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На основе обобщения большого числа экспериментальных данных предложена оценочная формула,

позволяющая определить величину минимального тока плавления замкнутых контактов ударными токами

короткого замыкания. Проведена оценка точности получающихся результатов, позволяющая сделать вывод о

возможности применения данной формулы для проведения практически значимых расчетов.
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Введение

При возникновении аварий в электросетях токи корот-

кого замыкания (КЗ) протекают через замкнутые контак-
ты в течение нескольких десятков периодов до тех пор,

пока система защиты не идентифицирует возникающий

ток как аварийный и контакты не будут разведены [1,2].
При этом в первом полупериоде возможно наличие

броска тока (ударный ток КЗ ISC), величина которого

может почти вдвое превосходить установившееся зна-

чение аварийного тока ISC : I IC :≈ 1.8ISC [3,4]. Наличие
такого броска тока приводит к кратковременному по-

вышенному выделению мощности. Выделяющееся при

этом тепло приводит к локальному нагреву окрестности

контактных пятен (КП) — тепловой фронт не успевает

переместиться на расстояние более 3−4 радиусов КП

за время нарастания тока от начала КЗ до первого

максимума [5]. Это вызывает резкий скачок температу-

ры КП, которая может достичь значения температуры

плавления Tm.

Плавление КП практически всегда ведет к возник-

новению фатальных сварок контактов и потере ра-

ботоспособности электрических аппаратов. Это делает

актуальным вопрос о том, как при разработке контактов

оценивать величину тока, при которой начинается их

плавление. Такое значение тока обозначим Im.

Способ оценки тока плавления будем искать на ос-

нове обобщения экспериментальных данных о нагреве

контактов при пропускании через них импульсных то-

ков, представляющих собой синусоидальное колебание,

затухающее в течение нескольких периодов. Блок-схема

экспериментальной установки [5] приведена на рис. 1, a.

Она представляет собой батарею высоковольтных

конденсаторов С большой емкости, которая соединена

с исследуемыми контактами через трансформатор Tr.

Ток, который пропускается через контакты, формиру-

ется колебательным контуром, образуемым батареей

конденсаторов и первичной обмоткой трансформатора

(рис. 1, b). Амплитуда тока в первом полупериоде может

изменяться в диапазоне 0−100 kA. Ее величина зависит

от уровня заряда конденсаторной батареи. Ток протекает

через пару исследуемых контакт- ток плавления деталей.

Нижняя закреплена неподвижно, а к верхней с помощью

механического привода прикладывалась сила контакт-

ного нажатия, величина которой могла варьироваться

в пределах FCP = 0− 2500N. Имеются три канала для

измерения тока, протекающего через контакты I(t),
напряжения на них Uc(t) и силы контактного нажа-

тия FCP(t).

В качестве неподвижных контакт-деталей (рис. 2)
были использованы массивные цилиндры диаметром

20 и 40mm с плоским торцом или проводящие ши-

ны толщиной от 2 до 10mm. Верхние подвижные

контакт-детали представляли собой цилиндры диамет-

ром 5, 20 и 40mm со сферической или конусооб-

разной контактирующей поверхностью, а также с по-

верхностью, напоминающей жало мощного паяльника.

Таким образом, контактирующие поверхности были типа

”
плоскость–сфера“,

”
плоскость–конус“ или

”
плоскость–

жало“. В результате механического взаимодействия фор-

мируется КП круглой или нитевидной формы. В случае

применения в качестве нижних электродов плоских

шин имелась возможность перемещения верхних элек-

тродов вдоль оси симметрии шины от ее центра к

краю.

В работах [5–11] описан метод расчета нагрева кон-

тактов импульсными токами, основанный на экспери-

ментально измеренных осциллограммах тока, проте-

кающего через контакты I(t) и контактной разности

потенциалов Uc(t). Он позволяет рассчитать распреде-

ление температуры в контактной окрестности во вре-

мя протекания тока в широком диапазоне температур
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Рис. 1. Блок-схема экспериментальной установки (a), типовая осциллограмма генерируемого тока (b), осциллограмма падения

напряжения на контактах (c).

вплоть до температуры плавления. Для проведения

расчетов отсутствует необходимость многократного ре-

шения механической контактной задачи для опреде-

ления изменения во времени размера контактных пя-

тен. Эта информация получается из знания зависимо-

сти Uc(t).

Проведены многочисленные расчеты нагрева осесим-

метричных цилиндрических контактов. Их результаты

показывают, что нагреву контактов до Tm и началу

процесса плавления соответствует появление особенно-

сти на осциллограмме контактного напряжения, когда

рост величины Uc(t) прекращается при растущем токе.

Такая осциллограмма приведена на рис. 1, c. Наличие

указанной особенности является аналогом поведения

R−U-характеристики контактов при приближении к точ-

ке плавления [12,13] для нагрева постоянным током

для случая протекания импульсных токов. Таким об-

разом, анализ осциллограмм напряжения на контактах

позволяет зафиксировать факт достижения температуры

плавления и определить момент времени, когда это

произошло.

