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Методами спектроскопии комбинационного рассеяния света, ИК-спектроскопии в области валент-

ных колебаний OH–групп, фотоиндуцированного рассеяния света и лазерной коноскопии исследо-

ваны особенности дефектной структуры нелинейно-оптических монокристаллов двойного легирования

LiNbO3 :Zn:Mg(3.91:1.01 mol.% ZnO и MgO) и LiNbO3 :Zn:Mg(4.48:1.04 mol.% ZnO и MgO), выращенных мето-

дом Чохральского из шихты различного генезиса. Показано, что кристаллы являются химически и оптически

однородными, обладают низким эффектом фоторефракции. Анализ поведения линии спектра комбинацион-

ного рассеяния света с частотой 120 cm−1 показал, что кристалл LiNbO3:Zn:Mg(3.91:1.01 mol.% ZnO и MgO)
обладает более совершенной катионной подрешеткой. В ИК-спектре кристалла LiNbO3 :Zn:Mg(4.48:1.04 mol.%

ZnO и MgO) обнаружены линии (3498−3548 cm−1), соответствующие валентным колебаниям атомов

водорода в гидроксильных группах комплексных дефектов Zn3−Nb –OH и Mg+
Li–Mg3−Nb –OH. Данные линии

смещены в длинноволновую область спектра, что свидетельствует о проявлении пороговых эффектов в

кристалле LiNbO3 :Zn:Mg(4.48:1.04 mol.% ZnO и MgO) при повышении концентрации цинка от 3.91mol.% до

4.48mol.% и магния от 1.01mol.% до 1.04mol.%.
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Введение

В настоящее время востребованы функциональные ма-

териалы различного назначения на основе сегнетоэлек-

трического монокристалла ниобата лития (LiNbO3, LN),
обладающего высокими значениями акустооптических,

электрооптических, нелинейно-оптических коэффициен-

тов, фоторефрактивным эффектом (
”
optical damage“),

широким окном прозрачности от 0.25 до 5.5µm, что

позволяет использовать его для создания различных

материалов (оптические материалы для видимого, ближ-

него и среднего ИК-диапазонов и др.) [1–9]. В соот-

ветствии с фазовой диаграммой Nb2O5–Li2CO3 для фа-

зы ниобата лития (обладает кислородно-октаэдрической

структурой) характерна широкая область гомогенно-

сти [2,3,10,11]. Его химическую формулу, как фа-

зы переменного состава, можно представить в виде

LiNbO3 :Nb,Me (где Me — примесный металл). Физиче-

ские характеристики монокристалла LiNbO3 и материа-

лов на его основе определяются величиной стехиомет-

рии R (где R = [Li]/[Nb]), особенностями локализации

легирующих катионов металлов в кристалле и особен-

ностями его дефектной структуры. Кристалл ниобата

лития является гетеродесмическим, в нем присутству-

ют разные виды взаимодействий между структурными

единицами, существенно различающие по энергии: ко-

валентное взаимодействие, электростатическое взаимо-

действие и водородная связь. При этом, варьируя па-

раметры роста монокристаллов, технологию получения

легированной шихты, тип и концентрацию легирующих

элементов, а также их комбинацию, можно достаточно

тонко регулировать физические характеристики кристал-

лов LiNbO3 .

В структуре кристалла LiNbO3, помимо кислородных

октаэдров O6, соединенных ребрами и гранями [2,12],
присутствуют кислородные тетраэдры O4, которые явля-

ются компенсаторами деформационных изменений кис-

лородного каркаса кристалла [13]. Внутри кислородных

октаэдров находятся катионы Li+ и Nb5+, а также кати-

оны легирующих металлов. Одна треть октаэдров всегда

остается вакантной, в то время как оставшаяся часть

октаэдров содержит катионы металлов. Такая структура
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позволяет легировать кристалл широким спектром раз-

личных металлов. Порядок чередования ионов металлов

вдоль полярной оси кристалла определяется составом

кристалла и особенностями технологий его получения.

С повышением концентрации легирующего элемента в

кристалле появляются концентрационные пороги, при

прохождении которых пространственная группа симмет-

рии элементарной ячейки кристалла LiNbO3 не изменя-

ется, но изменяются порядок чередования основных и

примесных катионов вдоль полярной оси кристалла и

параметры элементарной ячейки [3].
Применение кристаллов LiNbO3 для преобразования,

модуляции и генерации лазерного излучения ограниче-

но эффектом фоторефракции. Эффект фоторефракции

сопровождается искажением волнового фронта электро-

магнитной волны, проходящей через кристалл, и фото-

индуцированным рассеянием света (ФИРС) на лазерно-

индуцированных дефектах [3,4,14]. Снизить эффект фо-

торефракции можно введением в структуру кристалла

нефоторефрактивных катионов металлов, обладающих

постоянной степенью окисления (Mg2+, Zn2+, In3+, Sc3+,

Zr4+ и др.), не изменяющих свое зарядовое состоя-

ние при воздействии света [3,4,6,15]. Такие катионы

(ODRI —
”
optical-damage-resistant ions“ [6]) повышают

устойчивость кристаллов LiNbO3 к оптическому повре-

ждению. Введение в кристалл ODRI в малых коли-

чествах не приводит к полному подавлению эффекта

фоторефракции. Однако в данном случае сохраняется

композиционная и оптическая однородность кристаллов,

что является крайне важным в технологии получения

высокосовершенных оптических материалов. Наиболее

существенного снижения эффекта фоторефракции мож-

но добиться путем введения в структуру кристалла

больших концентраций ODRI, близких к пороговым зна-

чениям и выше. Однако введение в структуру кристал-

ла таких концентраций нефоторефрактивных катионов

металлов, к сожалению, оказывает негативное влияние

на химическую и композиционную однородность легиро-

ванных кристаллов, а также приводит к формированию

в его структуре различных точечных и комплексных

структурных дефектов.

