобы устранить паразитный

разброс начальных энергий на катоде. Процедура учета

начальных скоростей включала несколько этапов.

Первый этап. Для модели электронно-оптической си-

стемы при выбранном сеточном разбиении и режиме

работы, которые впоследствии не менялись, с помощью

вычислителя Tracking Solver рассчитывались электрон-

ные траектории для начальной энергии электронов на

катоде, равной нулю. Для каждой траектории в рам-

ках постобработки результатов моделирования опреде-

лялись временные зависимости глобальных координат

x(t), y(t), z (t) и скоростей vx(t), vy(t), vz (t).

Второй этап. Выбирался момент времени t0, для

которого высота подъема электронной траектории над

поверхностью катода h ≈ 30µm. Напомним, что при

расчетах в модели катода с регулярно расположенными

на его поверхности полусферами радиусом r0 было

показано, что распределение электронов по поперечным

скоростям практически не меняется при увеличении

расстояния от катода, если это расстояние превышает

примерно 2 · r0 [26]. Причем при r0 = 14µm значения

скоростного разброса, полученные в расчетах и в экспе-

риментах с гиротроном СПбПУ, были примерно равны.

В текущих расчетах для каждой электронной траекто-

рии определялись значения x(t0), y(t0), z (t0), vx0(t0),
vy0(t0), vz0(t0). По этим значениям вычислялась полная

скорость vabs(t0), а также компоненты скорости вдоль

осей локальной системы координат vu0(t0) и vw0(t0)
(рис. 1). Ось u направлена по азимуту, ось w — вдоль

образующей конусного катода, а ось v — по нормали к

поверхности катода. Очевидно, что для каждой траекто-

рии направление осей u, w и v будет различным.
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Рис. 1. Изображение центров эмиссии на эмитирующем

пояске катода и крупно — одна из электронных траекторий.

Третий этап. Задавались случайные составляющие

тангенциальных компонент начальной скорости v ′
u(t0)

и v ′
w(t0), исходя из предположения, что эти скорости

распределены в соответствии с функцией Гаусса:

f (v) =

(

1

2π

)1/2
1

σ
exp

(

−

v2

2σ 2

)

,

где σ — среднеквадратичное отклонение. Причем для

каждой электронной траектории определялись два значе-

ния v ′
u(t0) и два значения v ′

w(t0), различающиеся знаком

перед величиной скорости. Для задания пар независи-

мых нормально распределенных случайных скоростей

использовалось преобразование Бокса–Мюллера [29].
В дальнейшем в качестве параметра, характеризующе-

го разброс начальных скоростей, будем использовать

величину Winit[eV ] = m·σ 2

e
, где e и m — заряд и масса

электрона.

Четвертый этап. Новые значения скоростей вдоль

осей локальной системы координат были равны:

vu1(t0) = vu0(t0) + v ′
u(t0),

vw1(t0) = vw0(t0) + v ′
w(t0),

vv1(t0) =
√

v2
abs(t0) − v2

u1(t0) − v2
w1(t0).

По этим значениям определялись новые глобальные

начальные скорости vx1(t0), vy1(t0), vz1(t0). Массив дан-

ных x(t0), y(t0), z (t0), vx1(t0), vy1(t0), vz1(t0) образовывал
входной интерфейс частиц для проведения траекторного

анализа в модели ЭОС с гладким катодом при наличии

разброса начальных скоростей электронов. В этом ин-

терфейсе из каждого центра эмиссии испускаются по две

частицы с разными скоростями.

Описанная процедура была реализована в макросе,

работающем в программе CST Studio Suite.
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Рис. 2. Распределения электронов по поперечным v⊥ и

полным vabs скоростям при отсутствии разброса начальных

скоростей (синий цвет) и при разбросе начальных скоростей,

соответствующем энергии Winit = 7.15 eV (красный цвет). По-

казано значение скорости электрона v0 с энергией 30 keV.

