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Выполнены исследования различных конструкций светоизлучающих инфракрасных (840 nm) диодов на

основе AlGaAs/GaInAs-гетероструктур с множественными квантовыми ямами, выращенных методом МОС-

гидридной эпитаксии. Снижение оптических потерь излучения в светоизлучающих диодах достигнуто при

встраивании в конструкцию многослойных комбинированных отражателей путем переноса тонких слоев

гетероструктуры на подложку-носитель на основе полупроводникового материала (Si, GaAs) или металла

(Cu, Au). Проведен анализ влияния конструкций прибора на характеристики светоизлучающих диодов.

Максимальные значения эффективности 46% при плотности тока 10−20A/cm2 достигнуты в приборах на

GaAs-подложке-носителе. Снижение резистивных потерь и увеличение оптической мощности до 730mW при

рабочем токе 1.2A получено в приборах на металлической подложке-носителе.
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Введение

Область применения инфракрасных (ИК) светоизлу-

чающих диодов (СИД) затрагивает различные сферы

как научные, так и бытовые: медицинская диагностика,

оптические датчики в беспроводных устройствах, систе-

мы ночного видения и др. [1–3]. Увеличение оптической

мощности излучателей осуществляется путем разработ-

ки высокоэффективных гетероструктур с множественны-

ми квантовыми ямами [4,5], встроенными структурными

отражателями [6], а также при модификации постро-

стового комплекса, направленного на формирование

встроенных тыльных отражателей, обеспечивающих эф-

фективный вывод генерированного в активной области

излучения [7–10].
Формирование встроенных отражателей в ИК СИД с

длиной волны излучения < 900 nm необходимо прово-

дить непосредственно между активной областью гетеро-

структуры и GaAs-подложкой, поглощающей излучение

в данном диапазоне длин волн. Встраивание отражателя

осуществляется при переносе тонких слоев гетерострук-

туры на подложку-носитель [11,12]. Проведен анализ

влияния конструкций прибора с различными материала-

ми подложки-носителя на характеристики ИК СИД: по-

следовательное сопротивление прибора, эффективность

при различных рабочих токах, оптическая мощность

излучателей.

В литературе [8–9] освещены вопросы изготовления

ИК СИД на полупроводниковых подложках-носителях

(Si), обладающих оптической мощностью излучения

180−280mW при токе 200−300mA. Однако на токовых

зависимостях оптической мощности наблюдается сла-

бый прирост мощности с увеличением тока до значений,

превышающих 150mA, что свидетельствует о высоких

резистивных потерях и не позволяет получать высоко-

мощные приборы.

Основной задачей проводимого исследование явля-

ется анализ резистивных потерь при использовании

различных материалов в качестве подложки-носителя

(полупроводники GaAs, Si или металлы Au, Cu и др.)
и при варьировании методов переноса тонких слоев

гетероструктуры, а также оптимизация резистивных и

оптических свойств ИК СИД при различных рабочих

токах.

1. Формирование ИК СИД
на полупроводниковой
и металлической
подложке-носителе

В настоящей работе исследовались AlGaAs/GaInAs-

гетероструктуры ИК (840 nm) СИД, выращенные мето-

дом МОС-гидридной эпитаксии на подложке GaAs n-

типа проводимости. Рост гетероструктуры начинается

с кристаллизации жертвенного слоя Al0.9Ga0.1As, об-

ладающего высокой селективностью при химическом

травлении ростовой подложки GaAs. Активная область

гетероструктуры включает шесть GaInAs квантовых

ям, заключенных между широкозонными барьерными

Al0.2Ga0.8As- и Al0.4Ga0.6As-слоями n- и p-типа прово-

димости. Для уменьшения сопротивления растекания

320



Влияние типа подложки-носителя на резистивные и оптические свойства AlGaAs/GaInAs... 321