При концентрационном пороге происходит изменение

механизма вхождения легирующего элемента (Me) и

основных (Li, Nb) элементов в структуру кристал-

ла [3,4,15]. Величины основных концентрационных по-

рогов (индивидуальных) для катионов Zn2+(5.19mol.%)
и Mg2+(≈ 5.5mol.%) установлены в работах [3,4,15].
Несмотря на то, что величины данных концентрацион-

ных порогов (магния и цинка) в кристаллах одинарного

легирования известны, а также изучено их проявле-

ние в формировании особенности первичной и вторич-

ной (дефектной) структуры кристаллов LiNbO3 :Zn и

LiNbO3 :Mg, на данный момент не в полной мере ис-

следованы особенности проявления концентрационных

порогов (и их величин) в кристаллах LiNbO3 :Zn:Mg.

Особенно это касается малых (не основных) концентра-

ционных порогов, незначительно изменяющих состояние

дефектной структуры кристаллов. При этом солеги-

рование двумя примесями, устойчивыми к оптическо-

му повреждению, может взаимно усилить их влияние

на физические свойства кристалла LiNbO3 [16]. Это

открывает возможности для разработки новых и усо-

вершенствования существующих технологий получения

высокосовершенных легированных кристаллов LiNbO3

с заданными характеристиками. Так, изменяя концентра-

цию двух легирующих элементов и метод их введения в

структуру кристалла, учитывая их индивидуальное вли-

яние в широком диапазоне концентраций на дефектную

структуру кристалла, его фоторефрактивные свойства,

оптическую и композиционную однородность, можно в

более широком диапазоне, по сравнению с одинарным

легированием, изменять свойства и характеристики ма-

териалов. К настоящему времени получены и исследо-

ваны некоторые свойства следующих монокристаллов

LiNbO3 двойного легирования:

LiNbO3 :Zn:Mg [17–21], LiNbO3:Zn:In [16],
LiNbO3 :Zn:Fe [22], LiNbO3:Yb:Pr [23],
LiNbO3 :Cr:Cu [24], LiNbO3:Er:Tm [25],
LiNbO3 :Er:Zn [26], LiNbO3:Hf:Dy [27],
LiNbO3 :Nd:MgO [28], LiNbO3:Pr:Mg [29],
LiNbO3 :Zr:Dy [30], LiNbO3:In:Dy [31],
LiNbO3 :Yb:Er [32], LiNbO3:Ce:Mn [33]

и др.

Авторы работы [21] исследовали серию кристаллов

двойного легирования LiNbO3 :Mg(3.0mol.%):Zn(1.0, 2.0
и 3.0mol.%) методом ИК-спектроскопии. В настоящей

работе показано, что количество пиков на ИК-спектрах

исследованных кристаллов изменяется: 3482 cm−1

для кристалла LiNbO3:Mg:Zn(3.0:1.0mol.%); 3482 и

3533 cm−1 для кристалла LiNbO3 :Mg:Zn(3.0:2.0mol.%);
3533 cm−1 для кристалла LiNbO3 :Mg:Zn(3.0:3.0mol.%).
Такое поведение линий с частотами 3482 и 3533 cm−1

(снижение интенсивности первой и повышение

интенсивности второй при возрастании концентрации

Zn) авторы работы [21] связали с уменьшением

концентрации дефектов NbLi в кристалле LiNbO3 :Mg:Zn.

В работе [19] методами лазерной коноскопии и

фотоиндуцированного рассеяния света установлено,

что гомогенно легированные кристаллы LiNbO3:Zn:Mg

(легирующая примесь вводится в прекурсор Nb2O5)
обладают высокой стойкостью к повреждению

лазерным излучением и оптической однородностью.

В работе [20] было показано, что особенности

упорядочения структурных единиц катионной

подрешетки и состояние дефектной структуры

монокристаллов LiNbO3:Zn:Mg(3.45:1.41mol.%) и

LiNbO3:Zn:Mg(3.45:1.22mol.%), полученных по техноло-

гии гомогенного и прямого легирования соответственно,

определяет скорее магний, чем цинк. В связи с этим

актуально проведение дополнительных исследований,

направленных на изучение особенностей дефектной

структуры кристаллов LiNbO3:Zn:Mg разного генезиса,

которые содержат меньшую концентрацию катионов
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Mg(≈ 1mol.% MgО) и более высокую концентрацию ка-

тионов Zn(≈ 4mol.% ZnО и выше). Близкая и фиксиро-

ванная концентрация катионов Mg должна сделать менее

выраженным их превалирующее воздействие на особен-

ности дефектной структуры кристаллов по сравнению

с катионами Zn, а введение в структуру кристаллов

LiNbO3 :Zn:Mg ≈ 4mol.% ZnО и более даст возможность

”
перейти“ величину первого индивидуального порого-

вого значения. Такой подход позволит проанализировать

как индивидуальное влияние данных легирующих при-

месей, так и влияние их общей концентрации на особен-

ности дефектной структуры кристаллов LiNbO3 :Zn:Mg.