2. Траекторный анализ
в электронно-оптической
системе гиротрона

Вначале были выполнены расчеты статических элек-

тронных траекторий с помощью вычислителя Tracking

Solver. Для этих расчетов использовалась модель полной

ЭОС с осаждением электронного потока на коллекторе.

Формирование ВЭП осуществлялось с помощью стан-

дартной МИП без управляющего электрода с углом

наклона образующей конусной части катода к оси,

равным 35◦ [26,30]. Источником электронов служили

10 960 центров эмиссии, равномерно распределенных по

пояску конусного катода. Эмиссия была однородной по

азимуту. Использовалось тетраэдральное сеточное раз-

биение модели с уменьшенным шагом ячеек в области

эмиттера, а также в области расположения электронных

траекторий. Общее количество ячеек сетки составляло

примерно 39 млн.

Расчетный рабочий режим гиротрона характери-

зуется следующими значениями основных парамет-

ров: ускоряющее напряжение U0 = 30 kV, ток пуч-

ка Ib = 10A, магнитное поле в центре резонато-

ра B0 = 2.75 T, коэффициент магнитной компрессии

B0/Bc = 18.0 [12,25,26,30]. Значение B0/Bc = 18.0 со-

ответствует 24 виткам катодной катушки эксперимен-

тального гиротрона СПбПУ [23]. В данном режиме

средний питч-фактор α = v⊥/v‖ и разброс поперечных

скоростей δv⊥, рассчитанные при отсутствии разброса

начальных скоростей, равнялись 1.29% и 6.1% соответ-

ственно. Разброс скоростей в настоящей работе опреде-

лялся как среднеквадратичное отклонение от среднего

значения скорости. Величины α и δv⊥ регистрировались

в центральной плоскости резонатора z = 260.5mm в

максимуме продольного распределения магнитного поля

B(z ) (z = 0 — центральная плоскость эмитирующего
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пояска катода). При добавлении начального разброса

наблюдалось уширение спектра поперечных скоростей

электронов в потоке и некоторое увеличение среднего

питч-фактора. Например, при Winit = 7.15 eV средний

питч-фактор был равен 1.33, а разброс поперечных

скоростей — 8.8%. Такое значение разброса было ранее

получено в экспериментах с гиротроном СПбПУ [20,26].
Распределения электронов по поперечным v⊥ и полным

vabs скоростям для рассмотренных режимов показаны

на рис. 2. Для выбранной ширины интервалов гисто-

грамм, равной 7.2 · 105 m/s, спектры полных скоростей

для этих режимов совпадают. Эти спектры характери-

зуются малым разбросом δvabs = 0.052% для Winit = 0

и δvabs = 0.053% для Winit = 7.15 eV. На рисунке также

показано значение скорости v0 электрона c энергией

30 keV. Разница между vabs и v0 характеризует величину

провисания потенциала пучка в центральной плоскости

резонатора.

В рассмотренном режиме поперечные скорости всех

частиц в максимуме распределения B(z ) меньше их

полной скорости (рис. 2), т. е. отсутствует отражение

частиц от магнитной пробки. Однако при увеличении

среднего питч-фактора и/или скоростного разброса в

ВЭП неизбежно появление отраженных частиц, кото-

рые, как было сказано выше, могут накапливаться в

ловушке между катодом и магнитной пробкой. Коэффи-

циент отражения электронов от пробки R, от которого

зависит скорость их поступления в ловушку, очевидно,

может изменяться по мере увеличения накопленного в

этой ловушке пространственного заряда.

Для повышения среднего питч-фактора электронов в

ВЭП и реализации режимов с отражением электронов

от пробки был увеличен коэффициент магнитной ком-

прессии до B0/Bc = 19.7. Это значение соответствует 21

витку катодной катушки гиротрона СПбПУ [23]. Было
также выполнено некоторое упрощение модели ЭОС

гиротрона. Длина ЭОС была ограничена плоскостью

z = 274.5mm, совпадающей с окончанием регулярной

части резонатора. В этой плоскости была расположена

”
магнитная стенка“, на которой отсутствовала танген-

циальная компонента магнитного поля. Был выполнен

переход к гексаэдральному сеточному разбиению с

размером ячейки 0.8mm, что давало в сумме 7.9 млн.

