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Решение интегрального уравнения Хаффорда для малых расстояний

в задаче распространения радиоволн

© А.А. Абдулхаков, А.Г. Андреев, А.А. Ерохин, К.В. Князева, В.С. Панько, А.А. Сенченко

Сибирский федеральный университет, Красноярск, Россия

E-mail: alsenchenko@mail.ru

Поступило в Редакцию 4 июля 2025 г.

В окончательной редакции 23 сентября 2025 г.

Принято к публикации 23 сентября 2025 г.

Рассмотрено интегральное уравнение Хаффорда, а также два варианта его упрощения. Показано, что

вторая версия упрощенного уравнения может быть использована до расстояний порядка 100 km. Показан

способ аналитического решения интегрального уравнения Хаффорда для однородной сферической поверх-

ности Земли. Получена уточненная формула для малых расстояний для расчета множителя ослабления.
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В связи с развитием наземных радионавигационных

систем (РНС) [1] задача учета влияния поверхности Зем-

ли на распространяющиеся вдоль границы раздела двух

сред радиоволны по-прежнему актуальна. В современ-

ных условиях требования к характеристикам РНС неиз-

менно растут. Например, достижение точности опре-

деления координат 5−10m для наземной РНС Спрут-

Н1 [1,2] невозможно без учета влияния поверхности

Земли.

В теории распространения радиоволн принято учи-

тывать влияние подстилающей поверхности с помо-

щью множителя ослабления (МО) [3,4]. Расчет МО

для неоднородной сферической трассы можно выпол-

нить с помощью численного решения интегрального

уравнения Фейнберга [3,5], так как оно обладает хо-

рошей численной устойчивостью. Однако для его ис-

пользования требуется предварительно вычислить МО

над однородной сферической поверхностью, параметры

которой могут быть выбраны произвольно. Здесь и

далее под однородной поверхностью следует понимать

слоисто-однородную поверхность, поскольку, как по-

казано в работе [6], любая слоисто-однородная среда

может быть заменена на однородную среду с экви-

валентными параметрами. Для расчета МО над од-

нородными трассами часто используют ряд по нор-

мальным волнам (формула Фока) [4], однако он плохо

сходится на малых расстояниях. Для больших рассто-

яний (примерно от 100 km) достаточно суммировать

лишь несколько первых членов. Существуют разные

способы вычисления МО на небольших расстояниях

(например, можно использовать формулу для модели

плоской Земли [3]), обладающие разными преимуще-

ствами и недостатками. В настоящей работе уточ-

нена ранее полученная формула для малых рассто-

яний [7] с целью распространения ее на бо́льшие

расстояния.

Рассмотрим интегральное уравнение Хаффорда [8] для
модели однородной сферической Земли
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где x — расстояние по прямой, соединяющей антенну

с точкой наблюдения, нормированное на радиус сфери-

ческой поверхности a , α = [ka/(2π)]1/2 exp( j3π/4), a —

радиус сферической поверхности Земли, k — волновое

число в свободном пространстве, δ = (εrc − 1)1/2/εrc —

приведенный поверхностный импеданс подстилающей

поверхности, εrc — относительная комплексная диэлек-

трическая проницаемость.

Расстояние между антенной и точкой наблюдения

x , входящее в уравнение (1), является нормирован-

ным к радиусу Земли. Поэтому даже для расстояний

в сотни и тысячи километров выполняется условие

x ≪ 1. Это позволяет существенно упростить уравне-

ние и найти его приближенное аналитическое реше-

ние. В работе [7] предлагается простая аппроксимация

ядра интегрального уравнения, в которой полагают

sin([x − s ]/2) ≈ [x − s ]/2, а экспоненту равной единице.

Тогда уравнение (1) будет
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Решение этого уравнения может быть найдено в виде

ряда [9]:

W (x) =
∞
∑

k=0

αkϕk(x), (3)
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Рис. 1. Абсолютная ошибка аппроксимации экспоненты.
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И после некоторых преобразований, отбросив несуще-

ственные слагаемые, можно прийти к его приближенно-

му решению [7]:
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где R = ax — расстояние по прямой между антенной

и точкой наблюдения, y(ρ) — функция ослабления для

модели плоской однородной Земли (ρ = SR — числен-

ное расстояние), S = ik[1− (1− δ2)1/2] — комплексный

масштабный коэффициент, учитывающий влияние под-

стилающей поверхности.

Результаты расчетов по формуле (5) хорошо согласу-

ются с более точными формулами примерно до 50 km,

далее погрешность вычислений по ней резко возрастает.

Задачей настоящей работы является подобрать простую,

но более точную аппроксимацию ядра интегрального

уравнения и найти уточненное решение.