Таким образом, цель настоящей работы —

определить роль катионов Zn2+ и Mg2+ и их

концентраций в формировании пороговых эффектов

в кристаллах LiNbO3 :Zn:Mg(3.91:1.01mol.%) и

LiNbO3 :Zn:Mg(4.48:1.04mol.%), а также роль

метода легирования в формировании особенностей

дефектной структуры, оптической однородности и

фоторефрактивных свойств кристаллов двойного

легирования LiNbO3 :Zn:Mg методами спектроскопии

комбинационного рассеяния света (КРС),
ИК-спектроскопии в области валентных колебаний

OH-групп, ФИРС и лазерной коноскопии.

1. Методика эксперимента

Исследуемые в настоящей работе кристаллы двой-

ного легирования LiNbO3:Zn:Mg были выращены

из шихты, полученной по разным технологиям.

Монокристалл LiNbO3 :Zn:Mg(3.91:1.01mol.% в кри-

сталле) был получен по технологии гомогенно-

го легирования (далее LN(1)) [19], монокристалл

LiNbO3 :Zn:Mg(4.48:1.04mol.% в кристалле) — с при-

менением комбинированного метода легирования (да-
лее LN(2)) [26]. Для выращивания кристалла LN(1)
была использована гомогенно легированная цинком и

магнием монофазная шихта ниобата лития, синтези-

рованная на основе прекурсора Nb2O5:Mg:Zn по ме-

тодике, описанной в работе [19]. Для выращивания

кристалла LN(2) использовалась шихта, введение при-

месей в которую проходило в две стадии [26]: на

первом этапе была получена шихта LiNbO3:Mg; на

втором этапе, перед выращиванием кристалла, было

осуществлено добавление ZnO. В качестве объектов

сравнения в настоящей работе были выбраны кри-

сталлы, исследованные нами ранее [19,20,34]: моно-

кристалл ниобата лития стехиометрического состава

LiNbO3stoich (R = 1), выращенный из расплава с избыт-

ком [Li2O]= 58.6mol.% (далее — LNs ); монокристаллы
двойного легирования LiNbO3 :Zn:Mg(3.45:1.41mol.%) и

LiNbO3 :Zn:Mg(3.45:1.22mol.%), полученные по техно-

логии гомогенного и комбинированного легирования

(далее — LN(1’) и LN(2’) соответственно).

Кристаллы LN(1) и LN(2) (диаметр — 35mm, длинна

цилиндрической части — 43mm) были выращены в

Таблица 1. Концентрация (в mol.%) легирующих элементов

(Zn, Mg) в конусной и торцевой частях монокристаллов

LN(1) [19], LN(2) и образцах сравнения LN(1’) и LN(2’) [20], а
также изменение концентрации (1CMe) легирующих металлов

(Me–Zn, Mg) по длине були

Содержание легирующей примеси, mol.%

Кристалл Конус Торец 1CMe = Cc −C f

[Zn] [Mg] [Zn] [Mg] [Zn] [Mg]

LN(1) 3.91 1.01 3.85 0.96 0.06 0.05

LN(2) 4.48 1.04 4.48 1.04 0 0

LN(1’) 3.45 1.41 3.45 1.44 0 −0.03

LN(2’) 3.45 1.22 3.51 1.22 −0.06 0

направлении [001] методом Чохральского из распла-

ва с использованием платиновых тиглей диаметром

80mm в воздушной атмосфере на ростовой установке

промышленного типа
”
Кристалл-2“. При выращивании

кристаллов величина осевого температурного градиента

составляла 1 deg/mm, скорость вращения — 14 rpm,

скорость перемещения — 1.1mm/hour, скорость роста —

1.6mm/hour [19]. Для снятия термоупругих напряже-

ний, гомогенизации состава и достижения униполяр-

ного состояния (процесс монодоменизации), кристаллы
LN(1) и LN(2) подвергали нескольким послеростовым

термическим обработкам [19]. Концентрацию легирую-

щих элементов Mg и Zn в исследуемых кристаллах

определяли методами атомно-эмиссионной спектромет-

рии с индуктивно-связанной плазмой на спектромет-

ре Optima 8300 ИСП-АЭС и атомно-абсорбционной

спектрометрии на приборе
”
Квант-ФА“ [19]. В табл. 1

приведена концентрация легирующих элементов в пла-

стинах, вырезанных из конусной (Cc) и торцевой (C f )
частей выращенных кристаллических буль, а также

изменение концентрации легирующих элементов по

длине були (1CMe = Cc −C f ) для образцов исследо-

вания LN(1) [19] и LN(2) и легированных образцов

сравнения LN(1’) и LN(2’) [20].

Для исследований выращенные кристаллы были моно-

доменизированы, после чего образцы для исследований

были вырезаны из кристаллических буль в форме прямо-

угольных параллелепипедов, грани которых тщательно

полировались, а ребра совпадали по направлению с

кристаллографическими осями X , Y , Z (Z — полярная

ось кристалла) размерами 8× 6× 10mm (рис. 1).

Для получения коноскопических картин методом ла-

зерной коноскопии и картин ФИРС исследуемых моно-

кристаллов LN(1) и LN(2) использовался лазер Nd:YAG

(MLL-100, Changchun New Industries Optoelectronics

Tech. Co. Ltd, Changchun, China) длиной волны ла-

зера 532.0 nm, мощностью — 1 и 90mW (лазерная
коноскопия; плотность мощности 0.04 и 3.54W/cm2
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1 2

Рис. 1. Образцы монокристаллов: 1 — LN(1), 2 — LN(2).

