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Предлагается дифференцировать экспериментальную кривую конечными разностями в физическом про-

странстве. При этом резко возрастает амплитуда шума, однако это не меняет случайную природу шума.

Используя метод сингулярного спектрального анализа, производную представляют в виде суммы аддитивных

компонент. У этих компонент методом нормированного размаха оценивают фрактальную размерность

(индекс Херста). При синтезе производной суммируют компоненты до тех пор, пока индекс Херста

производной не начнет уменьшаться.
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Необходимость дифференцировать зашумленную экс-

периментальную кривую возникает во многих задачах:

от анализа результатов гидродинамических исследова-

ний пластов до задач томографии плазмы и спектромет-

рии. В работе предлагается устойчивый метод решения

этой некорректной задачи, метод свободный от неодно-

значности почти общепринятых методов, предваритель-

ного сглаживания кривой или увеличения расстояния

между экспериментальными точками при вычислении

разностной аппроксимации производной. Метод диффе-

ренцирования экспериментальной функции заключается

в применении к разностной аппроксимации производной

метода сингулярного спектрального анализа (SSA) [1,2]
для представления ее в виде суммы аддитивных адап-

тивных компонент и вычисления методом нормирован-

ного размаха (R/S) [3] фрактальной размерности этой

суммы. Таким образом, из суммы исключают шумовые

компоненты, оставляя физически значимую часть.

Полагаем, что имеем N значений функции

f̃ i = f i + δi , измеренных в моменты времени

ti (i = 1−N). Аппроксимация производной со вторым

порядком по 1t в момент ti имеет вид

g̃ i =
f̃ i+1 − f̃ i−1

21t
=

f i+1 − f i−1

21t
+

δi+1 − δi−1

21t
, (1)

если

1t ≡ ti+1 − ti = const.

Пусть |δi | 6 A, тогда оценкой ошибки вычисления про-

изводной является A
1t

→ ∞, если 1t → 0, т. е. разностное

дифференцирование приводит к росту амплитуды шу-

ма и росту изрезанности кривой. Изрезанность кривой

можно оценивать методом R/S [3], вычисляя показатель

Херста.

Шаг 1. Пусть мы имеем ряд значений g̃ i , вы-

численных по формуле (1): g̃1, g̃2, . . . , g̃N . Исполь-

зуя окно длиной m отсчетов, поставим в соответ-

ствие этому ряду так называемую траекторную мат-

рицу Ã = {ã i, j}, где ã i, j = g̃ i+ j−1, i = 1−m, j = 1−n,

m 6
[

N+1
2

]

, n = N + 1− m. В нашем случае для одно-

значности возьмем окно m =

[

N+1
2

]

,

Ã =











g̃1 g̃2 . . . g̃n

g̃2 g̃3 g̃n+1

...
. . .

...

g̃m g̃m+1 · · · g̃N











. (2)

По этой матрице можно однозначно восстановить ряд g̃ j

усреднением по формуле

g̃ j =































1
j

j
∑

i=1

ã i, j−i+1, 1 6 j 6 m,

1
m

m
∑

i=1

ã i, j−i+1, m 6 j 6 n,

1
N− j+1

N− j+1
∑

i=1

ã i+ j−n,n−i+1, n 6 j 6 N.

(3)

Вычислим сингулярное разложение матрицы Ã = U6V T ,

где U — матрица с ортогональными столбцами размер-

ностью m (левые сингулярные векторы), V — матрица

правых ортогональных сингулярных векторов размерно-

стью n, 6 = diag{σi}, σ1 > σ2 > · · · > σn > 0 [4].
Шаг 2. Вычисляем последовательность матриц

Ak =
k

∑

i=1

σi ui × vT
i , k = 1−k0.

Здесь ui и v i — i-е сингулярные векторы матриц

U и V , знак × — внешнее (кронекерово) умножение,
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Рис. 1. а — кривая восстановления давления скважины одного из месторождений. По оси ординат — давление, по оси абсцисс —

время. b — график производной, вычисленной по формуле f ′

i =
f i+1− f i−1

x i+1−x i−1
. По оси ординат — производная давления, по оси

абсцисс — время, по вспомогательной оси ординат — логарифмическая производная. c — графики производной (основная ось

ординат) и логарифмической производной, восстановленной по первой сингулярной тройке.
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Рис. 2. График производной, восстановленной по двум (первой и второй) и трем первым сингулярным тройкам.

σi — сингулярное число. В дальнейшем σi , ui , v i будем

называть сингулярной тройкой. Пользуясь формулой (3),
вычислим значения аппроксимации производной gk , со-

ответствующие этой матрице. Определим фрактальную

размерность ряда значений производной, вычисленного

с использованием k сингулярных троек. Как известно,

D = 2−Hk , где Hk — индекс Херста этого ряда [3].

Шаг 3. Вычислим Hk .

