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Введение

Магнитные жидкости (МЖ) — коллоидные рас-

творы магнитных наночастиц в немагнитной среде-

носителе [1–3]. При определенных условиях МЖ ведут

себя как однородные по составу среды, намагниченность

M(T ) которых зависит от температуры T . Под действием

градиента магнитного поля (внешнего или наведенного)
на более холодные элементы МЖ действует большая

сила Кельвина Fk = M∇H (H — напряженность магнит-

ного поля), втягивающая их в область сильного поля

и вызывающая течение. Этому явлению, известному

как термомагнитная конвекция, посвящена обширная

литература [4–7].

Существует другой класс явлений, объяснить которые

можно только считая МЖ неоднородной по составу,

у которой объемная доля магнитных частиц ϕ(r, t)
изменяется во времени и в пространстве. Увеличение

неоднородности может быть вызвано благодаря раз-

личным механизмам транспорта магнитных наночастиц:

магнитофорезу, термодиффузии [8–10]. С другой сто-

роны, диффузия и конвективное перемешивание
”
сгла-

живает“ неоднородности. В этом случае возникновение

конвекции может происходить колебательным образом:

нейтральные колебания на пороге неустойчивости харак-

теризуются некоторой собственной частотой ω0. В ходе

эволюции формируются колебательные нелинейные ре-

жимы.

Поведение механических и, в частности, гидродинами-

ческих, систем обладающих собственной частотой коле-

баний в переменных внешних полях различной природы

(вибрационных [11,12], тепловых, электрических [13,14],

магнитных [9]) демонстрирует явление параметрическо-

го резонанса [15,16].
Переменное воздействие позволяет управлять тепло-

обменом с помощью переключения между режимами

течения, обладающими различной интенсивностью и,

следовательно, теплопереносом, а также полностью по-

давить конвекцию.

В настоящей работе представлены результаты воздей-

ствия переменного магнитного поля на пороги устойчи-

вости, характер нарастающих возмущений и нелинейные

режимы колебательной конвекции МЖ в ячейке Хеле–
Шоу.

1. Постановка задачи

Рассмотрим ячейку Хеле–Шоу [17]. Расстояние между
широкими гранями ячейки (2d) много меньше ее высоты

h = 20d, и длины l = 40d . Ячейка заполнена МЖ (кол-
лоидной суспензией) с вязкостью η, температуропровод-

ностью κ и магнитной восприимчивостью χ (рис. 1) и

помещена во внешнее неоднородное постоянное магнит-

ное поле, образованное двумя магнитами в форме колец

(рис. 2, 3). Поскольку ячейка с МЖ расположена точно

по середине между кольцевыми магнитами, и ее высота

мала по сравнению с расстоянием между кольцами

2z 0 = 3.4R, поле в ячейке характеризуется линейной

зависимостью [9,18]:

Hc = (0, 0, Gz ), G = 0.244K/R3,

где K = 4πMrL(R2 − R1) — параметр, зависящий

от намагниченности Mr , толщины L и внутрен-

него R1 и внешнего R2 радиусов колец магнита,

R = (R2 + R1)/2 — средний радиус колец. Отметим,
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Рис. 1. Ячейка Хеле–Шоу.

что напряженность внешнего магнитного поля Hc —

нечетная функция координаты z : ее проекция на ось z

отрицательна при — z < 0 (рис. 2).
Кроме постоянного поля кольцевых магнитов Hc, на

магнитную жидкость действует переменное магнитное

поле Ha с амплитудой A и частотой ω∗, создаваемое ка-

тушками Гельмгольца, расположенными по обе стороны

ячейки (рис. 2, 3):

Ha = (0, 0, A cosω∗t).

Перпендикулярные градиенту магнитного поля грани

ячейки (рис. 1) поддерживаются при разных постоянных

температурах, образующих разность 1T , так, что в ячей-

ке присутствует градиент температуры, сонаправленный

с градиентом напряженности поля. Перпендикулярные

оси x грани (широкие грани) — теплоизолированы. При

этом поведение МЖ рассматривается в невесомости —

сила тяжести отсутствует.

