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Предложен метод обработки сигналов фотоплетизмограммы с использованием оконного анализа (10 s),
комбинации фильтра Баттеруорта четвертого порядка и модифицированного алгоритма детекции пиков.

Показано, что средняя абсолютная ошибка определения частоты сердечных сокращений составляет 1.42 bpm

при времени обработки сигнала в одном окне менее 20ms. Метод оптимизирован для реализации на

малопроизводительных микроконтроллерах носимых устройств.
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В последние годы наблюдается рост спроса на си-

стемы неинвазивного мониторинга физиологического

состояния. Фотоплетизмография как оптический метод

измерения такого параметра, как частота сердечных со-

кращений (ЧСС), представляет особый интерес благода-

ря простоте технической реализации и неинвазивности.

Для реализации системы была разработана специа-

лизированная аппаратно-программная платформа. Аппа-

ратная часть (рис. 1) включает оптический датчик на

основе светодиодов с длинами волн 537, 660 и 880 nm,

а также фотодиодный элемент. Частота дискретизации

была задана как 100Hz, что обеспечивает достаточное

временно́е разрешение для точной оценки ЧСС.

a b

Рис. 1. a — печатная плата датчика, изготовленная в Инсти-

туте аналитического приборостроения РАН; b — положение

датчика при мониторинге физиологических показателей с

обозначением габаритов с масштабной линейкой.

Для работы с датчиком фотоплетизмограммы (ФПГ)
было создано программное обеспечение с графическим

интерфейсом, позволяющее визуализировать входные

данные и рассчитываемые разработанным алгоритмом

параметры с возможностью контроля динамики показа-

телей (рис. 2).

Частота сердечных сокращений отображается в от-

дельном информационном поле. Программное обеспече-

ние поддерживает работу как с беспроводным подключе-

нием по Bluetooth, так и с проводным интерфейсом USB,

а также позволяет произвести экспорт данных в формат

CSV для последующего анализа.

Для обработки сигналов ФПГ был разработан алго-

ритм, основанный на анализе скользящих окон длитель-

ностью 10 s с шагом в 1 s, что является довольно рас-

пространенным подходом. Алгоритм расчета ЧСС пред-

ставлял собой следующую последовательность шагов:

программное вертикальное отражение 10-секундного

участка сигнала со светодиода с длиной волны 537 nm,

фильтрация, расчет индекса качества отфильтрованного

сигнала, поиск пиков, фильтрация пиков и расчет значе-

ния ЧСС.

Сигналы ФПГ подвержены искажениям в виде высоко-

частотного шума, в основном связанного с работой дат-

чика, а также с множеством низкочастотных шумов, вы-

зываемых дыханием, движением и прочими источниками

помех. Основным методом борьбы с такими шумами

является фильтрация частотной характеристики сигнала

при помощи полосных фильтров. Такие фильтры сни-

жают составляющие сигнала вне полосы пропускания

на заданное число децибел. В случае ФПГ популярной

полосой пропускания является 0.5−5Hz, что соответ-

ствует ЧСС от 30 до 300 bpm. Именно она и была

выбрана в данной дискретизации датчика. На основе
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Рис. 2. Программное обеспечение датчика. a — главная страница; b — страница динамики показателей.
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Рис. 3. Визуальное представление используемого алгоритма

расчета ЧСС. 1 — входными данными является участок сиг-

нала в 10 s; 2 — вертикальное отражение сигнала; 3 — филь-

трация сигнала; 4 — оценка качества сигнала; 5 — построение

огибающих; 6 — отсечение сигнала и поиск пиков; 7 —

фильтрация расстояний между пиками; 8 — расчет ЧСС.

работы [1], посвященной сравнению методов фильтрации

сигналов ФПГ, были выбраны два цифровых фильтра:

Баттеруорта четвертого порядка и Чебышева II типа

четвертого порядка. В качестве стратегии фильтрации

был выбран метод двух прохождений, т. е. прямое и

обратное применение фильтра, что обеспечивает более

высокое качество получаемого сигнала.