Вычислим

〈gk〉 =
1

N

N
∑

i=1

gk
i , S =

√

√

√

√

1

N

N
∑

i=1

(

gk
i − 〈gk〉

)2
,

z m =

m
∑

i=1

(

gk
i −〈gk〉

)

, R=max16m6N(z m)−min16m6N(z m),

R/S =

(

π

2
N

)Hk

, (4)

отсюда Hk = lg(R/S)
lg( π

2
N) .

Число сингулярных троек, по которым восстанавли-

ваются траекторная матрица и производная, пробегает

значения от 1 до k0. Значение k0 определяется из

неравенства Hk0 > Hk0+1. При этом не имеет значения

зависимость индекса Херста от числа отсчетов. Рассмот-

рим два примера применения этого алгоритма вычис-

ления производной. В качестве первого примера возь-

мем измерения кривой восстановления давления, прове-

денные при гидродинамическом исследовании реальной

скважины. При анализе и интерпретации результатов

гидродинамических исследований скважин вычисляют

логарифмическую производную кривой восстановления

давления от времени [5]. На рис. 1, а приведена кривая

восстановления давления. Индекс Херста этой кривой

H = 0.8059015.

На рис. 1, b приведены графики производной, вы-

численной по формуле (1), и логарифмической произ-

водной. Индекс Херста производной H = 0.783470335.

Имеем 1203 отсчета измеренной функции. Используя

окно размером 602 отсчета, строим траекторную мат-

рицу для разностной производной, находим ее сингу-

лярное разложение и последовательно по формуле (3)
восстанавливаем производную. На рис. 1, с приведе-

ны графики производной и логарифмической производ-

ной, восстановленной по первой сингулярной тройке.

При этом индекс Херста восстановленной производной

H = 0.804599782. На рис. 2 приведены графики произ-

водной, восстановленной соответственно по двум (1) и

трем (2) сингулярным тройкам. На графике 1 (рис. 2)
видно появление шумовой компоненты, а на графике 2

шумовая компонента усиливается. Показатели Херста

кривых 1 и 2 равны 0.804431406 и 0.803925077 соответ-

ственно. Таким образом, уменьшение показателя Херста

свидетельствует об усилении шума.

Максимальное значение имеет показатель Херста

производной, восстановленной по первой сингулярной

тройке, и это является результатом (рис. 1, с). Рассмот-
рим второй пример. Так как процессы фильтрации в

пласте описываются линейными или слабо нелинейными

параболическими уравнениями, кривые изменения дав-

ления являются гладкими. Поэтому в качестве второго

примера приведем дифференцирование зашумленной ос-

циллирующей модельной кривой из книги [6]. В качестве

модельной рассматривалась задача дифференцирования

функции

f (t) = sin(t) +
1

100
sin(100t) + h(t), t ∈ [0, π], (5)

2001 — отсчет функции, h(t) — шум, т. е. равномерно

распределенные случайные числа в диапазоне от −0.01

до 0.01.

На рис. 3, а приведены графики функции и ее произ-

водной (дополнительная ось ординат), вычисленной по

формуле (1). Дифференцируем функцию по формуле (1)

и, используя окно размером

[

N+1
2

]

, т. е. в данном случае

в 1001 отсчет, находим траекторную матрицу и ее

сингулярное разложение. Синтезируя значения произ-

водной по формуле (3) и вычисляя показатель Херста,

находим производную функции по четырем сингулярным

Письма в ЖТФ, 2026, том 52, вып. 3
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Рис. 3. а — модельная функция (основная ось ординат) и ее производная. b — показатели Херста синтезированной производной

(верхняя линия) и компонент производной, вычисленных по сингулярным тройкам (нижняя линия). По оси абсцисс — номер

сингулярной тройки. c — сравнение аналитической и разностной производной. Все величины на рисунке безразмерные.
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тройкам. На рис. 3, b представлены графики показателей

Херста в зависимости от числа сингулярных троек в ап-

проксимации производных (верхняя линия) и показатели

Херста для каждой компоненты ряда, построенной по

сингулярной тройке. На рис. 3, с приведены графики ана-

литически вычисленной производной (без шума) и раз-

ностной производной зашумленной функции. Поскольку

на графике аналитическая и разностная производные

практически сливаются, приведем количественные ре-

зультаты оценки близости аналитической и разностной

производной.

Сравним аналитическую производную модельной

функции без шума и результат вычисления производной

предлагаемым методом этой же, но уже зашумленной

функции. Обозначим: g i —значение аналитической про-

изводной в точке i (i-я компонента вектора), ǧ i —

значение разностной производной в точке i (i-я ком-

понента вектора разностной производной). Пусть w i —

вектор разности w i = g i − ǧ i . Тогда |g| = 44.74371464,

|ǧ| = 44.26865779, |w| = 1.138447732. Косинус угла

между векторами производных аналитической и за-

шумленной кривых равен 0.999729803, т. е. угол равен

0.023246921 rad или 1.331989725◦ .

|g| − |ǧ|

|g|
· 100% = 1.061728687%,

|w|

|g|
· 100% = 2.544374649%.

Таким образом, видно, что непосредственное разностное

дифференцирование с последующим сингулярным спек-

тральным анализом под контролем вычисляемого индек-

са Херста позволяет корректно вычислять производную

зашумленной экспериментальной функции.
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