ячеек. Эта модель ЭОС была использована и при PIC-

моделировании, описанном ниже в разд. 3. Внесенные

упрощения позволили сократить время этого моделиро-

вания.

Если частицы отражаются от магнитной пробки и

затем повторно отражаются в области катода, то не

может быть гарантировано достижение условия схо-

димости при расчете самосогласованных траекторий в

вычислителе Tracking Solver. Тем не менее мы использо-

вали данный вычислитель для определения
”
начального“

коэффициента отражения R0, когда еще мало влияние

заряда отраженных частиц на траектории первичного

пучка, проходящего через пробку в сторону резона-

тора. Для этого время моделирования, иначе, число

Параметры ВЭП, рассчитанные при отражении электронов от

магнитной пробки (B0/Bc = 19.7)

U0, kV α δv⊥, % R0, %

28 2.01 6.23 0.78

30 2.42 5.30 1.56

32 2.82 4.28 4.14

34 3.22 3.53 8.59

36 3.51 3.13 14.64

временных шагов при расчете траекторий частиц, было

выбрано минимальным, при котором, однако, все ча-

стицы первичного пучка достигают выходной плоскости

z = 274.5mm. В этом случае захваченные в ловуш-

ку частицы совершают не более одного отражения в

области магнитной пробки. В расчетах с отражением

части ВЭП и накоплением пространственного заряда в

ловушке подход к учету разброса начальных скоростей,

описанный в разд. 1, не позволяет корректно рассчитать

траектории частиц. Поэтому приведенные ниже резуль-

таты были получены при начальной энергии частиц на

катоде, равной нулю. Число центров эмиссии, как и

раньше, было равно 10 960.

В таблице приведены рассчитанные значения среднего

питч-фактора α и скоростного разброса δv⊥ в первичном

пучке, зарегистрированные в центральной плоскости

резонатора z = 260.5mm, а также начального отраже-

ния R0 при различных значениях ускоряющего напря-

жения U0. Полученные значения R0 заметно меньше

коэффициента отражения для гауссова распределения

f (v⊥) при тех же α и δv⊥ [16]. Это связано с тем,

что спектры поперечных скоростей в данных расчетах,

подобные показанному на рис. 2, характеризовались

довольно резким спадом зависимости f (v⊥) при боль-

ших v⊥ по сравнению с гауссовым распределением.

При напряжении U0 = 30 kV среднее время пролета

электронов первичного ВЭП от катода до плоскости

z = 260.5mm составляло примерно 4.5 ns, а суммарный

заряд всех частиц в модели равнялся 5.1 · 10−8 С.

3. PIC-моделирование динамических
процессов при отражении
электронов от магнитной пробки

Модель ЭОС, для которой было выполнено PIC-

моделирование, показана на рис. 3. В этой модели в

обеих торцевых плоскостях z = −90 и 274.5mm были

установлены волноводные порты, через которые высо-

кочастотные сигналы выводились из модели без отра-

жения. Разность потенциалов между катодом и анодом

создавалась с помощью дискретного линейного порта,

используемого в CST Studio Suite для задания напряже-
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Рис. 3. Схематическое изображение модели ЭОС гиротрона:

1 — эмитирующий поясок, 2 — передняя часть катода,

3 — задняя часть катода, 4 — анод, 5 — корпус, 6, 7 —

волноводные порты, 8 — дискретный порт, 9 — монитор

напряжения в плоскости z = 180mm. Показано продольное

распределение индукции магнитного поля B(z ) на оси (r = 0).

