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Приводятся результаты квантово-механических расчетов параметров сверхтонких взаимодействий (сверх-
тонких полей и изомерных сдвигов на ядре 57Fe) в тройных сплавах Fe−Al−B. Показано, что замещение

атомов железа алюминием или бором в первой координационной сфере атома Fe приводит к уменьшению

сверхтонкого магнитного поля примерно на 2.7 T на атом и увеличению изомерного сдвига на 0.02mm/s

на атом. Влияние замещений в более удаленных сферах в общем случае требует дополнительного анализа

локальной атомной структуры. Анализ вкладов в 57Fe сверхтонкое магнитное поле от электронов ионного

остова и валентных электронов выявил пропорциональность сверхтонкого магнитного поля и магнитного

момента внутренних d-электронов с коэффициентом около 12.4 T/µB при отсутствии выраженной корреляции

с вкладом от валентных электронов. На примере систем Fe11Al5B и Fe12Al4B рассмотрены энергетически

устойчивые периодические структуры с атомами бора в междоузлиях. Полученные результаты имеют

практическое значение для интерпретации мёссбауэровских спектров.
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1. Введение

Упорядоченные двойные и многокомпонентные ин-

терметаллиды на основе системы Fe−Al представляют

значительный интерес как в связи с их возможным

технологическим применением [1,2], так и в качестве

модельных систем для изучения магнитных явлений.

В частности, материалы на основе Fe−Al с добавками

бора важны для технических приложений благодаря

своим магнитоупругим свойствам и перспективны в

качестве материалов для сенсоров и преобразовате-

лей [3,4]. Одной из наиболее важных особенностей двой-

ных систем Fe−Al является чрезвычайная зависимость

их магнитного поведения от структуры и содержания

Al. Известно, что даже малые изменение концентрации

Al (начиная с 28−30 at.%) приводят к выраженным

изменениям магнитного состояния сплава [5,6]. Для

выяснения того, как особенности структуры влияют на

магнитное состояние, а также для интерпретации экспе-

риментальных наблюдений для двойной системы Fe−Al

было проведено множество теоретических исследований

электронной и магнитной структуры из первых прин-

ципов [7–12]. Загадка исчезновения ферромагнетизма в

Fe−Al сплавах cсодержанием Al > 30 at.%, известная с

середины 60-х прошлого столетия [13], была разрешена

в нейтронографических исследованиях Noakes с соав-

торами [14]. В экспериментах на монокристаллических

алюминидах с содержанием Al от 34 до 43 at.% были

обнаружены пространственные корреляции магнитного

момента, а анализ указал на возможность их интерпре-

тации как стационарных несоразмерных спиновых струк-

тур — например, волны спиновой плотности (ВСП).
Однако до сих пор и природа, и условия существо-

вания таких магнитных структур не ясны, и даже их

идентификация остается сложной экспериментальной

задачей. Также причина существования стационарных

несоразмерных спиновых структур только в указанном

концентрационном диапазоне остается невыясненной.

В наших экспериментальных работах [15–17] с по-

мощью магнитометрии и мёссбауэровской спектроско-

пии (МС) мы исследовали влияние добавления Ga

или B — изоэлектронных аналогов алюминия (также
Sn) — на эволюцию магнитного состояния двойного

сплава Fe65Al35. Например, было показано, что добавка

более 10 at.% бора приводит к фазовому расслоению

сплава и выделению метастабильной фазы в решетке

Fe−Al, что позволяет ожидать усиления некоторых

механических и магнитоупругих характеристик. Для

интерпретации магнитной микроструктуры тройных си-

стем (Fe−Al−M, M = Ga, B, Sn) крайне востребован-

ной оказалась информация о локальных параметрах

сверхтонких взаимодействий (СТВ) и магнитных мо-

ментах, полученных независимо, с помощью квантово-

механических расчетов. Для тройной системы Fe−Al−B

имеющиеся теоретические исследования весьма немно-

гочисленны. В них изучаются электронная структура,

упругие свойства [18], условия стабилизации различных

дефектов [19], энергетика примесей атомов бора в интер-
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металлиде B2-FeAl [20]. Некоторые аспекты неколлине-

арного магнетизма в тройных сплавах Fe−Al−B были

исследованы в нашей предыдущей работе [21], где с

помощью квантово-механических расчетов выявлена вы-

сокая чувствительность магнитного упорядочения к кон-

центрации sp-элементов и локальному расположению

атомов в решетке. Добавление небольшого количества

бора приводит к изменению энергетического баланса си-

стемы, в результате чего ферромагнитное упорядочение

становится энергетически более выгодным по сравнению

со спин-спиральной структурой. При этом представляет

большой интерес, как конкретное положение атомов

бора в кристаллической решетке влияет на магнитные

характеристики сплава. Данный вопрос до настоящего

времени оставался малоизученным и является одной из

задач настоящей работы.