соответственно) и 160mW (ФИРС; плотность мощности

6.29W/cm2). Подробная схема используемых оригиналь-

ных установок и методика проведения экспериментов

приведены в работе [35]. Для получения коноскопиче-

ских картин методом лазерной коноскопии кристаллов

LN(1) и LN(2) использовались пластины толщиной

3mm, для получения картин ФИРС — параллелепипеды

(рис. 1). Картины ФИРС и коноскопические картины

кристалла LN(1) ранее были исследованы в работе [19].
Спектры КРС монокристаллов LN(1) и LN(2) бы-

ли зарегистрированы в геометриях рассеяния Y(ZZ)Y
и Y(ZX)Y. Для регистрации спектров КРС приме-

нялся спектрограф T64000 (Horiba Jobin-Yvon, мо-

дель 2018-RM, Lille, France). Для возбуждения спек-

тров КРС использовали лазер Spectra-Physics Excelsior

532-300-CDRH с длиной волны λ = 532.0 nm, и мощно-

стью P = 5mW. Все спектры регистрировались с раз-

решением 1.0 cm−1. Точность определения полуширин

спектральных линий составляла ±2 cm−1.

ИК-спектры исследуемых монокристаллов LN(1) и

LN(2) были зарегистрированы с разрешением 0.5 cm−1

с помощью фурье-спектрометра Nicolet 6700 (Thermo

Fisher Scientific Inc., Hillsboro, OR, USA, 2010) при

комнатной температуре. Использовалось неполяризован-

ное инфракрасное излучение. Объемная концентрация

OH-групп в исследованных кристаллах определена по

методу Клавира [36].
Для обработки экспериментальных данных (спектро-

скопия КРС и ИК-спектроскопия) исследуемых кристал-

лов и их представления были использованы программы

LabSpec 5.5 и Origin 8.1.

2. Результаты и обсуждения

Следствием фоторефрактивного эффекта является фо-

тоиндуцированное рассеяние света [37]. Картины ФИРС

кристаллов LN(1) и LN(2) приведены на рис. 2. Для

исследованных кристаллов LN(1) и LN(2) индикатриса

ФИРС не раскрывается, наблюдается только круговое

рассеяние на статических структурных дефектах (рис. 2).

1

2

1 s 1 min 6 min

Z

X

Рис. 2. Картины ФИРС кристаллов LN(1) — 1 [19] и LN(2) —
2. λ = 532 nm, P = 160mW.

1 mW 90 mW

1

2

Рис. 3. Коноскопические картины кристаллов LN(1) — 1 [19]
и LN(2) — 2. λ = 532 nm, P = 1 и 90mW.

Это свидетельствует о низкой величине эффекта фоторе-

фракции в исследуемых кристаллах. Картина рассеяния

не изменяется во времени и сохраняет круговую форму

на протяжении всего эксперимента (рис. 2). Стоит отме-
тить, что картины ФИРС кристаллов LN(1) и LN(2) об-

ладают некоторыми отличиями. Так, первый слой картин

ФИРС кристалла LN(1), соответствующий прошедшему

через кристалл лазерному лучу, имеет больший диаметр

по сравнению с первым слоем картин ФИРС кристалла

LN(2), что указывает на более сильную диссипацию

энергии лазерного луча на дефектах в объеме кристалла

LN(2) (рис. 2).

С целью контроля оптического качества кристаллов

LN(1) и LN(2) был применен метод лазерной коно-

скопии. Коноскопические картины обладают круговой

симметрией, при которой черный
”
мальтийский крест“

сохраняет целостность в центре поля зрения, а изохро-
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мы представляют собой концентрические окружности с

центром в точке выхода оптической оси (рис. 3). Это
позволяет сделать вывод, что образцы являются опти-

чески однородными и обладают хорошим оптическим

качеством. Однако стоит отметить, что коноскопиче-

ские картины кристалла LN(1) имеют ряд особенностей

(рис. 3): при мощности излучения 1mW наблюдаются

признаки аномальной оптической двуосности, которые

частично проявляются в виде смещения фрагментов

коноскопической картины в вертикальном направлении.

Указанные искажения уменьшаются на коноскопической

картине кристалла LN(1), зарегистрированной при боль-

шей мощности лазерного излучения (рис. 3). Это может

быть связано с
”
залечиванием“ дефектов при повышении

мощности лазерного излучения. Наряду с этим, при

увеличении мощности лазерного излучения на нижней

правой ветви
”
мальтийского креста“ коноскопической

картины кристалла LN(1) появляются аномалии в виде

попарного смыкания изохром (рис. 3). Отметим, что на-

блюдается небольшое размытие коноскопической карти-

ны кристалла LN(2) при мощности лазерного излучения

90mW, что может быть обусловлено возрастанием эф-

фекта фоторефракции при данной плотности мощности

лазерного излучения (рис. 3).

Обнаруженные аномалии на коноскопических карти-

нах указывают на проявление структурной неоднород-

ности кристаллов, возникающей вследствие неравномер-

ного распределения легирующих компонентов в объеме

кристалла, особенно при значительных концентрациях

легирующих катионов. Кристаллы LN(1) и LN(2) от-

личаются высокой степенью химической однородности

(табл. 1). Таким образом, обнаруженные искажения на

коноскопических картинах кристаллов LN(1) и LN(2)
(рис. 3) и уменьшение размера первого слоя картин

ФИРС кристалла LN(2) (рис. 2), вероятно, обусловле-
ны перестройкой их вторичной структуры по причине

изменения механизма внедрения Zn и Mg в структуру

кристаллов вблизи концентрационного порога. Концен-

трация катионов Zn в структуре кристаллов LN(1) и

LN(2) близка или превышает (3.91mol.% и 4.48mol.%

(табл. 1)) концентрацию, соответствующую величине

первого индивидуального концентрационного порога

(3.95mol.% ZnО в кристалле [15]). Более подробную ин-

формацию об особенностях упорядочения структурных

единиц катионной подрешетки и состоянии дефектной

структуры кристаллов LN(1) и LN(2) можно получить,

используя спектроскопию КРС и ИК-спектроскопию.