Система уравнений конвекции МЖ содержит урав-

нение Навье–Стокса с учетом магнитной силы Кель-

вина, уравнение непрерывности для несжимаемой жид-

кости, уравнение теплопроводности, а также уравне-

ние для эволюции объемной доли ϕ(r, t) магнитных

частиц [4,9,19]:

ρ

(

∂v

∂t
+ (v · ∇)v

)

= −∇p + η1v + M∇H, ∇ · v = 0,

(1)
∂T

∂t
+ (v · ∇)T = κ1T, (2)

∂ϕ

∂t
+ (v · ∇)ϕ + div j = 0, (3)

j = ϕu− D (∇ϕ + ST∇T ) , 3πηau =
m2H

3kBT∗

∇H, (4)

где ρ — плотность жидкости, v — скорость, p — давле-

ние, η — коэффициент сдвиговой вязкости, κ — коэффи-

циент температуропроводности, T — температура, j —

x, H

z
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Рис. 2. Положение ячейки Хеле–Шоу (1) относительно коль-

цевых магнитов (2) и катушек Гельмгольца (3).

плотность потока магнитных частиц, D = kBT∗/3πηa —

коэффициент диффузии наночастиц диаметром a , kB —

постоянная Больцмана, ST — коэффициент Соре, u —

скорость частиц относительно жидкости-носителя, вы-

званная магнитной силой, T∗ — среднее значение тем-

пературы в состоянии механического равновесия, m —

магнитный момент коллоидной частицы.

Ввиду сильной неоднородности внешнего магнитного

поля, его отклонения внутри ячейки реальной МЖ

от внешнего распределения H = Gz + A cosω∗t можно

считать незначительными [9]. Таким образом, можно не

включать уравнения Максвелла в систему (1)−(4).

На горизонтальных границах ячейки должны выпол-

няться условия прилипания для скорости, постоянства

температуры и непроницаемости для магнитных частиц:

z = h/2 : T = T∗ + 1T/2, v = 0, j = 0,

z = −h/2 : T = T∗ − 1T/2, v = 0, j = 0.

Намагниченность жидкости имеет ланжевеновский ха-

рактер и, в силу малости величины магнитного поля

внутри слоя [9], линейно зависит от напряженности:

M = χ(ϕ, T ) H, χ =
ϕMs m

3kB T
,

где Ms — намагниченность насыщения диспергирован-

ного ферромагнетика.

Если к ячейке приложена разница температур 1T

меньше критической, МЖ будет находиться в состоянии

покоя (v = 0). При механическом равновесии распреде-

ление температуры, согласно (2), имеет вид

T0 = T∗ +
1T

h
z .

Находясь в таком состоянии длительное время, МЖ

может быть стратифицирована под действием неод-

нородных температурного и магнитного полей. Таким

образом, за счет подстановки j = 0 в уравнение (4) по-

лучим равновесное распределение концентрации — па-

раболический профиль, вызванный магнитофорезом [9],
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который смещается по вертикали за счет действия

термодиффузии [10]:

ϕ0 =



1 +
γ2

(

12 (z/h)2 − 1
)

72



ϕ − ST1T
z

h
,

γ =
mGh

kBT
, (5)

где ϕ — среднее значение концентрации магнитных

частиц.

Поскольку магнитофорез действует только в неодно-

родном магнитном поле, создаваемая кольцевыми маг-

нитами переменная во времени добавка не окажет вли-

яние на перераспределение магнитных частиц. С другой

стороны, эта составляющая магнитного поля является

источником параметрического воздействия на МЖ.

Отметим, что выражение (5) получено для случая

γ2 ≪ 1, соответствующем экспериментальным ситуаци-

ям (например, γ2 = 0.25 [9]).

2. Плоские течения в ячейке
Хеле–Шоу

В приближении плоских траекторий (vx = 0) [20],
справедливом в случае, когда ширина и длина ячей-

ки гораздо больше зазора между широкими гранями

(l ≫ 2d, h ≫ 2d), удобно ввести функцию тока

vy = −
∂9

∂z
, vz =

∂9

∂y
,

и завихренность

8 = [rot v]x .