Ref :lector

SiO /NiCr/Ag/Ti/Pt2
Point contact-

AlGaAs/GaAs
heterostructure AlGaAs/GaAs

Al Ga As0.9 0.1

n-GaAs wafer n-GaAs 

Al Ga As0.9 0.1

n-GaAs wafer

AlGaAs/GaAs

n-GaAs carrier-substrateAu-In

carrier-substrate
Me

AlGaAs/GaAs

n-GaAs wafer

AlGaAs/GaAs

Me
carrier-substrate

Ref lector

n-GaAs 
carrier-substrate

Ref lector

Au-In

AlGaAs/GaAs

Metal contact

Growth
substrate
removal

Рис. 1. Схематическое изображение этапов формирования ИК СИД c тыльным комбинированным отражателем SiO2/NiCr/Ag/Ti/Pt

на подложке-носителе n-GaAs или металла.

сформирован слой Al0.2Ga0.8As n-типа проводимости

толщиной 4−6µm, снижение контактного сопротивле-

ния достигается при формировании сильнолегированных

слоев GaAs n- и p-типа проводимости. Постростовая

технология изготовления приборов включает следующие

этапы [13]:

• формирование точечного контакта p-типа прово-

димости на основе слоев NiCr/Ag/Au на поверхности

гетероструктуры;

• нанесение многослойного комбинированного отра-

жателя на основе слоев SiO2/NiCr/Ag/Ti/Pt;

• перенос гетероструктуры на подложку-носитель

(GaAs или Au);

• удаление ростовой подложки и жертвенного слоя

Al0.9Ga0.1As методом селективного химического травле-

ния;

• формирование фронтального омического контакта n-

типа проводимости на основе слоев Pd/Ge/Au;

• текстурирование световыводящей поверхности.

Снижение резистивных потерь ИК СИД возможно

при разработке оптимальной конфигурации омических

контактов, обеспечивающих минимальный вклад в со-

противление растекания, удельное контактное сопро-

тивление и последовательное сопротивление прибора в

целом, а также при оптимизации технологии монтажа

подложки-носителя из материала с высокой удельной

электропроводностью.

Использование полупроводниковой подложки-

носителя из GaAs обусловлено сходным с материалом

эпитаксиальной гетероструктуры коэффициентом

термического расширения, что особенно важно для

предотвращения деградации ИК СИД при нагреве в

ходе их изготовления и эксплуатации [11]. Однако

монтаж GaAs подложки-носителя осуществляется путем

механической стыковки через интерметаллическое

соединение Au–In, что может вести к образованию

микропор на гетерогранице структура–Au–In-подложка
и соответственно к увеличению резистивных потерь [12].

Использование золотой подложки-носителя обуслов-

лено высокой электрической проводимостью и химиче-

ской стойкостью к воздействию окружающей среды, при

этом использование альтернативных металлов позволя-

ет снизить себестоимость кристаллов СИД. Формирова-

ние металлической подложки-носителя осуществляется

путем электрохимического наращивания металла непо-

средственно на поверхности тыльного комбинирован-

ного отражателя гетероструктуры (рис. 1). Преимуще-

ством данной технологии является отсутствие механи-

21 Журнал технической физики, 2026, том 96, вып. 2



322 А.В. Малевская, Н.А. Калюжный, Р.А. Салий, Ф.Ю. Солдатенков, Д.А. Малевский, В.М. Андреев

ческой стыковки гетероструктуры и подложки-носителя.

Однако различие коэффициентов термического расши-

рения материала гетероструктуры (AlGaAs/GaInAs) и

металлов (Cu, Au) может вести к возникновению микро-

дефектов в гетероструктуре, что требует более деталь-

ной проработки конструкции носителя и режимов его

формирования.

Формирование металлической подложки-носителя вы-

полнялось методом электрохимического осаждения зо-

лота из цианистого электролита в два этапа: при

катодной плотности тока 0.01mA/mm2 на началь-

ном этапе зародышеобразования для обеспечения вы-

сокой адгезии к поверхности структуры и при ра-

бочей плотности тока 0.08−0.1mA/mm2 для фор-

мирования монолитной подложки-носителя толщиной

60−80µm.