Однако фильтрация и последующий расчет парамет-

ров по участку сигнала с низким качеством могут

привести к большой погрешности при оценке физио-

логических параметров. Для решения данной проблемы

качество сигнала оценивается при помощи специального

индекса (SQI) [2]. На участках сигнала, помеченных

как некачественные, физиологические параметры не рас-

считываются. Для оптимизации работы предложенного

метода были взяты относительно нетребовательные SQI-

коэффициент асимметрии, куртозис, энтропия и относи-

тельная мощность.

В качестве метода расчета ЧСС была разработана

модификация метода, приведенного в [3], основанного

на отсечении окрестностей пиков верхней огибающей

сигнала ФПГ и нижней огибающей верхней огибающей

(рис. 3). Только участки сигнала, попавшие в про-

межуток между двумя огибающими, рассматриваются

для поиска пиков. Данный подход позволяет значи-

тельно снизить количество ложных пиков, находимых

в сигнале неидеального качества, при этом не тре-

буя настройки гиперпараметров и большого количества

вычислительных ресурсов, что упрощает и обобщает

работу с сигналами ФПГ, снятыми с различных частей

тела разными датчиками. В алгоритм было внесено

несколько изменений. Во-первых, нижняя огибающая

смещалась на небольшое значение (1% от размаха

отфильтрованного сигнала), что позволяет с большей на-

дежностью отсекать участки, потенциально содержащие

пики. Во-вторых, было внесено изменение в функцию

поиска пиков на отсеченных участках. Функция поиска

пиков была модифицирована так, чтобы приоритет точки

как кандидата в пики рассчитывался как произведение

значения сигнала на отрицательное значение для второй

производной сигнала в этой точке. Данное изменение

внесено с целью более точного нахождения пиков в

случае двойных пиков, так как они могут привести к

снижению точности определения ЧСС. Было замечено,

что отрицательное значение второй производной ФПГ

первого пика, соответствующего систолическому пику,

значительно превышает соответствующее значение для

второго пика, что и было использовано при разработке

алгоритма. Следует отметить, что приоритет кандидатов

в пики использовался только для выбора пика среди

кандидатов, расположенных ближе чем 1/3 s, что соот-

ветствует 180 bpm.

Далее рассчитывались расстояния между последова-

тельными найденными пиками. Эти расстояния тща-

тельно отфильтровывались. Во-первых, расстояния, не

соответствующие промежутку ЧСС в 30−180 bpm, не

учитывались. Во-вторых, не рассматривались расстояния
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c абсолютным значением Z-оценки (расстояние до 0

после стандартизации) ниже 1.96. В-третьих, расстояния,
не попадающие в промежуток (m − b, m + b), где m —

среднее расстояние, b = max(0.25m, 1/3 · f ), f — часто-

та дискретизации, также отбрасывались. В том случае,

если после проведенной фильтрации число пиков было

ниже чем 3 или выше чем 30, данный участок призна-

вался некачественным и значение ЧСС устанавливалось

как неопределенное. Наконец, ЧСС рассчитывалась как

60 f /m, где m — среднее по оставшимся расстояниям.

Для сравнения оценки эффективности разработанного

алгоритма он был протестирован с использованием

открытой базы данных BIDMC [4], содержащей 54

ФПГ-сигнала длиной в 480 s и соответствующие им

показатели ЧСС, полученные при помощи контроль-

ного медицинского прибора. С использованием метода

расчета ЧСС, приведенного выше, были рассчитаны

значения ЧСС для ФПГ и проведено их сравнение с кон-

трольными значениями ЧСС. Для каждого из сигналов

рассчитывалась средняя абсолютная ошибка, после чего

полученные ошибки были усреднены. Наилучшим соче-

танием фильтра и SQI оказались фильтр Баттеруорта

четвертого порядка и куртозис со средней абсолютной

ошибкой определения ЧСС по всей базе данных BIDMC

в 1.4± 0.4 bpm.

Проведенные испытания показали, что предложенный

метод обеспечивает определение частоты сердечных

сокращений при времени обработки менее 20ms на

платформе ESP32S3. Это делает его пригодным для

использования в носимых устройствах мониторинга.
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