Решение системы запишем в виде

v =

[

0, −
∂9

∂z
,
∂9

∂y

]

cos
(πx

2

)

,

T = T0(z ) + T ′(t, y, z ),

ϕ = ϕ0(z ) + ϕ′(t, y, z ),

как и в случае задачи о тепловой конвекции коллоидной

суспензии в ячейке Хеле–Шоу в постоянном поле [10].
Независимость функций для температуры и концен-

трации от поперечной координаты x соответствует слу-

чаю теплоизолированных широких граней, на которых

отсутствует поток магнитных наночастиц.

Выберем следующие единицы измерения: расстоя-

ния — полутолщину ячейки d, времени —
d2

κ
, скоро-

сти —
κ

d
, температуры — T∗

ηκ

χ∗G2d4
, концентрации —

ϕ
ηκ

χ∗G2d4
.

После осреднения уравнений (1)−(3) поперек ячейки

безразмерная система уравнений относительно функ-

ции тока 9 и отклонений температуры T ′ = T − T0 и

концентрации ϕ′ = ϕ − ϕ0 от их равновесных значений

принимает вид:

∂8

∂t
+

8

3π

[

∂9

∂y

∂8

∂z
−
∂9

∂z

∂8

∂y

]

= Pr

[

1⊥8−
π2

4
8

+
4

π
(z + ζ cosωt)

(

∂ϕ′

∂y
−
∂T ′

∂y

)]

,

∂T ′

∂t
+

2

π

[

∂9

∂y

∂T ′

∂z
−
∂9

∂z

∂T ′

∂y

]

= 1⊥T ′ −
2

π
Rm

∂9

∂y
,

8 = 1⊥9, (6)

∂ϕ′

∂t
+
2

π

[

∂9

∂y

∂ϕ′

∂z
−
∂9

∂z

∂ϕ′

∂y

]

= Le

[

1⊥ϕ
′ + ψ1⊥T ′

−
γ2

3

(

z
∂ϕ′

∂z
+ ϕ′

)]

−
2

π
(Rcz − Rmψ)

∂9

∂y
,

где 1⊥=
∂2

∂y2
+
∂2

∂z 2
, а также используются безразмерные

параметры Pr=η/ρκ — число Прандтля, ζ=A/Gd и

ω = ω∗d2/κ — безразмерные амплитуда и частота моду-

ляции внешнего магнитного поля, Rm =
1T

T∗

χ∗G2d4

κη
—

магнитное число Рэлея, Rc =
γ2

3

χ∗G2d4

κη
— концентра-

ционное число Рэлея, χ∗ =
ϕMs m

3kBT∗

— магнитная воспри-

имчивость при средних равновесных температуре и кон-

центрации, Le = D/κ — число Льюиса, ψ = ST T∗/ϕ —

коэффициент разделения смеси, характеризующий тер-

модиффузионное разделение.

В состоянии механического равновесия градиенты

температуры и концентрации имеют вид:

dT0

dz
= Rm,

dϕ0

dz
= Rcz − Rmψ.

Безразмерные параметры Rc и ψ характеризуют началь-

ную степень неоднородности МЖ, вызванную магнито-

и термофорезом соответственно.

На границах ячейки должны выполняться следующие

условия:

y = ±20 : 9 =
∂29

∂y2
=
∂T ′

∂y
=
∂ϕ′

∂y
= 0, (7)

z = ±10 : 9 =
∂29

∂z 2
= T ′ = ϕ′ = 0. (8)

3. Процедура Галеркина

Для исследования эволюции течений МЖ под дей-

ствием переменного поля воспользуемся методом Га-

леркина [20,21]. Будем искать приближенное решение
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задачи в виде суперпозиции базисных функций (про-
странственных гармоник), удовлетворяющих граничным

условиям (7), (8):

9 =

nmax ,mmax
∑

n,m=1

9nm(t)CS
(nπy

40

)

CS
(mπz

20

)

,

T ′ =

nmax,mmax
∑

n=0,m=1

θnm(t)SC
(nπy

40

)

CS
(mπz

20

)

,

ϕ′ =

nmax ,mmax
∑

n=0,m=1

ϕnm(t)SC
(nπy

40

)

CS
(mπz

20

)

,

где

CS(nx) ≡

{

cos nx , нечетные n

sin nx , четные n

}

,

SC(nx) ≡

{

sin nx , нечетные n

cos nx , четные n

}

.