Представленная работа посвящена расчетам электрон-

ной структуры в рамках теории функционала плотности

(ТФП, DFT), магнитных моментов и параметров СТВ

(а именно, сверхтонкого магнитного поля (СТМП) на

ядре 57Fe и изомерного сдвига δ) для систем Fe−Al и

Fe−Al−B с акцентом на ячейках с составом, близким

к Fe65Al30B5. Для тройной системы выполнен анализ

вкладов в СТМП 57Fe от электронов ионного остова и от

валентных электронов. Также рассмотрены ячейки с раз-

мещением атома бора в междоузлиях D03 сверхрешет-

ки и определены обусловленные таким расположением

атомов изменения в параметрах СТВ. Настоящая статья

является частью комплексного исследования тройных

сплавов (в том числе Fe−Al−B), в рамках которого

объединяются квантово-механические расчеты и экспе-

риментальные данные. Это позволит лучше раскрыть

взаимосвязь между химическим составом, локальной

структурой и магнитными свойствами двойных и трой-

ных сплавов на основе Fe−Al.

2. Детали расчета

Теоретические квантово-механические расчеты ло-

кальных магнитных характеристик проводились на ос-

нове теории функционала плотности с использовани-

ем программного пакета WIEN2k [22–24]. Обменно-

корреляционный потенциал учитывался в рамках обоб-

щенного градиентного приближения (GGA) с парамет-

ризацией PBE [24]. Волновые функции, плотность заряда
и потенциал расписывались по сферическим гармони-

кам в неперекрывающихся атомных сферах (muffin-tin)
радиуса Rmt и по плоским волнам в междоузельной

области элементарной ячейки. Радиусы muffin-tin сфер

были установлены равными 2.00 arb. un. для всех ато-

мов, за исключением случая междоузельных атомных

позиций. Внутри атомных сфер разложение электронных

волновых функций ограничивалось числом lmax = 10, а

потенциал раскладывался по сферическим гармоникам

до l = 4. В междоузельной области волновые функции

представлялись в виде плоских волн с максимальным

вектором обрезания Kmax, задаваемым соотношением

Rmt · Kmax = 7. Зарядовая плотность была разложена в

ряд Фурье до Gmax = 20Ry1/2 . В неприводимой части

зоны Бриллюэна число k-точек подбиралось так, чтобы

обеспечить сходимость полной энергии элементарной

ячейки с точностью до 0.1meV — 16×16×16 k-точек.

При необходимости проводилась релаксация межатом-

ных расстояний до состояния, при котором силы, дей-

ствующие на атомы, стремились к нулю.

Было проанализировано множество элементарных

ячеек, таких как: FeAl15, Fe2Al14, Fe8Al4B4, Fe8Al5B3,

Fe8Al6B2, Fe8Al7B, Fe8Al8, Fe9Al7, Fe9Al6B, Fe10Al5B,

Fe11Al5, Fe12Al4, Fe12Al2B2, Fe13B3, Fe13Al2, Fe14B2,

Fe15B, Fe15Al и многих других. Концентрация атомов

алюминия и бора менялась в широком диапазоне от 0

до 93.75 at.%.

3. Результаты и их обсуждение

3.1. Расчеты параметров сверхтонких

взаимодействий

Для проведения квантово-механических расчетов бы-

ла использована модель с элементарными кристалло-

графическими ячейками, содержащими 16 атомов, в ко-

торых варьировался состав Fe, Al и B. Такой подход

позволил подробно исследовать влияние различных ти-

пов атомов и их расположения в ячейке (вплоть до

четвертой координационной сферы) на параметры СТВ.