После формирования подложки-носителя осуществ-

ляется удаление ростовой подложки GaAs и жерт-

венного слоя Al0.9Ga0.1As, далее выполняется напыле-

ние фронтального омического контакта. Из-за разницы

в коэффициентах термического расширения материала

гетероструктуры и металлической подложки-носителя

необходимо минимизировать термическое воздействие

на кристалл СИД. Использование контактной системы

Pd/Ge/Au, обладающей низким значением удельного

контактного сопротивления ∼ 10−6 � · cm2 к контактно-

му слою GaAs n-типа проводимости при низких темпе-

ратурах вжигания ∼ 185 ◦C предотвращает термическую

деградацию ИК СИД [14].

Снижение резистивных потерь ИК СИД достигнуто

при увеличении толщины контактных шин до 2−4.5µm

путем электрохимического осаждения контактных ма-

териалов на основе слоев Ag/Ni/Au. При разработ-

ке конструкции приборов на металлической подложке-

носителе основной задачей является увеличение эф-

фективности СИД на больших токах, что ведет к

необходимости формирования контактных шин большей

площади поперечного сечения (толщиной 4.5µm при

ширине 8µm). В конструкциях СИД на GaAs подложке-

носителе, предназначенных для работы на низких токах,

основной задачей является снижение оптических потерь,

что достигается при уменьшении степени затенения

световыводящей поверхности при формировании кон-

тактных шин с меньшей площадью сечения (толщиной

2µm при ширине 7µm).

По результатам проведенных исследований изготов-

лены два типа кристаллов ИК (840 nm) СИД площадью

1mm2 на подложках-носителях, выполненных из GaAs

(толщиной 400−450µm) и Au (толщиной 60−80µm),

проведен их монтаж на керамические теплоотводящие

основания. Выполнено формирование оптического эле-

мента в виде силиконовой полусферы на световыводя-

щей поверхности СИД для увеличения вывода излуче-

ния из кристалла [11].

2. Методика исследования
характеристик кристаллов СИД

Для анализа влияния конструкций и методов из-

готовления ИК СИД на характеристики изготовлен-

ных приборов выполнены измерения вольт-амперных

и оптических ватт-амперных характеристик, токовых

зависимостей эффективности, рассчитаны значения по-

следовательного и шунтирующего p-n-переход сопро-

тивления. Измерения в квазипостоянном режиме при

низкой плотности тока (10−7
−10−1 A/cm2) проводились

с использованием источника-измерителя Keithley 2400

для задания тока и регистрации напряжения, а также

вольтметра АКИП В7/78 для регистрации токового

сигнала от контрольного фотоприемника. Измерения

при высокой плотности тока (до 100A/cm2) прово-

дились в импульсном режиме (длительность единич-

ного импульса 10−100µs, скважность > 1000) с ис-

пользованием цифровой системы ввода-вывода данных

для регистрации тока, напряжения исследуемого СИД

и сигнала от контрольного фотоприемника. Развертка

по напряжению ИК СИД осуществлялась с приме-

нением биполярного усилителя. Для снижения влия-

ния угловой расходимости излучения СИД измерения

проводились в интегрирующей сфере (рис. 2). Реги-

страция спектров люминесценции выполнялась спектро-

метром с диапазоном чувствительности 350−1100 nm

(рис. 3, a).

Дополнительно для обнаружения локальных дефектов

использовался метод электролюминесценции с помо-

щью камеры, обладающей чувствительностью в диа-

пазоне длин волн 350−1050 nm. Равномерное рас-

пределение электролюминесценции ИК СИД по всей

площади кристалла СИД свидетельствует об отсут-

ствии дефектов на поверхности, а также об оптималь-

ном выборе конфигурации фронтального омического

контакта и параметров Al0.2Ga0.8As-слоя растекания

(рис. 3, b).