ния между двумя точками в модели. Это напряжение

плавно нарастало от 0 до U0 в течение первых ∼ 50 ns,

после чего не изменялось. Импеданс порта был равен

50�. По мере увеличения напряжения увеличивался ток

термоэмиссии с катода. Скорость нарастания амплитуды

импульсов напряжения и тока, очевидно, влияет на про-

цессы в ловушке на начальном этапе моделирования [31].
Важно обеспечить плавное нарастание напряжения и

тока с тем, чтобы исключить заметное влияние
”
головы“

пучка на условия накопления и группировки заряда в

ловушке.

Напомним, что вторичная эмиссия с катода играет

важную роль в электронных процессах в ЭОС гиротрона

при отражении частиц от магнитной пробки, создавая, в

частности, дополнительный канал их поступления в ло-

вушку (см., например, [10]). В CST Studio Suite имеются

инструменты для учета эмиссии вторичных электронов

при бомбардировке элементов ЭОС, включая обширную

библиотеку материалов. В качестве материала катодно-

го блока, за исключением эмитирующего пояска, был

выбран молибден с максимальным коэффициентом вто-

ричной эмиссии 1.23 при энергии падающих электронов

600 eV [32]. Для самого пояска использовали данные

по вторичной эмиссии, соответствующие W-Ba импре-

гнированному катоду с максимальным коэффициентом

2.5 при энергии 1000 eV [33]. Материалом остальных

элементов ЭОС был выбран идеальный проводник. Бы-

ло уменьшено число центров эмиссии на катоде до

480. Временной шаг моделирования равнялся примерно

1 · 10−3 ns. Время моделирования задавалось равным

3000 ns, что соответствует примерно 300 − 400 перио-

дам осцилляций одиночной частицы между катодом и

магнитной пробкой. В этом случае к концу моделирова-

ния общее число крупных частиц равнялось (1− 2) · 107.
При таких установках время расчета одной задачи
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Рис. 4. Временные зависимости суммарного заряда частиц

Q(t) при разных значениях ускоряющего напряжения U0 :

28 (1), 30 (2), 32 (3), 34 (4), 36 kV (5).

составляло несколько дней с использованием ускорителя

суперкомпьютерного центра СПбПУ. В модели были

установлены специальные мониторы, используемые в

CST Studio Suite для записи различных параметров во

время моделирования и последующего анализа этих

параметров. Мониторы регистрировали токи на элек-

троды ЭОС, напряжения между корпусом прибора и

выбранными точками в рабочем пространстве, а также

параметры крупных частиц в различных плоскостях

поперечного сечения.

Зависимости суммарного заряда частиц во всей об-

ласти моделирования от времени для разных значений

напряжения U0 приведены на рис. 4. Видно, что во

всех случаях происходит плавное нарастание заряда

во времени в течение всего времени моделирования

t = 3000 ns. Скорость этого нарастания, очевидно, зави-

сит от коэффициента отражения электронов от пробки,

увеличивающегося с повышением U0. Таким образом,

квазистационарное состояние, при котором потоки ча-

стиц в ловушку и из нее в среднем равны, не до-

стигалось даже при большом коэффициенте отражения

(U0 = 36 kV), когда в накопленном заряде развиваются

интенсивные колебания (см. ниже).

С течением времени изменяются значения токов,

регистрируемых в цепях различных электродов ЭОС.

Соответствующие зависимости для максимального на-

пряжения U0 = 36 kV показаны на рис. 5. Максимальное

значение тока на эмитирующий поясок I1 достигается

в начале моделирования после переходного этапа на

переднем фронте (t ≈ 50 ns). Затем с течением времени

ток на поясок уменьшается, но при этом возрастает

ток на заднюю часть катода I2 и на анод I4, что

связано с диффузией захваченных электронов в сторону

бóльших радиусов. Подобные зависимости наблюдались

и в предыдущих расчетах (например, [10,13,19,21]). Ток
на переднюю часть катода I3 был пренебрежимо мал