Особое внимание было уделено анализу параметров

СТВ, а именно: СТМП, изомерных сдвигов и магнитных

моментов атомов Fe — так как понимание закономерно-

стей их изменения позволяет получить более глубокое

представление об электронной и магнитной структуре

тройных сплавов Fe−Al−B.

Распределение атомов Al и B по координационным

сферам вокруг центрального атома железа оказывает

существенное влияние на параметры СТВ. Анализ рас-

считанных параметров СТВ показал, что количество и

расположение атомов в первой координационной сфере

имеют наибольшее значение (рис. 1, a). Зависимость рас-
четного СТМП Bhf от количества sp-элементов (Al/B),
расположенных в I координационной сфере атома Fe,

можно аппроксимировать линейной функцией (черная
линия). Замена одного атома Fe на sp-элемент в I ко-

ординационной сфере приводит к снижению СТМП при-

мерно на 2.7 T. Если рассмотреть двойную систему —

только атомы Al в I координационной сфере — (на
графике они обозначены заполненными кружками), то
наклон аппроксимирующей линии изменяется незна-

чительно (красная линия) — уменьшение составляет

приблизительно 2.4 T, что превосходно согласуется с

имеющимися экспериментальными данными [13]. Сни-
жение локального СТМП на ядре 57Fe при замещении

железа алюминием или бором обусловлено изменением

электронной плотности и магнитного момента атома
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Рис. 1. Зависимость рассчитанного СТМП Bhf на ядре 57Fe от количества атомов алюминия или бора в I координационной

сфере (a); в II−IV сферах (b).
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Рис. 2. Зависимость рассчитанного значения изомерного сдвига на ядре 57Fe от количества атомов Al/B в первой координационной

сфере (a); во II−IV сферах (b).

железа. Это изменение происходит из-за перераспреде-

ления d-электронов, что модифицирует обменные взаи-

модействия и, как результат, величину СТМП.

Аналогичная зависимость Bhf от количества sp-атомов

только во II−IV координационных сферах представлена

на рис. 1, b. В отличие от Bhf(nn), здесь не наблюдается

выраженной тенденции (наклона). Видно, что одинаково-

му количеству атомов sp-элементов в I координационной

сфере атома Fe соответствуют различные (максимальное
отличие ∼ 30 T) значения СТМП Bhf. Причиной такого

разброса являются не только вариации количества ато-

мов Al и B во II, III и IV координационных сферах, но и

позиции этих атомов в ячейке.

Подобный анализ, проведенный для изомерного сдви-

га δ представлен на рис. 2, a для I координационной

сферы, а на рис. 2, b — для последующих II−IV сфер.

В первой сфере наблюдается четкая тенденция к уве-

личению изомерного сдвига с ростом числа sp-атомов.

Эта зависимость может быть так же аппроксимирована

линейной функцией: при увеличении количества sp-

атомов Al и B в I координационной сфере величина

изомерного сдвига возрастает примерно на 0.02mm/s на

атом. Такой же результат (наклон 0.02mm/s) получится,

если мы рассмотрим отдельно только двойные Fe−Al

системы (без бора). И этот результат также находится в

согласии с известными для Fe−Al данными [13]. Таким
образом, каждый атом Al/B в ближайшем окружении

атома Fe приводит к понижению СТМП Bhf, а также к

уменьшению электронной зарядовой плотности, то есть

контактной s -плотности на ядре 57Fe. Из рис. 2, b видно,

что, аналогично Bhf(nn), значения изомерного сдвига,

обусловленные заменой атома Fe на sp-атом во II,

Физика твердого тела, 2025, том 67, вып. 11
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III и IV координационных сферах, не демонстрируют

систематической зависимости. Следует отметить, что

абсолютные значения изомерного сдвига во всех случаях

остаются в пределах примерно от −0.2 до +0.2mm/s,

что составляет довольно большую неопределенность

при использовании этих значений в эксперименталь-

ной практике эффекта Мёссбауэра. Средняя разница в

значениях 57Fe СТМП Bhf при одинаковой химической

сортности атомов в II, III и IV координационных сферах

достигает 2 T, абсолютного значения изомерного сдви-

га — 0.2mm/s и магнитного момента — до 0.2 µB/atom.