На рис. 4 приведены спектры КРС (Y(ZX)Y и

Y(ZZ)Y) монокристалла LNs и кристаллов LN(1) и

LN(2). В указанных геометриях рассеяния, согласно

правилам отбора, должны проявляться только фундамен-

тальные колебания E(TO) и A1(TO) типа симметрии в

плоскости X − Y и вдоль оси Z соответственно [3,38].
Величины частот и полуширин основных спектральных

линий приведены в табл. 2 и 3. При обработке спектров

с целью максимального перекрытия теоретического и

Таблица 2. Частоты и полуширины линий (v и S, cm−1)
спектров КРС номинально чистого монокристалла LNs и

монокристаллов LN(1) и LN(2) в геометрии рассеяния

Y(ZX)Y (Е(ТО)) при T = 293K

LNs LN(1) LN(2)

v , cm−1 S, cm−1 v , cm−1 S, cm−1 v , cm−1 S, cm−1

153 7 152 11 153 12

− − 190 9 191 9

239 7 237 10 237 11

264 8 263 13 263 14

322 10 323 15 323 16

370 17 368 32 368 33

433 10 435 16 435 17

581 17 578 29 578 29

− − 605 35 604 33

621 100 − − − −

− − 633 99 632 98

Таблица 3. Частоты и полуширины линий (v и S, cm−1)
спектров КРС номинально чистого монокристалла LNs и

монокристаллов LN(1) и LN(2) в геометрии рассеяния

Y(ZZ)Y (A1(ТО)) при T = 293K

LNs LN(1) LN(2)

v , cm−1 S, cm−1 v , cm−1 S, cm−1 v , cm−1 S, cm−1

254 15 252 22 252 22

277 11 273 17 273 18

334 9 330 14 330 15

634 20 632 29 632 30

экспериментального контуров были добавлены дополни-

тельные линии, природа которых в настоящей работе не

рассматривается.

Спектры КРС исследованных кристаллов подобны

друг другу (рис. 4) и соответствуют спектру КРС

кристалла ниобата лития [5]. Известно, что вклад в

увеличение полуширины спектральных линий вносят эф-

фекты разупорядочения структуры, а вклад в увеличение

интенсивности линий, которая пропорциональна квад-

рату производной поляризуемости межатомных связей,

принимающих участие в колебании, помимо эффектов

разупорядочения структуры, дополнительно вносит еще

и эффект фоторефракции [3]. При анализе спектров КРС

кристаллов LN(1) и LN(2) можно пренебречь вкладом
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Рис. 4. Спектры КРС номинально чистого монокристалла LNs — (1) [20] и монокристаллов LN(2) — (2) и LN(1) — (3) при

T = 293K в геометриях рассеяния: Y(ZX)Y (Е(ТО)) — a; Y(ZZ)Y (A1(ТО)) — b.
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Рис. 5. Концентрационные зависимости полуширины (S, cm−1) некоторых спектральных линий в спектрах КРС Y(ZX)Y — (a);
Y(ZZ)Y — (b): номинально чистого кристалла LNs ; монокристаллов LN(2’) и LN(1’) по данным работ [20,34]; монокристаллов
LN(1) и LN(2) (табл. 2, 3). Кристаллы, полученные по технологии комбинированного легирования — закрашенные значки (за
исключением LNs ); кристаллы, полученные по технологии гомогенного легирования — пустые значки.

эффекта фоторефракции в интенсивность спектральных

линий по причине того, что лазерное излучение, исполь-

зуемое для проведения экспериментов, обладало малой

мощностью (5mW). Отметим, что в кристаллах LN(1) и
LN(2) эффект фоторефракции подавлен (в соответствии

с данными ФИРС (рис. 2)). Таким образом, исклю-

чительно эффекты разупорядочения структуры вносят

вклад в увеличение интенсивности спектральных линий,

которое наблюдается при переходе от спектра кристалла

LNs к спектрам легированных кристаллов (рис. 4). При

этом интенсивность большинства спектральных линий в

исследованных геометриях рассеяния Y(ZX)Y и Y(ZZ)Y
кристалла LN(1) в ∼ 1.2 раза выше интенсивности

спектральных линий кристалла LN(2).

Важным критерием оценки степени разупорядочения

структурных единиц катионной подрешетки легирован-

ных кристаллов LiNbO3, в сравнении с кристаллом

LNs , служит полуширина спектральных линий, соответ-

ствующих A1(TO) колебаниям катионов лития, ниобия

и примесных катионов вдоль полярной оси кристалла.

Из табл. 2 и 3 видно, что полуширина большинства

спектральных линий кристалла LN(2) больше таковой

для кристалла LN(1) на ∼ 1 cm−1, что входит в диапазон

ошибки определения данного спектрального параметра

(±2 cm−1). Таким образом, спектроскопия КРС в задей-

ствованных геометриях рассеяния Y(ZX)Y и Y(ZZ)Y не

позволила обнаружить проявление пороговых эффектов

в кристаллах LN(1) и LN(2).
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Рис. 6. Фрагмент спектров КРС номинально чистого кристал-

ла LNs — 1, монокристаллов LN(2’) — 2 и LN(1’) — 3 (по
данным работы [34]), а также монокристаллов LN(1) — 4 и

LN(2) — 5 в геометрии рассеяния Y(ZZ)Y.