1. Получение оценочной формулы для
нахождения тока плавления

На величину тока плавления существенное влияние

окаазывают следующие основные параметры:

— сила контактного нажатия,

— форма контактного пятна,

— близость контактного пятна к границе контакт-

детали.

Все эти параметры могли варьироваться в широких

пределах при проведении экспериментов по определе-

нию тока плавления.

Как отмечалось, сила контактного нажатия могла из-

меняться от 0 до 2500N, форма КП — от круглой до ни-

тевидной. Расстояние от КП до границы варьировалось

следующим образом. В случае двух цилиндрических

электродов их поверхность приближалась к пятну путем

уменьшения радиуса цилиндров. При использовании

плоских шин расстояние от КП до границы (нижней по-

верхности шины) изменялось путем изменения толщины

шины, либо путем перемещения подвижного электрода
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Рис. 2. Нижние неподвижные электроды (a), верхние подвижные электроды (b), микрофотографии контактных пятен (c).

вдоль оси шины к ее торцу на расстояние, сопоставимое

с размером КП.

В результате проведенных измерений была накоплена

большая база данных по измерению тока плавления в

широком диапазоне сил контактного нажатия для кон-

тактов, различающихся по своей геометрии, форме КП

и близости пятна к границам контакт-деталей. Материал,

из которого были изготовлены контакты — технически

чистая медь марки М1Е.

Для получения оценочной формулы для Im запишем

соотношение, связывающее в момент начала плавления

t = tm значение тока, контактного напряжения и контакт-

ного сопротивления:

I(tm) =
Uc(tm)

Rc(tm)
. (1)

Это выражение не является стандартной записью

линейного закона Ома, который связывает напряжение

и ток в любой момент времени, а относится только к

моменту t = tm . Контактное сопротивление не постоян-

но, оно сложным образом зависит от распределения тем-

пературы в контактной области и размера КП, которые

изменяются с течением времени.

В выражение (1) неявным образом входит большое

число параметров, характеризующих конкретный тип

контактов. Чтобы выделить наиболее значимые из них,

обратимся к рис. 3, где приведены зависимости величи-

ны Rc от перечисленных выше факторов для цилиндри-

ческих электродов.

На рис. 3, a представлено изменение величины Rc/Rc0

при изменении формы КП от круга к эллипсу, λ —

отношение полуосей эллипсов, Rc0 — контактное со-

противление для случая круглого КП. На рис. 3, b

приведена зависимость Rc от близости пятна к боковой

поверхности цилиндрических электродов; параметр s

равен расстоянию от края КП до поверхности электрода.

Рис. 3, c показывает зависимость Rc от величины силы

контактного нажатия для цилиндрических контактов

диаметром 40mm с формой контактирующих поверхно-

стей
”
конус–плоскость“.

В первых двух случаях контактное сопротивление

изменялось на десятки процентов, в то время как в

третьем случае — кратно. Такие весьма грубые оценки

позволяют сделать предположение о том, что наиболь-

шее влияние на величину контактного сопротивления

и, следовательно, на ток плавления оказывает сила

контактного нажатия. Поэтому систематизацию экспе-

риментальных данных мы будем проводить именно по

этому параметру.
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Рис. 3. Зависимость контактного сопротивления от формы контактного пятна (a), близости контактного пятна к боковой

поверхности цилиндрических электродов (b), силы контактного нажатия (c).

Запишем (1) в несколько измененном виде:

Im =
KUUCu

m

KRRcold
c

. (2)

Величина KU = Uc(tm)
UCu

m
представляет собой обезраз-

меренное напряжение плавления. Здесь величина

UCu
m = 0.43V — это напряжение плавления меди при

стационарном нагреве [12], являющаяся характеристи-

кой материала. Величина KR = RcC(tm)
Rcold

c
безразмерное кон-

тактное сопротивление в момент плавления; она ха-

рактеризует изменение контактного сопротивления при

нагреве до плавления по сравнению с начальным значе-

нием сопротивления холодных контактов Rcold
c .

Приведем экспериментальные данные о величине на-

пряжения плавления и контактном сопротивлении для

электродов различной формы с разными по форме КП,

группируя их только по значению силы контактного

нажатия (100, 300, 1000 и 2500N) — рис. 4. По

оси абсцисс отложен номер реализации пропускания

тока, приведшего к плавлению контактов при заданной

силе контактного нажатия. Момент начала плавления

определялся по возникновению особенности на осцил-

лограмме напряжения. На каждом рисунке сплошной

линией отмечено среднее значения приводимых величин.

Анализируя приведенные зависимости, можно сделать

следующее заключение. Для каждого значения силы кон-

тактного нажатия величина измеренных в момент начала

плавления контактного напряжения и контактного со-

противления практически не зависит от геометрических

факторов, характеризующих испытуемые контакты, при

всем их разнообразии. Приведенные значения имеют

отклонения от своего среднего в пределах 10%.

Сами средние значения монотонно возрастают при

изменении силы контактного нажатия от Fmin
cp = 100N

до Fmax
cp = 2500N (рис. 5).

На том же рисунке приведена зависимость от силы

контактного нажатия частного двух введенных величин

K = KU

KR
. Этот коэффициент практически не зависит от

приложенной силы при ее изменении в широком диапа-

зоне — в 25 раз. Его среднее значение равно 0.65.