Таким образом, приведенные результаты расчетов

показывают, что в системе Fe−Al−B (так же, как

и в двойной системе Fe−Al [25]), в общем случае

при анализе магнитного состояния в рамках локальных

атомных окружений, следует принимать во внимание

несколько ближайших координационных сфер. В спла-

вах стехиометрического состава (cAl + cB = 25 at.%), ко-
гда количество химически- и магнитно-неэквивалентных

конфигураций невелико, выполнить такой анализ нетруд-

но. В нестехиометрических упорядоченных сплавах или

неупорядоченных системах, характеризующихся огром-

ным количеством локальных окружений атома Fe, кроме

расчетов параметров СТВ, необходим анализ статисти-

ческих весов конкретных локальных окружений. Пример

такого анализа приводится далее.

3.2. Анализ локальных атомных конфигураций

Согласно данным рентгеновской дифракции и хими-

ческого анализа тройной сплав Fe65Al30B5 имеет D03
сверхструктуру [15,16] и является нестехиометрическим.

Поэтому для анализа локальной атомной структуры

естественно рассматривать статистическую модель упо-

рядочения D03 типа (пространственная группа Fm-3m).
Вычислим вероятности всех локальных неэквивалент-

ных конфигураций для всех вариантов размещения

атомов Fe, Al, B от I до IV координационной сфе-

ры. Например, вероятность обнаружить конфигурацию

с 4 атомами железа и 4 атомами алюминия в I ко-

ординационной сфере — P[40 RR RR RR] ≈ 37.611%

(наиболее вероятная конфигурация с учетом только

I сферы); здесь под
”
40“ имеется в виду 4 атома алю-

миния и 0 атомов бора в I сфере,
”
RR“ — случай-

ное количество Al/B во II, III, IV координационных

сферах. Среди всего множества
”
40“ наиболее веро-

ятная конфигурация — это P[40 00 00 00] ≈ 0.9109%.

При этом вторая по вероятности конфигурация

P[40 00 10 00] = P[40 00 01 00] ≈ 0.8408% отличается

лишь одним атомом (Al или B) в третьей координаци-

онной сфере и практически не отличается по значению

СТМП на ядре 57Fe. В любом случае, в других локаль-

ных конфигурациях (из множества P[40 RR RR RR], ко-
личество sp-атомов будет выше, а значит, СТМП на ядре

атомов Fe в этих конфигурациях будет меньше. В табл. 1

приведены рассчитанные вероятности и значения СТМП

Таблица 1. Расчетные значения СТВ для некоторых конфи-

гураций ближайшего окружения атома Fe. Конфигурация —

условное обозначение, показывающее количество атомов Al

и B в первых четырех координационных сферах (расшифровка
дана в тексте); PD03 — вероятность такой конфигурации в слу-

чае упорядочений D03 типа; PA2 — вероятность конфигурации

в случае упорядочений A2 типа; Bhf — СТМП, δ — изомерный

сдвиг

Конфигурация PD03, % PA2, % Bhf, T δ, mm/s

[40 00 00 00] 0.9109 0.00189 25.4 0.184

[40 00 01 00] 0.8408 0.00174 − −

[40 00 02 00] 0.3558 0.00074 − −

[40 00 04 00] 0.0158 0.00003 23.4 0.000

[40 00 05 00] 0.0019 0.00000 − −

[40 02 00 00] 0.0808 0.00017 23.8 −0.081

[40 04 00 00] 0.0005 0.00005 − −

[40 00 00 80] 0.0000 0.00000 19.8 −0.085

[40 40 40 00] 0.0000 0.00000 21.7 0.068

[00 00 00 00] 0.0000 0.77088 32.9 0

[50 00 00 00] 0.2803 0.00012 23.2 0.210

[20 00 00 00] 0.0000 0.12771 29.2 −0.110

[10 00 00 00] 0.0000 0.47439 30.1 −0.190

Bhf и изомерного сдвига δ для атомов Fe в некоторых

конфигурациях D03-структуры.