На рис. 5 приведены концентрационные зависимо-

сти полуширины некоторых спектральных линий но-

минально чистого кристалла LNs и монокристаллов

LN(1) и LN(2), обнаруженных в геометриях рассеяния

Y(ZX)Y и Y(ZZ)Y. На рис. 5 в качестве сравнения

приведены аналогичные концентрационные зависимости

монокристаллов LN(2’) и LN(1’) [20,34]. Из рис. 5

видно, что существенных изменений в поведении пара-

метра полуширины спектральных линий не наблюдается.

При этом прослеживается общее немонотонное увели-

чение полуширины большинства спектральных линий

в ряду кристаллов LN(2’)→LN(1’)→LN(1)→LN(2),
что обусловлено возрастанием разупорядочения струк-

туры вследствие увеличения суммарной концентрации

(вmol.%) легирующих катионов в данных кристаллах:

4.67 → 4.86 → 4.92 → 5.52.

По изменению интенсивности линии с частотой

120 cm−1, соответствующей двухчастичным состояниям

акустических фононов с суммарным волновым векто-

ром, равным нулю, можно исследовать проявление эф-

фектов разупорядочения структурных единиц катионной

подрешетки в кристаллах ниобата лития разного состава.

Линия с частотой 120 cm−1 обнаруживается в геометрии

рассеяния Y(ZZ)Y. Однако она отсутствует в спектре

КРС кристалла LNs (R = 1) [3]. На рис. 6 приведены

фрагменты спектров КРС номинально чистого кристал-

ла LNs , исследуемых монокристаллов LN(1) и LN(2) и

монокристаллов сравнения LN(1’) и LN(2’) [34].
Кристалл ниобата лития стехиометрического соста-

ва обладает наиболее низким резонансным взаимодей-

ствием двухчастичных состояний акустических фононов

A1(TO)-типа симметрии с суммарным волновым векто-

ром, равным нулю, с наиболее низкочастотными фунда-

ментальными фононами A1(TO)-типа симметрии — 254

и 274 cm−1 [3]. В связи с этим у кристалла LNs линия

в области 120 cm−1 отсутствует (рис. 6). Для кристалла

LiNbO3cong линия с частотой 120 cm−1 расщепляется на

две линии (105 и 118 cm−1) [3,39]. Это свидетельствует о

более упорядоченной катионной подрешетке кристалла

LiNbO3cong [3]. Важно отметить, что линия с частотой

120 cm−1 для некоторых кристаллов LiNbO3:Zn также

расщепляется, но на линии с другими частотами (115 и

128 сm−1) [39].
В кристаллах LiNbO3:Zn:Mg линия с частотой

120 cm−1 либо расщепляется на две линии (104 и 116

(117) cm−1), либо происходит понижение ее частоты

(110 cm−1) (рис. 6). От кристалла LN(1’) к кристал-

лу LN(1) интенсивность линии с частотой 104 cm−1

увеличивается, а интенсивность линии с частотой 116

(117) cm−1 уменьшается (рис. 6). Таким образом, рас-

щепление линии с частотой 120 cm−1, характерное для

кристалла LiNbO3cong [39], в ряду исследованных в

настоящей работе кристаллов, наблюдается только у

образцов, полученных по технологии гомогенного ле-

гирования. Это может свидетельствовать о более вы-

сокой степени структурного совершенства катионной

подрешетки кристаллов LN(1’) и LN(1). При этом от

кристалла LN(2) к кристаллу LN(2’) в рассматривае-

мой области спектра интенсивность линии с частотой

110 cm−1 увеличивается (рис. 6). Таким образом, с

позиции спектроскопии КРС технология гомогенного

легирования является предпочтительной при легирова-

нии кристаллов ниобата лития двумя металлическими

”
нефоторефрактивными“ примесями.

Как уже упоминалось, спектроскопия КРС не позволи-

ла обнаружить явное проявление пороговых эффектов

в кристаллах LN(1) и LN(2), обусловленных близкой

или превышающей пороговую концентрацию для оди-

нарного легирования катионами Zn. Однако проявление

пороговых эффектов в исследуемых кристаллах было

обнаружено нами при использовании ИК-спектроскопии

в области валентных колебаний OH−-групп. На рис. 7, a

приведены ИК-спектры монокристаллов LN(1) и LN(2).
В спектре кристалла LNs присутствуют полосы с часто-

тами 3465, 3468, 3479 и 3488 cm−1 [20]. Полуширина
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ИК-спектра кристалла LN(2) на компоненты (b).

Таблица 4. Интенсивности и полуширины линий (v и S,

cm−1; T , a. u.), соответствующих валентным колебаниям OH−-

групп в ИК-спектрах, и концентрация OH−-групп (C(OH−),
·1017 cm−3) монокристаллов LN(1) и LN(2)

Кристаллы v , cm−1 T , a. u. S, cm−1 C(OH−), cm−3

3470 6.29 16.72

LN(1) 3482 11.15 13.53 2.14 · 1017

3491 6.93 12.84

3500 1.44 11.24

3498 0.41 8.90

3505 0.95 9.27

LN(2) 3512 4.20 12.76 2.33 · 1017

3528 9.00 13.21

3535 13.26 11.08

3548 0.29 6.91

данных полос в ИК-спектре кристалла LNs [20] суще-

ственно меньше, чем в спектрах кристаллов LN(1) и

LN(2), что свидетельствует о большем разупорядочении

локализации атомов водорода в структуре легирован-

ных кристаллов (табл. 4, рис. 7, a). Полосы в диапа-

зоне частот 3460 − 3489 cm−1 связаны с присутствием

в структуре кристалла комплексных дефектов [40,41].
Согласно модели компенсации Li-вакансий, в кристалли-