3. Влияние резистивных потерь
на эффективность и оптическую
мощность ИК СИД

Для оценки последовательного сопротивления ИК

СИД проведено измерение вольт-амперных характе-

ристик (ВАХ) (рис. 4) и выполнена аппроксимация

идеализированной (при Rs = 0�) ВАХ. Результаты из-

мерений показали, что при монолитном электрохими-

ческом наращивании металлической (Au) подложки-

носителя на поверхность гетероструктуры с отража-

телем последовательное сопротивление СИД площа-

дью 1mm2 составляет Rs = 0.24�. При механиче-

ской стыковке гетероструктуры и подложки-носителя

GaAs через соединение Au–In наблюдается увели-

чение последовательного сопротивления приборов до
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Рис. 2. Блок-схема установки для измерения эффективности, ВАХ и ватт-амперных характеристик СИД.
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Рис. 3. Спектральная характеристика кристалла ИК (840 nm) СИД размером 1× 1mm (a) и распределение электролюминесцен-

ции (b).

Rs = 0.36�. Таким образом, использование метал-

лической подложки-носителя обеспечивает снижение

резистивных потерь и позволяет более эффективно

преобразовывать электроэнергию при высоких токах

(> 100−200mA).

Для анализа влияния последовательного сопротив-

ления на характеристики ИК СИД проведены изме-

рения токовых зависимостей эффективности и опти-

ческой мощности для двух типов конструкций прибо-

ров (рис. 5). Максимальные значения эффективности

η = 46% достигнуты в ИК СИД (1mm2) на GaAs

подложке-носителе при плотности тока 10−20A/cm2 и

η = 37% в СИД на золотой подложке-носителе при

плотности тока 100A/cm2.

Преимущество золотой подложки в диапазоне боль-

ших токов (100−120A/cm2) сказывается на увеличе-

нии эффективности на 5%. В диапазоне до 20A/cm2

для таких СИД регистрировались несколько меньшие

эффективности (на 1%−2%) в сравнении с СИД на

GaAs-носителе. Это обусловлено напряжениями, пере-

даваемыми от золотого носителя к AlGaAs/GaInAs-

гетероструктуре, с образованием микродефектов, а так-

же с конфигурацией фронтального омического контакта

с увеличенной площадью поперечного сечения кон-

тактных шин, которая ведет к снижению резистивных

потерь при больших плотностях тока, но в то же время

приводит к небольшому росту оптических потерь, что

сказывается на падении эффективности.
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Рис. 5. Токовые зависимости эффективности и оптической

мощности ИК (840 nm) СИД на подложке-носителе из Au

(1, 3) или GaAs (2, 4).

Заключение

Выполнены исследования и разработки различных

конструкций ИК (840 nm) СИД с встроенным много-

слойным комбинированным отражателем, изготовлен-

ных путем переноса тонких слоев AlGaAs/GaInAs-

гетероструктуры на подложку-носитель, выполненную

из металла или полупроводникового материала. При

малых плотностях тока резистивные потери не оказыва-

ют влияния на эффективность приборов, что позволило

достигнуть максимальных значений эффективности 46%

при плотности тока 10−20A/cm2 в приборах на GaAs

подложке-носителе. Снижение резистивных потерь и

увеличение оптической мощности до 730mW при рабо-

чем токе 1.2 A получено в приборах на металлической

подложке-носителе.

В ходе исследования были изучены возможности

получения ИК СИД, работающих в различных диапа-

зонах токов. Для каждого типа исследованных при-

боров может быть определена своя область приме-

нения. Высокоэффективные СИД, изготовленные на

GaAs подложке-носителе, могут использоваться в мало-

мощных оптоэлектронных устройствах. Мощные СИД

(Prad > 700mW) на металлической подложке-носителе

могут найти широкое применение, например, для ИК

подсветки и в охранных системах.
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