Хорошо видно, что при увеличении количества атомов

Al (или В) во II, III, IV координационных сферах

вероятность таких локальных окружений падает до нуля

(для данной концентрации компонентов сплава), при

незначительном (∼ 2T) изменении СТМП. Проведен-

ный анализ приводит нас к выводу, что для задач МС

подобных тройных Fe−Al−B систем целесообразно рас-

сматривать только первую координационную сферу. При

этом вклад остальных сфер учитывать как 1) уширение

соответствующего вклада в мёссбауэровский спектр

(∼ 8% от значений, соответствующих только I сфере);
2) небольшое смещение в сторону меньших значений

СТМП (∼ 3% от значений, соответствующих только

I сфере).

Анализ мёссбауэровских спектров упорядоченного

сплава Fe65Al30B5 [15,16] показал, что сплав не является

однофазным, и другая возможная фаза представляет

собой — A2 фазу со случайным распределением атомов

Fe, Al и B по узлам ОЦК-решетки (структура α-Fe

с пространственной группой Im-3m). В этом случае

используется аналогичный подход (см. табл. 1, PA2).
Наиболее вероятными локальными конфигурациями ато-

ма Fe в A2 структуре будут такие, у которых sp-

12∗ Физика твердого тела, 2025, том 67, вып. 11
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Рис. 3. Зависимость рассчитанного значения сверхтонкого магнитного поля от магнитного момента ядер 57Fe в двойных сплавах

Fe−Al и тройных Fe−Al−B: a —вклад внутренних (core) электронов; b — зависимость вклада внешних (валентных) электронов;

c — суммарный вклад обоих типов электронных состояний.

элементы находятся только в первой координационной

сфере атома железа.

Таким образом, из всего объема расчетных значений

СТМП (рис. 1, а) можно отдельно выделить два мас-

сива данных соответствующих: 1) упорядоченной D03-

структуре и 2) неупорядоченной A2-струкуре. Накло-

ны аппроксимирующих прямых Bhf(nn) для указанных

структур различаются и составляют: 1) — 2.9 T/atom;

2) — 2.2 T/atom.

Отметим, что между расчетными значениями пара-

метров СТВ, полученными методами ТФП, и экспе-

риментальными значениями, полученными, например,

из мёссбауэровских спектров, может не наблюдаться

точное численное совпадение. Тем не менее, именно

относительные изменения — являются ключевой ве-

личиной и могут успешно использоваться при анализе

и интерпретации реальных мёссбауэровских спектров.

Таким образом, хотя абсолютные значения расчетных

параметров не всегда точно отражают эксперимент, тен-

денции и закономерности, выявляемые в ходе расчетов,

оказываются весьма полезными и информативными.

3.3. Оценка остовного и валентного вкладов

в СТМП

Программный пакет WIEN2k предоставляет возмож-

ность раздельного анализа вкладов различных электрон-

ных состояний в расчетные значения СТМП на ядре
57Fe. В частности, программа позволяет отделить вклад

валентных электронов от вклада электронов ионного

остова —
”
core“ или

”
остовных“ электронов. Физически,

под внутренними состояниями понимаются электронные

Физика твердого тела, 2025, том 67, вып. 11
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Таблица 2. Расчетные значения параметров СТВ для систем Fe11Al5, Fe11Al5B, Fe12Al4, Fe12Al4B. N — соответствует номеру

атома железа на рис. 4; r — расстояние между ближайшими атомами железа; δ — расчетное значение изомерного сдвига; Bhf —

расчетное значение СТМП, которое является суммой
”
core“ и валентного вклада взятой по модулю; core — вклад в СТМП от