Коэффициенты разложения 9nm(t), θnm(t), ϕnm(t) опре-
деляются из интегральных условий, выражающих ор-

тогональность невязки к каждой базисной функции.

После применения процедуры Галеркина при nmax = 6,

mmax = 2 получена система из 40 нелинейных диф-

ференциальных уравнений относительно зависящих от

времени амплитуд Xi(t) = (9nm(t), θnm(t), ϕnm(t)) общего

вида:

Ẋi =
∑

j

a i jX j +
∑

jk

bi jkX j Xk .

Таким образом, задача в частных производных сводится

к решению более простой системы обыкновенных диф-

ференциальных уравнений для коэффициентов разложе-

ния, которая в дальнейшем решалась с помощью числен-

ного интегрирования методом Рунге–Кутты–Фельберга

4−5 порядка точности в системе компьютерной алгебры

”
Maple“. В качестве начальных условий для скорости

задавались величины амплитуд 0.01, для отклонений

температуры и концентрации — 0.

Для нахождения порогов параметрической неустойчи-

вости применялась теория Флоке [22], согласно которой

X(t) = eλtX∗(t), X∗(t) =





9nm

θnm

ϕnm



 ,

где X(t) и X∗(t) — векторные функции размерности

40, X∗(t) периодична во времени с периодом τ = 2π/ω,

eλt — мультипликатор Флоке и λ = λr + iλi — комплекс-

ный показатель роста.

Используя подходящие начальные условия, мы полу-

чаем K линейно независимых решений для коэффици-

ентов (9nm(t), θnm(t), ϕnm(t)) в конце одного периода

модуляции τ . Этими фундаментальными решениями

являются K столбцов матрицы монодромии K × K. Для

решения задачи Коши использован метод Рунге–Кутты
четвертого порядка. Собственные значения матрицы мо-

нодромии представляют собой набор множителей Флоке

γk = eλk τ . Для получения собственных значений γk ис-

пользован QR-алгоритм [23]. Периодическое во времени

решение, описывающее равновесие, устойчиво, когда

модуль любого множителя |γk | не превышает единицы.

Если множители упорядочены, то выполняется последо-

вательность неравенств 1 ≥ |γ1| ≥ · · · ≥ |γk |. Для грани-

цы неустойчивости мы имеем условие |γ1| = 1, которое

определяет нейтральное многообразие в пространстве

параметров Rm, Rc , Pr и ψ. Случай γ1 = −1 соответству-

ет λr = 0, λi = ω/2, т. е. нейтральные возмущения имеют

период, в два раза превышающий период внешнего

поля. Эти решения соответствуют субгармоническому

отклику на внешнее поле. Когда γ1 = 1(λr = 0, λi = ω),
период нейтральных возмущений совпадает с периодом

возбуждения — синхронный отклик. Если неустойчи-

вость возникает при наличии пар комплексно сопря-

женных собственных значений с единичным модулем

|γ1| = 1(λr = 0, λi 6= ω), то нейтральные возмущения яв-

ляются квазипериодическими с двумя различными ха-

рактерными частотами, не связанными рациональным

соотношением.

4. Границы параметрической
неустойчивости и надкритические
течения

В результате линейного анализа получены зависимо-

сти критического значения магнитного числа Рэлея R∗

m,

характеризующего порог параметрической конвективной

неустойчивости, от амплитуды ζ и частоты ω модуля-

ции магнитного поля. Использован набор параметров,

типичных для МЖ: Pr = 10, Le = 10−4. Предполагалось,

что жидкость изначально стратифицирована, благодаря

магнетофорезу Rc = 0.9 и термодиффузии ψ = 6.