по сравнению с токами на другие электроды. Из-за

высокого коэффициента вторичной эмиссии с пояска

вторичные электроны именно с этого электрода дают
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Рис. 5. Зависимости токов на элементы ЭОС гиротрона от

времени при U0 = 36 kV: 1 — эмитирующий поясок, 2 —

задняя часть катодного блока, 3 — передняя часть катодного

блока, 4 — анод, 5 — выходная граница z = 274.5mm.
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Рис. 6. Распределения линейной плотности пространственно-

го заряда λ вдоль продольной координаты z при U0 = 36 kV для

различных моментов времени t : 100 (1), 300 (2), 2900 ns (3);
4 — продольное распределение индукции магнитного поля

B(z ) на оси (r = 0).

наибольший вклад в суммарный ток пучка. Следствием

этого является примерно одинаковый характер измене-

ния во времени тока I1 и тока I5 пучка, проходящего

через магнитную пробку и регистрируемого на выходной

границе. В конце моделирования t = 3000 ns ток I5
был примерно на 5% больше тока термоэлектронной

эмиссии с катода, задаваемого равным 10A.

Накопленный в ловушке пространственный заряд кон-

центрируется в области между катодом и магнитной

пробкой. На рис. 6 показаны значения линейной плотно-

сти заряда λ, определенные как интеграл от объемной

плотности заряда ρ по плоскости поперечного сече-

ния, в зависимости от координаты z этой плоскости

для различных моментов времени t при U0 = 36 kV.

Как и при одномерном моделировании [23], по мере

накопления заряда в ловушке происходит смещение

максимумов распределения λ(z ) друг к другу. Иными

словами,
”
эффективная“ длина ловушки, усредненная по

всему ансамблю частиц, становится меньше.

Монитор напряжения, установленный в плоскости по-

перечного сечения z = 180mm, регистрировал разность

потенциалов U180 между точкой на оси прибора (r = 0)
и заземленным корпусом (рис. 3). Зависимости U180(t),
рассчитанные при разных напряжениях U0, показаны на

рис. 7. При малых напряжениях U0 = 28, 30 и 32 kV

не наблюдалось сигналов, свидетельствующих о разви-

тии регулярных колебаний в накопленном в ловушке

пространственном заряде. Такие колебания с частотой

f LFO, равной примерно 53MHz, видны на зависимости

U180(t) для U0 = 36 kV. Они появлялись при t ≈ 1000 ns

и достигали насыщения по амплитуде примерно через

1500 ns, что соответствует ∼ 80 периодам колебаний.

Подобные значения инкремента нарастания возмущения

в пространственном заряде в ловушке были раньше

зафиксированы при одномерном моделировании [16].

Если судить по значению f LFO, то можно предполо-

жить, что в данном режиме в ловушке осциллирует один

электронный сгусток. Это подтверждается сравнением

фаз сигналов мониторов напряжения, установленных

в плоскостях с различными значениями продольной

координаты z. Группировка пространственного заряда в

ловушке, как было показано ранее [16,23], может быть

связана с неизохронностью осцилляций частиц между

плоскостями отражения у катода и у магнитной пробки.

Значение частоты f LFO в этом случае определяется

формой своеобразной потенциальной ямы для осцил-

лирующих частиц, которая зависит от распределения

магнитного поля, а также от распределения электри-

ческого поля, изменяющегося по мере накопления про-

странственного заряда в ловушке.