внутренних
”
core“ электронов; val — вклад в СТМП от

”
внешних“ валентных электронов

N
Fe11Al5 Fe11Al5B

r , �A δ, mm/s Bhf, T core, T val, T r , �A δ, mm/s Bhf, T core, T val, T

1 2.50 0.06 29.0 −30.7 1.8 2.618 0.12 27.6 −31.2 3.6

2 2.50 0.06 29.0 −30.7 1.8 2.558 0.14 31.4 −32.1 0.7

3 2.50 0.21 23.1 −20.1 −3.0 2.618 0.24 19.9 −20.4 0.5

4 2.50 0.21 23.1 −20.1 −3.0 2.540 0.22 21.6 −21.5 −0.1

N
Fe12Al4 Fe12Al4B

r , �A δ, mm/s Bhf, T core, T val, T r , �A δ, mm/s Bhf, T core, T val, T

5 2.496 0.06 31.0 −29.9 −1.1 2.578 0.09 28.7 −30.3 1.6

6 2.496 0.06 31.0 −29.9 −1.1 2.455 −0.00 25.4 −21.4 −4.0

7 2.496 0.06 31.0 −29.9 −1.1 2.540 0.13 34.6 −31.9 0.3

8 2.496 0.19 25.0 −23.4 1.6 2.578 0.24 21.0 −21.7 0.7

9 2.496 0.19 25.0 −23.4 −1.6 2.455 0.18 24.0 −25.1 1.1

уровни, чьи волновые функции полностью локализованы

внутри muffin-tin сферы. Эти электронные состояния

располагаются на значительно более низких энергетиче-

ских уровнях (ниже E = −6Ry, что является стандарт-

ным значением при расчетах подобных Fe−Al систем),
что указывает на их глубокое энергетическое положение

и сильную локализацию около ядра атома. Валентные же

электроны обладают большими значениями энергии и

имеют волновые функции, выходящие за границы muffin-

tin сферы, что отражает делокализованный характер их

состояния.

На рис. 3 представлена зависимость значения СТМП

на ядре Fe от величины расчетного значения магнитного

момента для двойных Fe−Al и тройных Fe−Al−B си-

стем. Вклад в СТМП от остовных электронов приведен

на рис. 3, a, валентных — рис. 3, b; суммарная зависи-

мость Bhf от магнитного момента на атом Fe изобра-

жена на рис. 3, c. Для вклада от остовных электронов

наблюдается четкая линейная зависимость СТМП Bcore

от магнитного момента mFe, которая аппроксимируется

уравнением:

Bcore = −A · mFe, (1)

где коэффициент пропорциональности A составляет око-

ло 12.4 T/µB, что хорошо согласуется с известными

литературными данными [26]. Полученный коэффициент

A может использоваться при анализе магнитной микро-

структуры с помощью МС.

3.4. Расчеты СТМП для ячейки, в которой
атом В занимает междоузлие

Атомы бора, благодаря своим относительно неболь-

шим размерам (рис. 4), могут располагаться между

узлами железа и алюминия в тройных сплавах Fe−Al−B.

Ситуации такого междоузельного расположения атомов

a b

1

2

3 4

5

67

89

Рис. 4. Элементарные ячейки Fe11Al5B (a) и Fe11Al5B (b).
Неэквивалентные позиции атомов железа пронумерованы, а их

параметры СТВ указаны в табл. 2. Атом бора в междоузлии

показан черной сферой. Сиреневой — Fe, серой — Al.

бора были исследованы дополнительно. Рассмотрены

два случая: 1) Fe11Al5B — представлен на рис. 4, а; и

2) Fe12Al4B — на рис. 4, b. Выбор таких элементарных

ячеек обусловлен близостью по составу к эксперимен-

тально исследованным сплавам [15,16]. Два рассмотрен-

ных случая отличаются тем, что в первом варианте

атом бора расположен в ближайшем окружении четырех

атомов Fe и двух атомов Al, тогда как во втором случае

его ближайшее окружение включает пять атомов Fe и

один атом Al. Расчет энтальпии образования данных

систем проводился по схеме, описанной в работе [27].
Расчеты показали, что обе системы являются стабильны-

ми и энергетически выгодными: энтальпия образования

для первой системы составляет −0.29 eV/atom, а для

второй — −0.37 eV/atom.

В качестве систем для сравнения расчетных значений

параметров СТВ (δ и Bhf) в ячейках Fe11Al5B, Fe12Al4B

были выбраны Fe11Al5 и Fe12Al4 (без бора как атома

внедрения). Известно, что основной вклад в 57Fe Bhf
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на ядре железа вносят электроны внутренних оболо-