На рис. 3 представлен график зависимости порогового

значения магнитного числа Рэлея R∗

m от приведенной

обратной частоты переменного магнитного поля ω0/ω,

где ω0 = 0.1238 — частота собственных колебаний

МЖ на границе неустойчивости в случае постоянного

магнитного поля (ζ = 0) [10]. Для удобства R∗

m было

нормировано на максимальное значение в области гра-

фика R∗

max = 0.495. Красной линией отмечены пороги,

соответствующие субгармоническому отклику: γ1 = −1.

В случае γ1 = 1 имеем границу синхронного отклика

системы (синяя линия). Черная линия отвечает квази-

периодическим возмущениям.

Положение всех минимумов, кроме второго, на рис. 3

согласуется со стандартным для параметрических задач

правилом отношения собственной и внешней частот [16]:

ω0/ω = n/2, n = 1, 2, 3...

Причем субгармонический отклик характеризуется по-

луцелым соотношением частот. При синхронном от-

клике собственная частота кратна внешней. Наконец,

для квазипериодических возмущений отношение частот

является иррациональным. Во всех участках графика,
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Рис. 3. Зависимость критического магнитного числа Рэлея R∗

m

от приведенной обратной частоты внешней модуляции ω0/ω.

ζ = 2. Красная линия соответствует субгармоническому от-

клику, синяя — синхронному, черная — квазипериодическому.

На вставках изолинии функции тока в плоскости z (y): A —

мода
”
32“ (описывается базисной функцией с n = 3, m = 2)

при t = 4930, B — мода
”
22“ при t = 4925.

исключая второй минимум, реализуется режим
”
32“,

соответствующий третьей гармонике по горизонтали

n = 3 и второй по вертикали m = 2 (
”
шестиваликовое“

течение). Вертикальная асимметрия валов связана с тем,

что магнитная сила направлена от центра ячейки к ее

узким границам. Таким образом, в части ячейки с z > 0

градиент температур сонаправлен с градиентом магнит-

ного поля — магнитная сила формирует неустойчивую

стратификацию жидкости. Соответственно, в другой по-

ловине слоя, где градиенты температур и магнитного

поля направлены противоположно, возникает устойчи-

вая стратификация. Таким образом, конвективное тече-
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–2 –2

–1 –1

0 0

2 2

t t

1 1

4980 49805000 5000

Ψ31
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Ψ21

Ψ22
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θ02
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Рис. 4. Графики эволюции амплитуд функции тока для шестиваликового (слева) и четырехваликового (справа) режимов. Черная

линия отвечает соответствующим колебаниям внешнего магнитного поля. Цифры у величин 9 и θ в легенде относятся к значениям

n и m соответствующих базисных функций. Например, линия θ31 описывает эволюцию базисной функции температуры с n = 3,

m = 1.

ние, возникшее в более нагретой области, проникает в

участок вблизи холодной границы, но со значительно

меньшей интенсивностью.

Выражение (9) нарушается для второго минимума,

в котором соотношение частот другое: ω0/ω ≈ 3/4.

Но, судя по величине наибольшего по модулю муль-

типликатора Флоке (γ1 = −1), в данном минимуме

имеется субгармонический отклик. На первый взгляд,

здесь нарушены законы параметрического резонанса.

Но дело, оказывается, в том, что во втором миниму-

ме (ω0/ω ≈ 3/4) возбуждается другой пространствен-

ный режим
”
22“ (

”
четырехваликовое“ течение). Вообще

говоря, в случае постоянного магнитного поля [10]
граница неустойчивости связана с

”
шестиваликовым“

течением (колебательной модой
”
32“, R∗

m(32) = 0.495), а
порог монотонного

”
четырехваликового“ течения (мода

”
22“) находится выше (R∗

m(22) = 0.54).
На рис. 4 представлены графики эволюции амплитуд

функции тока и температуры разных пространственных

режимов. Гармонические колебания амплитуд, наблю-

даемые в случае постоянного магнитного поля [10],
несколько искажаются внешней модуляцией. Левому

графику соответствует шестиваликовое течение в точ-

ке (Rm = 0.4837, ω0/ω ≈ 0.45), также отмеченной на

рис. 3, правому — четырехваликовая неустойчивость

в точке (Rm = 0.4899, ω0/ω ≈ 0.73). Можно заметить,

что собственные частоты этих режимов отличаются:

ω01 ≈ 0.123 и ω02 ≈ 0.085 соответственно. В то же вре-

мя оба режима являются субгармоническим откликом,

поскольку можно наблюдать, что частоты всех базисных

мод вдвое меньше, чем частоты внешнего воздействия.