Учитывая это, выражение для минимального тока

плавления принимает вид:

Im = 0.65
UCu

m

Rcold
C

. (3)

Покажем, насколько близка оценка минимального то-

ка плавления, полученная с помощью этого выражения,
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Сравнение тока плавления для разнотипных контактов

Тип контактов Тип контактных поверхностей Форма контактного пятна Fc p, N Rcold
c , µ� Im, kA

Цилиндр–цилиндр Конус–плоскость Круглая 500 18.7 15.4

Цилиндр–шина
”
Жало“–плоскость Нитевидная 300 18.8 15.0
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Рис. 5. Зависимости коэффициентов KR (верхний график), KU

(средний график) и K (нижний график) от силы контактного

нажатия.

экспериментально измеренным значениям. Такое сопо-

ставление проведено на рис. 6. Здесь приведены данные

обо всех экспериментально зафиксированных случаях

0

10

40

I
, 
k
A

50

30

0 502010 4030
№

20

Рис. 6. Значения минимального тока плавления: темные столбцы — экспериментальные значения, светлые — вычисленные по

формуле (3), № — номер реализации пропускания тока.

плавления при прохождении ударного тока через элек-

трические контакты всех перечисленных типов.

Так как в (3) явным образом не входит сила контакт-

ного нажатия и геометрические характеристики элек-

тродов, то приведенная на гистограмме информация

упорядочена по току плавления, а не сгруппирована по

каким-то иным признакам.

Анализируя представленные на рис. 6 данные, можно

заключить, что предложенная формула (3) позволяет

делать оценку величины минимального тока плавления

с приемлемой для решения практических задач точно-

стью. Среднее отклонение рассчитанной величины Im от

экспериментально измеренной составляет 10%.

Таким образом, минимальный ток плавления может

быть оценен по единственной характеристике контак-

тов — их контактному сопротивлению Rcold
c . Даже если

электроды значительно различаются по своей геомет-

рии, форме контактного пятна, приложенной к ним

силе, но обладают близкими по величине контактными

сопротивлениями, то они будут характеризоваться близ-

кими значениями тока плавления. Проиллюстрируем это

характерным примером.

Рассмотрим две пары разнотипных электродов. Пер-

вая из них (рис. 7, a) — это цилиндрические электроды
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a

b

Рис. 7. Фотографии электродов и микрофотографии их контактных поверхностей.

диаметром 20mm с типом контактной поверхности

”
плоскость–конус“. Контактное пятно имеет форму кру-

га, сила контактного нажатия равна 300N.

Вторая пара (рис. 7, b) образована цилиндрическим

электродом диаметром 5mm с поверхностью типа
”
жа-

ло“ и шиной прямоугольного сечения шириной 40mm

толщиной 10mm. Контактное пятно имеет нитевидную

форму, сила контактного нажатия значительно больше,

чем в предыдущем случае — 500N.

Значения силы контактного нажатия выбраны так,

чтобы обеспечить в обоих случаях близкие значения

контактных сопротивлений Rcold
C (см. таблицу). В резуль-

тате измеренные значения минимальных токов плавле-

ния практически совпали.

Приведенный пример наглядно иллюстрирует то, что

контакты, заметно различающиеся по форме и силе

контактного нажатия, но имеющие близкие по величине

контактные сопротивления, характеризуются близким

уровнем тока плавления.

Сделаем ряд поясняющих замечаний по поводу при-

менения выражения (3) для оценки тока плавления. Это

выражение устанавливает прямую связь между искомой

величиной Im и сопротивлением холодных контактов.

Все остальные параметры, характеризующие контакты,

такие как площадь и форма контактного пятна, расстоя-

ние от пятна до границы электродов, сила контактного

нажатия, явно в эту формулу не входят, хотя изменение

каждого из них влечет за собой соответствующее изме-

нение тока плавления. Влияние этих параметров на ток

плавления присутствует здесь опосредованно — через

величину контактного сопротивления.

В этом смысле в процессе разработки контактов при

стремлении выйти на определенный предельно допусти-

мый уровень ударных токов, не приводящих к их плав-

лению, можно сосредоточиться только на обеспечении

требуемой величины контактного сопротивления Rcold
c .

В известной степени у разработчика остается свобода

выбора конструктивных мер для достижения этой цели.

Связь (3) не дает конкретных рекомендаций по вы-

бору формы и размеров контактов и силы контактного

нажатия. Это повышает значимость исследований, наце-

ленных на определение влияния различных факторов на

контактное сопротивление, в том числе путем проведе-

ния численных расчетов на модельных задачах.
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Заключение

Путем обобщения экспериментальных данных по

плавлению ударными токами медных сильноточных кон-

тактов различной конфигурации в широком диапазоне

сил контактного нажатия было установлено, что ток

плавления может быть определен по величине контакт-

ного сопротивления холодных контактов. Предложена

оценочная формула для определения тока плавления.

Показано, что проведенные с ее помощью расчеты с до-

статочной для практического использования точностью

соответствуют экспериментальным данным.
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