ческой решетке LiNbO3cong существует ∼ 1mol.% Nb4+Li
и ∼ 4mol.% V−

Li [40,42]. Кроме того, катионы Zn2+ и

Mg2+ вносят вклад в искажение формы кислородно-

октаэдрических кластеров MeO6 структуры кристаллов

LiNbO3 :Zn:Mg, поскольку величина их ионных радиусов

(0.74 и 0.72�A [43]) отличается от величины ионных ради-

усов Nb5+ и Li+ (0.64 и 0.76�A [43]). Важно отметить, что

электрооптические свойства кристаллов LiNbO3 опре-

деляются деформацией и поляризуемостью кластеров

MeO6 (Me — Li, Nb, примесный катион) [44,45].
Форма и положение полос на ИК-спектрах находятся

в прямой зависимости от величины стехиометрии R и

концентрации легирующих примесей в кристалле. В ИК-

спектре кристалла LN(2) наблюдается сдвиг частот в

длинноволновую область спектра (3498, 3505, 3512,

3528, 3535 и 3548 cm−1) (рис. 7, a). Наблюдаемые в ИК-

спектре изменения прослеживаются в диапазоне частот

3490− 3550 cm−1, что отражает изменение процесса

вхождения легирующих примесей в структуру кристалла

(рис. 7, a). Подобный сдвиг частот в длинноволновую

область спектра обусловлен образованием комплексных

дефектов [41,46]. Как показано в работах [3,15], катионы
Zn2+ занимают ниобиевые октаэдры и формируют то-

чечные дефекты ZnNb, как правило, при превышении ос-

новного порогового значения (5.19mol.% в кристалле).
В ИК-спектрах кристаллов LiNbO3 :Zn(CZn > 6.76mol.%

в расплаве [15]) обнаруживаются линии с частотами

∼ 3500, 3520 и 3527 cm−1 [47]. Обнаружение указанных

линий, вероятно, обусловлено тем, что в кристаллах

LiNbO3:Zn присутствуют комплексные дефекты состава

Zn−3
NbOH. Учитывая вышесказанное, можно предполо-

жить, что три линии с частотами 3505, 3512 и 3528 cm−1

(табл. 4, рис. 7, b) свидетельствуют о формировании в

структуре кристалла LN(2) точечных дефектов Zn3−Nb .

В работе [48] было показано, что в ИК-спектре

кристалла LiNbO3 :Mg(5.29mol.%) наблюдаются две ли-

нии с частотами ∼ 3526 и 3535 cm−1. Наличие данных

линий в ИК-спектре кристалла LiNbO3 :Mg(5.29mol.%)
связывают с формированием в структуре кристалла ком-

плексного дефекта Mg+
Li–Mg3−Nb–OH [48]. Таким образом,

обнаруженная в ИК-спектре кристалла LN(2) линия с

частотой 3535 cm−1 (табл. 4, рис. 7, b) может быть

обусловлена наличием в структуре данного кристалла
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Рис. 8. Концентрация OH−-групп (C(OH−), 1017 cm−3) в

монокристаллах LNs [20] и LN(1) и LN(2).

вышеупомянутого комплексного дефекта. Стоит также

отметить, что линия с частотой 3528 cm−1 (табл. 4)
кристалла LN(2) может быть обусловлена как фор-

мированием в его структуре комплексного дефекта

Zn3−Nb–OH (∼ 3527 cm−1 [47]), так и комплексного дефек-

та Mg+
Li–Mg3−Nb–OH (∼ 3526 cm−1 [48]). Учитывая выше-

сказанное, можно предположить, что линия с частотой

3528 cm−1 (табл. 4) в ИК-спектре кристалла LN(2) соот-
ветствует комплексному дефекту, содержащему как Zn,

так и Mg (например, Mg+
Li–Mg3−Nb–ОН, Zn+

Li–Mg3−Nb–OH,

Mg+
Li–Zn

3−
Nb–OH или Zn+

Li–Zn
3−
Nb–OH).

Отметим, что в ИК-спектре кристалла LN(2) отсут-

ствуют полосы в диапазоне частот 3460−3489 cm−1,

отвечающие за изменение стехиометрии в кристалле

(рис. 7, a). Но данные полосы присутствуют в ИК-

спектрах кристаллов LiNbO3 :Zn [47], выращенных из

расплавов с содержанием цинка выше основного кон-

центрационного порога (∼ 6.76mol.% [15]). В этих

кристаллах, согласно результатам рентгеноструктурного

анализа [15], обнаруживаются дефекты NbLi. Есть ос-

нования полагать, что в кристалле LN(2) отсутствуют

точечные структурные дефекты NbLi . Это предполо-

жение хорошо согласуется с данными работы [21] о

снижении концентрации дефектов NbLi в кристалле

LiNbO3 :Mg:Zn(3.0:3.0mol.%).

Из расчета объемной концентрации OH−-групп по

методу Клавира [36] видно, что их концентрация моно-

тонно возрастает с увеличением общей концентрации

легирующих примесей (рис. 8, табл. 4). При этом

наименьшее количество OH−-групп характерно для мо-

нокристалла LNs [20], в котором количество точечных

дефектов Nb4+Li минимально, а наибольшее — в кристал-

ле LN(2). Как следствие, в кристалле LNs наблюдает-

ся минимальное количество отрицательно заряженных

точечных дефектов (VLi), формирующих комплексный

дефект VLi–OH.