Таким образом, соотношение (9) на самом деле не

нарушается — график на рис. 3 нормирован на частоту

ω01, не являющуюся собственной для минимума в обла-

сти ω0/ω ≈ 3/4. Само же появление этого минимума
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Рис. 5. Зависимость координаты максимума функции тока zmax от времени при Rm = 0.4837, ω0/ω ≈ 0.45 (слева) и Rm = 0.4899,

ω0/ω ≈ 0.73 (справа). Штриховые линии — фаза колебаний внешней модуляции.

вызвано параметрическим резонансным возбуждением

пространственной моды
”
22“ четырехваликового режи-

ма, которая в постоянном поле была менее опасна для

возбуждения конвекции.

Для уточнения характера нелинейного течения про-

анализируем колебания системы с помощью графика

зависимости вертикальной координаты zmax максимума

функции тока от времени (рис. 5), например, на линии

y = 10 для четырехваликового режима и на линии

y = 7 для шестиваликового (вставка на рис. 3). Для

удобства восприятия на рисунке штриховой линией до-

полнительно представлено изменение переменной части

внешнего магнитного поля во времени. При t = 4900

(левый график) максимум функции тока находится в

части ячейки, характеризующейся отрицательными ко-

ординатами z и половину периода внешнего воздействия

приблизительно сохраняет свое положение. Этим дан-

ным соответствует конвективный вал, вращающийся по

часовой стрелке, амплитуда которого плавно растет от

нуля до максимума, а затем вновь убывает до нуля.

Общая структура течения соответствует вставке A на

рис. 3. Далее, положение максимума функции тока (вала,
вращающего по часовой стрелке) смещается верхнюю

треть полости. Это означает, что изменилось направ-

ление вращения валов, расположенных по вертикали.

Эта структура течения соханяется следующую полови-

ну периода и, затем, возвращается в первоначальное

состояние. Отметим, что координата максимума zmax

на каждом полупериоде не строго постоянна, а немно-

го изменяется, т. е. глобальное течение представляет

собой смешанное состояние: совокупность стоячей и

бегущей волн. Кроме того, из сопоставления рис. 4

и 5 можно обнаружить, что при смене устойчивых

положений максимума (t ≈ 4938 и ≈ 4983 на графиках

слева) амплитуды основных для конкретного режима

базисных функций скорости стремятся к нулю, позволяя

при этом модам с малыми амплитудами формировать

структуру течения.

Обсудим зависимость порога устойчивости в областях

минимумов от величины амплитуды внешнего перемен-

ного магнитного поля (рис. 6). Порог в первом мини-

муме, характеризуемом субгармоническим откликом, с

ростом амплитуды убывает по линейному закону. Кри-

тические числа в области минимума при ω0/ω ≈ 1 (син-
хронный отклик) при понижении амплитуды колебаний

убывают по степенному закону. В то же время минимум
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Рис. 6. Зависимость критического магнитного числа Рэлея R∗

m

от амплитуды модуляции магнитного поля ζ в минимумах при

ω0/ω ≈ 1/2 (красная линия), ω0/ω ≈ 3/4 (зеленая линия) и

ω0/ω ≈ 1 (синяя линия).

Журнал технической физики, 2026, том 96, вып. 2



218 П.Н. Казанцев, Б.Л. Смородин

0.5 1.0
0.98

0.99

1.00

ω /ω0

*
R
m

ζ = 0.9

0.5 1.0
0.97

0.99

1.00

ω /ω0
*
R
m

ζ = 2.0

0.98

Рис. 7. Зависимость порога устойчивости от отношения собственной и внешней частот для ζ = 0.9 (слева) и ζ = 2 (справа).
Критические магнитные числа Рэлея отнесены к максимальному значению на каждом из графиков.