чек. Известно также, что расстояние между атомами

железа влияет на величину магнитного момента, что,

в свою очередь, сказывается на вкладе внутренних

электронов в сверхтонкое магнитное поле. При увели-

чении межатомных расстояний наблюдается рост вклада

”
core“ электронов в СТМП, обусловленный спиновой

поляризацией внутренних s -уровней d-электронами. Та-

кое поведение характерно для систем Fe−sp-элемент

(например, Fe−Al, Fe−Si) [28]. Внедрение атома B в

междоузлие кристаллической решетки Fe−Al приводит

к увеличению расстояния между соседними атомами,

что, в свою очередь, вызывает изменения в сверхтонком

магнитном поле, обусловленном вкладом от внутренних

электронов. Однако, в отличие от бездефектных Fe−sp-

элемент систем, в случае междоузельного расположения

атома необходимо учитывать также вклад в СТМП от ва-

лентных электронов, который в данном случае является

преобладающим и положительным. Расчеты показывают,

что при размещении одного атома бора в позиции

внедрения в обеих системах среднее значение СТМП

уменьшается примерно на 10%, главным образом, из-за

вклада от валентных электронов. При этом в рассмат-

риваемых системах обнаруживаются позиции атомов

железа, для которых вклад в СТМП возрастает как за

счет внутренних электронов, так и за счет валентных

(см. табл. 2, N2). Однако причина такого поведения оста-

ется невыясненной и требует более глубокого будущего

анализа, выходящего за рамки текущего исследования.

4. Заключение

Квантово-механические расчеты параметров сверхтон-

ких взаимодействий (сверхтонкого поля на ядре 57Fe

и изомерного сдвига) тройной системы Fe−Al−B по-

казали, что локальные параметры СТВ в значительной

степени определяются количеством атомов Al и B в

первой координационной сфере атома Fe и конкретной

позицией, которую занимает sp-атом в ячейке. Замена

атомов Fe на Al или B приводит к линейному снижению

СТМП примерно на 2.7 T на каждый атом, а также

увеличению изомерного сдвига на 0.02mm/s. Влияние

замещения Fe на sp-атом в более удаленных координа-

ционных сферах атома Fe оказывается заметным, но не

имеет определенной тенденции. Для применения в мёсс-

бауэровской практике моделей, учитывающих только

ближайшее окружение атомов железа, необходим анализ

статистического веса различных локальных окружений

атома Fe. Рассмотренный случай D03-упорядоченного

сплава Fe65Al30B5 показал, что влияние II−IV сфер

проявляется в небольшой поправке, которая немного

увеличивает ширину мёссбауэровской линии (∼ 8%) и

смещает СТМП в сторону меньших значений (∼ 3%).

Анализ вкладов в СТМП на ядре 57Fe от остовных и

валентных электронов выявил, что величина сверхтон-

кого магнитного поля пропорциональна магнитному мо-

менту остовных электронов с коэффициентом примерно

12.4 T/µB, тогда как валентные электроны не показывают

выраженной корреляции.

На примере систем Fe11Al5B и Fe12Al4B была иссле-

дована возможность расположения атомов бора в меж-

доузлиях кристаллической решетки и происходящие при

этом изменения в параметрах СТВ. Бор устойчиво зани-

мает междоузлия в Fe11Al5B и Fe12Al4B (расчетное зна-

чение энтальпии образования −0.29 и −0.37 eV/atom) и

при этом расширяет решетку, создавая положительный

валентный вклад в СТМП. Это приводит к сниже-

нию среднего СТМП примерно на 10% относительно

бездефектных сплавов Fe−Al. Квантово-механические

расчеты сверхтонких параметров важны для точной

интерпретации мёссбауэровских спектров при изуче-

нии магнитной микроструктуры сложных структурно- и

магнитно-негомогенных систем.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Список литературы

[1] Special Issue Discussion Meeting on the Development of

Innovative Iron Aluminium Alloy Ed. by D.G. Morris.

Intermetallics 13, 12, 1255 (2005).
https://doi.org/10.1016/j.intermet.2004.08.011

[2] Special Issue Materials Science and Engineering A. Mater.

Sci. Eng. A 258, 1–2, 1 (1998). https://doi.org/10.1016/S0921-
5093(98)00908-3

[3] C. Bormio-Nunes, M.B. Dias, L. Ghivelder. J. Alloys Compd.