Структурная однородность расплава и его ионный

состав (ионные комплексы и кластеры), даже при вы-

ращивании номинально чистого LiNbO3cong , достаточно

сложны [49,50]. Процесс роста кристаллов ниобата ли-

тия, согласно данным работы [51], осуществляется за

счет последовательного присоединения ионных комплек-

сов расплава в пограничном слое
”
расплав-кристалл“.

В исследованных кристаллах концентрация Zn2+ при-

мерно в четыре раза превышает концентрацию Mg2+.

Следовательно, катионы Zn2+, как обладающие более

высокой концентрацией, в кристалле LN(2) определяют

локализацию катионов Mg2+ в кислородных октаэдрах

O6 его кристаллической решетки. При этом заданная

цинком локализация катионов Mg2+ в решетке кристал-

ла LN(2) формирует дефектную структуру его катион-

ной подрешетки и особенности искажения кислородно-

октаэдрических кластеров MeO6. Это подтверждается

наличием полос с частотами 3528 и 3535 cm−1 в ИК-

спектре кристалла LN(2) (рис. 7, b). Вклад в первую

полосу связан с катионами Mg (3526 cm−1 [48]) и Zn

(3527 cm−1 [47]), вклад во вторую — только с катионами

Mg (3535 cm−1 [48]). Отметим, что контур полосы в

ИК-спектре кристалла LiNbO3:Mg(5.29mol.%) отчетли-

во разделен на две полосы (3526 и 3535 cm−1) [48], в
то время как контур основной полосы кристалла LN(2),
содержащий компоненты с частотами 3528 и 3535 cm−1

(рис. 7), является сплошным. Отсутствие
”
плеча“ на

данной полосе (3535 cm−1, рис. 7, b) кристалла LN(2)
может быть обусловлено дополнительным вкладом ком-

плексных дефектов, содержащих Zn2+.

Можно заключить, что близость значений ионных

радиусов (r(Zn) = 0.74�Aи r(Mg) = 0.72�A [43]) леги-

рующих элементов и существенная (5.52mol.%) сум-

марная концентрация Zn и Mg в кристалле LN(2) не

позволяют в полной мере говорить об индивидуальных

концентрационных порогах при реализации технологии

двойного легирования. Будет корректнее сделать вывод

об
”
общем“ концентрационном пороге (≈ 5.5mol.% ZnO

и MgO). Действительно, в ИК-спектре кристалла LN(2)
обнаружены линии, обусловленные комплексными де-

фектами Zn3−Nb –OH и Mg+
Li–Mg3−Nb–OH. При одинарном

легировании вышеупомянутые дефекты проявляются

при более высоких концентрациях в кристалле Zn(4.68
и 6.5mol.% [47]) и Mg(5.29mol.% [48]).

Заключение

Методом Чохральского из шихты разного гене-

зиса выращены монокристаллы двойного легирова-

ния LiNbO3:Zn:Mg (3.91:1.01mol.%) и LiNbO3:Zn:Mg

(4.48:1.04mol.%) и проведены комплексные иссле-

дования их структурного совершенства и фото-

рефрактивных свойств в сравнении с номиналь-

но чистым стехиометрическим монокристаллом LNs
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и монокристаллами LiNbO3 :Zn:Mg(3.45:1.41mol.%) и

LiNbO3 :Zn:Mg(3.45:1.22mol.%). Показано, что кристал-

лы LiNbO3 :Zn:Mg(3.91:1.01mol.%) и LiNbO3 :Zn:Mg

(4.48:1.04mol.%) являются оптически однородными, об-

ладают высокой степенью химической однородности и

низким эффектом фоторефракции.

В ряду кристаллов

LiNbO3 :Zn:Mg(3.45:1.22mol.%)→

LiNbO3 :Zn:Mg(3.45:1.41mol.%)→

LiNbO3 :Zn:Mg(3.91:1.01mol.%)→

LiNbO3 :Zn:Mg(4.48:1.04mol.%)
с ростом общей концентрации Zn и Mg (в mol.%:

4.67 → 4.86 → 4.92 → 5.52) наблюдается увеличение

дефектности кристаллов, проявляемое в немонотонном

увеличении полуширин большинства линий в спектрах

КРС. По изменению частоты и интенсивности линии

с частотой 120 cm−1 и ее расщеплению на две ком-

поненты с частотами 104 и 116 (117) cm−1 установ-

лено, что кристаллы LiNbO3 :Zn:Mg(3.45:1.41mol.%) и

LiNbO3 :Zn:Mg(3.91:1.01mol.%) обладают более совер-

шенной катионной подрешеткой по сравнению с кри-

сталлами, полученными по технологии комбинированно-

го легирования.

Анализ ИК-спектров кристаллов LiNbO3 :Zn:Mg

(3.91:1.01mol.%) и LiNbO3 :Zn:Mg (4.48:1.04mol.%)
позволил обнаружить проявление пороговых эффектов.

Упомянутые эффекты обусловлены общей концентра-

цией легирующих катионов Zn и Mg (≈ 5.5mol.%)
в кристалле LiNbO3:Zn:Mg(4.48:1.04mol.%) и

проявляются в виде смещения полос в длинноволновую

область ИК-спектра (3498, 3505, 3512, 3528, 3535

и 3548 cm−1 соответственно). Анализ ИК-спектров

кристалла LiNbO3 :Zn:Mg(4.48:1.04mol.%) и кристаллов

одинарного легирования показал, что заданная

катионами Zn2+ локализация катионов Mg2+ в решетке

кристалла двойного легирования определяет его

дефектную структуру. На основе полученных данных

сделано предположение, что при двойном легировании

Zn2+ и Mg2+ более корректно говорить об
”
общем“

концентрационном пороге, который определяется

величиной основного концентрационного порога магния.
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