Для sin
(

[x − s ]/2
)

будем использовать ту же самую

аппроксимацию, что и в работе [7], абсолютная ошибка

при такой аппроксимации не превышает 10−4 на рассто-

янии 1000 km:
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Показатель степени экспоненты разложим в ряд Тей-

лора и отбросим все члены, кроме первых двух:
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Так же разложив экспоненту в ряд Тейлора, с учетом

формулы (7) получим
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Модуль максимальной на интервале интегрирования

абсолютной погрешности аппроксимации (8) приведен

на рис. 1. Линия 1 соответствует действительной части

погрешности, а линия 2 — мнимой части. Как следует из

рисунка, максимальная погрешность действительной ча-

сти не превышает 10−3 при удалении точки наблюдения

до 100 km от антенны.

Применим приведенные выше аппроксимации и полу-

чим следующее
”
уточненное“ интегральное уравнение:
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Подобно решению уравнения (2) решение последнего

уравнения также может быть найдено в виде ряда [9]:

W (x) =

∞
∑
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αkψk(x), (10)
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Сравнивая формулы (4) и (11), можно заметить, что

члены ряда (11) содержат в себе члены ряда (4), т. е.
ψk(x) = ϕk(x) + ψ′

k(x). Последнее утверждение может

быть доказано с помощью метода математической индук-

ции. Тогда члены ряда (11) могут быть выражены через

формулу (4):
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Рис. 2. МО над сферической морской поверхностью.

Таким образом, получим первые три члена ряда (10)
с учетом формулы (12):
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где β = jπa/4λ, выражения ϕ1(x)−ϕ3(x) определяются

формулами [7]:
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Поскольку решение (10) уточненного уравнения (9)
содержит в себе решение (3) уравнения (2), сумми-

рование членов ряда ϕk(x) в (10) можно заменить на

формулу (5):
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(16)
где R — расстояние по прямой (не вдоль поверхности

Земли) между передающей антенной и точкой приема,

a — радиус Земли, 8(x) — часть отброшенных при по-

лучении формулы (5) членов ряда [7], которые начинают
оказывать заметное влияние на расстояниях до 100 km:

8(x) =
α2π

30
x3 +

α3π2δ

32

√
xx3 +

2α4π2δ2

35
x4. (17)

Полученная уточненная формула для малых рассто-

яний (УФМР) (16) пригодна для расчета множителя

ослабления только для морских трасс с высокой

проводимостью, для которых |δ| ≪ 1. Пример расчета

МО для однородной сферической морской поверхности

(здесь и далее параметры моря εr = 80, σ = 5 S/m,

частота f = 1.9MHz) с использованием полученных

формул приведен на рис. 2. Для сравнения на этом

же рисунке приведена зависимость МО, рассчитанная

с использованием классической формулы Фока [4].
Видно, что формула для малых расстояний (ФМР) (5)
обладает меньшей точностью, чем УФМР (16). При

этом в соответствии с поставленной целью УФМР

может использоваться для расстояний не менее 100 km.

Для оценки точности полученных формул было

выполнено численное решение интегрального уравнения

Хаффорда (1), его упрощенного (2) и уточненного (9)
вариантов по методике, приведенной в [10]. Далее были

построены графики ошибки для морской поверхности

(рис. 3), вычисленные по формуле |W−WH |/|WH |·100%,

где WH — комплексные значения МО, полученные в

результате решения интегрального уравнения Хаффор-

да (1), W — комплексные значения МО, полученные

указанным в легенде способом. Сплошные линии на

рисунке соответствуют ошибке численного решения

соответствующего уравнения Хаффорда (2) и (9),
пунктирные вычислены для ФМР (5) и УФМР (16).
По результатам расчетов видно, что точность ФМР

ниже, чем дает упрощенное уравнение Хаффорда (2).
Причина этого заключается в отброшенных во время ее

вывода членах: если к ФМР (5) прибавить хотя бы часть

отброшенных членов (17), то два графика начинают

сливаться. Уточненная формула для малых расстояний
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Рис. 3. Ошибка вычисления МО над сферической морской

поверхностью.

также немного не доходит до предельной точности, но

на расстоянии 100 km ошибка составляет всего 0.05%,

этого будет достаточно в большинстве случаев.

Также необходимо отметить, что уточненная формула

для малых расстояний не пригодна для трасс с низкой

проводимостью, к которым относятся любые участки с

сушей. Причиной этого является малое число использу-

емых членов ряда (10) (только первые три).
В заключение кратко отметим, что уточненная форму-

ла для малых расстояний (16):
1) обладает высокой точностью для морских трасс до

расстояний порядка 100 km;

2) может быть использована над трассами с низкой

проводимостью, если использовать большее число чле-

нов ряда (10);
3) позволяет точно вычислять МО для однородных

морских трасс, где ряд по нормальным волнам (формула
Фока [4]) плохо сходится.
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