второго языка (ω0/ω ≈ 3/4) появляется лишь при дости-

жении критического значения амплитуды ζ ∗ = 0.96. При

ζ < 0.96 пороги устойчивости в данной области прак-

тически не зависят от амплитуды — наблюдается ква-

зипериодические возмущение. При ζ > ζ ∗ критические

числа начинают убывать по линейному закону, реализу-

ется субгармонический отклик. На рис. 7 представлено

сравнение графиков R∗
m(ω0/ω) для двух случаев: малых

ζ < ζ ∗ (слева) и больших ζ > ζ ∗ (справа) амплитуд

внешнего воздействия. В первом случае возбуждается

только мода
”
32“ и он полностью соответствует закону

параметрического резонанса (9), во втором (при боль-

шой амплитуде воздействия) проявляется конкуренция

различных пространственных мод:
”
32“ и

”
22“.

Оценим характерные значения величин, соответству-

ющих колебательной конвекции для параметрического

резонанса в первом минимуме. Для МЖ, стратифициро-

ванной профилем концентрации с Rc = (γ2/3) · α = 0.9

и ψ = 6, на которую действует переменное поле с

безразмерными амплитудой ζ = 2 и частотой ω = 0.278

(рис. 3), наблюдается субгармонический отклик с

минимальным значением критического магнитного

числа Рэлея R∗

m равным 0.4825, а безразмерный

период возникающего колебательного режима (отклика)
составляет T = 45.2. Для экспериментальной проверки

теории предлагается использовать ячейку Хеле–Шоу

с размерами 2d = 0.6mm и h = 6mm и магнетитовую

(Fe3O4) феррожидкость на водной основе с диаметром

частиц a = 10 nm и объемной намагниченностью

Ms = 480Gs. Магнитный момент m наночастицы равен

2.51 · 10−16 erg/Oe. Для феррожидкости с объемной

концентрацией ϕ = 2% и нагретой до средней

температуры T∗ = 300K значение восприимчивости

составит χ∗ = 0.02. Если использовать кольцевые

магниты из SmCo5 (Mr = 600G) с внутренним

и внешним радиусами R1 = 3 cm и R2 = 5 cm

соответственно и толщиной колец L = 1.86 cm, то

внутри ячейки будет наведено постоянное магнитное

поле с градиентом G ≈ 107Oe/cm. При этих условиях

безразмерная амплитуда ζ = 2 переменного поля

катушек Гельмгольца соответствует размерному

значению A = ζGd = 2 · 107 · 0.03Oe ≈ 6.42Oe. Тогда

для ячейки с нашим образцом феррожидкости получим

γ = mGh/kBT∗ = 0.386, а значение входящей в Rc

и Rm вспомогательной комбинации параметров

α = χ∗G2d4/κη = 18. Таким образом, из равенства Rm =
= (1T/T∗) · α следует, что подобная термомагнитная

неустойчивость может быть возбуждена с помощью

разности температур 1T=RmT∗/α=0.4825 · 300/18≈8K.

Размерный период колебаний при этом составит

Tdim = T · d2/κ = 45.2 · (0.03)2/10−3 ≈ 41 s.

Заключение

Рассмотрена параметрическая термомагнитная кон-

векция неоднородной по составу МЖ за счет термо-

диффузии и магнитофореза магнитных наночастиц. МЖ

заполняет подогреваемую со стороны одной из узких

граней ячейку Хеле–Шоу, помещенную в переменное

магнитное поле. При различных значениях амплитуды

переменного магнитного поля получены характеристики

параметрической неустойчивости: зависимости крити-

ческих магнитных чисел Рэлея от обратной частоты

нейтральных колебаний.

Для надкритических колебательных режимов конвек-

ции (внутри первого и второго языков параметрической

неустойчивости) представлены характерные распределе-
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ния функции тока, а также проанализировано поведе-

ние во времени амплитуд различных пространственных

гармоник. Показано, что нелинейное течение МЖ пред-

ставляет собой
”
смешанное“ состояние; большую часть

периода внешнего воздействия в ячейке реализуется

стоячая волна с небольшой примесью бегущей волны.
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