При меньшем напряжении U0 = 34 kV и соответствен-

но меньшем потоке частиц в ловушку по сравнению

с U0 = 36 kV в конце времени моделирования наблю-

дались небольшие по амплитуде сигналы на частоте

примерно 150MHz (рис. 7). Такое значение частоты

указывает на возможное существование одновременно

трех осциллирующих сгустков в ловушке. Кратное уве-

личение частоты НЧК при снижении коэффициента от-
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Рис. 7. Временные зависимости потенциала U180 на оси

прибора (r = 0) в плоскости поперечного сечения z = 180mm

при разных значениях ускоряющего напряжения U0 : 28 (1),
30 (2), 32 (3), 34 (4), 36 kV (5).
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ражения от пробки наблюдалось ранее при одномерном

моделировании [16,23]. В целом при переходе от одно-

мерного к трехмерному моделированию заметно увели-

чились пороговые значения коэффициента отражения от

магнитной пробки и накопленного в ловушке простран-

ственного заряда, при которых появлялись регулярные

НЧК. Причина такого различия, возможно, связана с

относительно малым числом крупных частиц, на кото-

рые разбивается электронный поток, при трехмерном

моделировании. Увеличение этого числа, к сожалению,

ограничено ресурсами вычислительной системы.

Представляется возможной связь НЧК в электрон-

ном облаке с двумя типами резонансных структур в

ЭОС гиротрона: объемным резонатором, которым может

быть некоторая полость, и эквивалентным колебатель-

ным контуром (распределенной LC-цепью). Расчеты соб-

ственных мод в данной модели ЭОС с помощью вычис-

лителя Eigenmode Solver показали, что значения резо-

нансных частот всех мод превышают 1GHz, т. е. заметно

больше f LFO. Не была отмечена
”
привязка“ частоты сиг-

налов в электронном пространственном заряде к часто-

там этих мод. Распределенная LC-цепь образовывалась

с помощью индуктивности дискретного порта и емкости

межэлектродного зазора катод-анод. В данной модели ее

резонансная частота лежала в диапазоне сотен мегагерц.

Эту частоту, а также добротность LC-контура, можно

было изменять за счет изменения геометрии элементов

ЭОС, размеров дискретного порта, или при установке

поглотителя. Если специально не задавать импеданс

дискретного порта, то в сигналах токов на электроды

ЭОС присутствовали высокочастотные составляющие

на резонансной частоте LC-контура. Амплитуда этих

составляющих возрастала с увеличением накопленного

в ловушке пространственного заряда при повышении

U0. Однако введением в дискретном порту импеданса,

равного 50�, было достигнуто подавление сигналов,

связанных с возбуждением LC-контура. В реальном

приборе также могут существовать подобные LC-цепи,

связанные с электронным потоком. При наличии такой

связи возможна
”
привязка“ частоты НЧК к резонансной

частоте этой цепи (см., например, [9]). Снижение доб-

ротности LC-контура в этом случае может позволить

уменьшить интенсивность паразитных НЧК в приборе.

Заключение

В работе был выполнен траекторный анализ в ЭОС

гиротрона СПбПУ с использованием новой методики

учета разброса начальных скоростей электронов, вы-

званного шероховатостью поверхности термокатода и

разбросом тепловых скоростей. На базе полученных в

рамках траекторного анализа данных были выбраны ре-

жимы работы гиротрона, в которых часть электронного

потока отражается от магнитной пробки.

В этих режимах было выполнено трехмерное PIC-

моделирование процессов накопления и динамики элек-

тронного пространственного заряда в ловушке между

катодом и магнитной пробкой. Показана возможность

возникновения паразитных низкочастотных колебаний,

обусловленных группировкой заряда в осциллирующие

в продольном направлении сгустки. Эти колебания воз-

никают при заметно большем коэффициенте отражения

от магнитной пробки по сравнению с проведенным ра-

нее одномерным PIC-моделированием, что может быть

связано с относительно
”
грубым“ разбиением потока

на крупные частицы при трехмерном моделировании.

Специальное внимание в расчетах уделено связи ха-

рактеристик паразитных колебаний с параметрами ре-

зонансных структур, существующих в ЭОС гиротрона.

Выявлено влияние на динамические процессы в элек-

тронном потоке LC-контура, образованного электродами

пушки и источником напряжения. Устранить влияние

этого контура позволило снижение его добротности при

введении дополнительного сопротивления.
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