574, 467 (2013). https://doi.org/10.1016/j.jallcom.2013.05.122

[4] C. Bormio-Nunes, O. Hubert. JMMM 393, 404 (2015)
https://doi.org/10.1016/j.jmmm.2015.05.091

[5] A. Hernando, X. Amils, J. Nogues, S. Surinach, M.D. Baro,

M.R. Ibarra. Phys. Rev. B 58, R11864 (1998).
https://doi.org/10.1103/PhysRevB.58.R11864

[6] Е.П. Елсуков, Е.В. Воронина, А.С. Шуравин, А.В. Загай-

нов, А.В. Королев, С.К. Годовиков, Е.А. Печина, А.Е. Ел-

сукова. ФММ 102, 1, 733 (2006).
https://doi.org/10.1134/S0031918X06070076

[7] F. Plazaola, E. Apinaniz, D.M. Rodriguez, E. Legarra,

J.S. Garitaonandia. In Advanced Magnetic Materials ed. by

Leszek Malkinski. InTech. (2012). pp. 133–170.
https://doi.org/10.5772/2298

[8] E. Apinaniz, F. Plazaola, J.S. Garitaonandia. Eur. Phys. J. B

31, 167 (2003). https://doi.org/10.1140/epjb/e2003-00021-y
[9] F. Lechermann, F. Welsch, C. Elsasser, C. Ederer, M. Fahnle,

M. Sanchez, B. Meyer. Phys. Rev. B 65, 132104 (2002).
https://doi.org/10.1103/PhysRevB.65.132104

[10] Y.H. Liu, X.Y. Chong, Y.H. Jiang, R. Zhou, J. Feng. Physica B

Condens. Matter. 503, 10 (2016).
https://doi.org/10.1016/j.physb.2016.10.032

[11] B.V. Reddy, S.C. Deevi, F.A. Reuse, S.N. Khanna. Phys. Rev.

B 64, 132408 (2001).
https://doi.org/10.1103/PhysRevB.64.132408

[12] J.P. Das, B.K. Rao, P. Jena, S.C. Deevi. Phys. Rev. B 66,

184203 (2002). https://doi.org/10.1103/PhysRevB.66.184203

Физика твердого тела, 2025, том 67, вып. 11



VI International Baltic Conference on Magnetism 2025 2215

[13] M.B. Stearns. J. Appl. Phys. 35, 1095 (1964).
https://doi.org/10.1063/1.1713394

[14] D.R. Noakes, A.S. Arrott, M.G. Belk, S.C. Deevi, Q.Z. Huang,

J.W. Lynn, R.D. Shull, D.Wu. Phys. Rev. Lett. 91, 217201

(2003). https://doi.org/10.1103/PhysRevLett.91.217201
[15] E.V. Voronina, A.K. Arzhnikov, A.I. Chumakov, N.I. Chistya-

kova, A.G. Ivanova, A.V. Pyataev, A.V. Korolev. Adv. Cond.

Matter Phys. 2018, 5781873 (2018).
https://doi.org/10.1155/2018/5781873

[16] E.V. Voronina, A.G. Ivanova, A.K. Arzhnikov, A.I. Chumakov,

N.I. Chistyakova, A.V. Pyataev, A.V. Korolev. Phys. Solid State

60, 4, 730 (2018).
https://doi.org/10.1134/S1063783418040340

[17] A.K. AlSaedi, A.G. Ivanova, E.V. Voronina, A.K. Arzhnikov.

Metall. Mater. Trans. A 51, 10, 5365 (2020).
https://doi.org/10.1007/s11661-020-05938-3

[18] Y. Cheng, Z.L. Lv, X.R. Chen, L.C. Ca. Comput. Mater. Sci.

92, 253 (2014).
https://doi.org/10.1016/j.commatsci.2014.05.048

[19] A. Kellou, H.I. Feraoun, T. Grosdidier, C. Coddet, H. Aourag.

Acta Mater. 52, 3263 (2004).
https://doi.org/10.1016/j.actamat.2004.03.023

[20] J.M. Raulot, A. Fraczkiewicz, T. Cordonnier, H. Aourag,

T. Grosdidier. J. Mater. Sci. 43, 3867 (2008).
https://doi.org/10.1007/s10853-007-2338-7

[21] A.F. Abdullin, E.V. Voronina. Magn. Reson. Solids 27, 25101

(2025). https://doi.org/10.26907/mrsej-25101

[22] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz,

R. Laskowski, F. Tran, L.D. Marks. WIEN2k An Augmented

Plane Wave + Local Orbitals Program for Calculating Crystal

Properties Software. 2018.

[23] P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen,

L.D. Marks. J. Chem. Phys. 152, 074101 (2020).
https://doi.org/10.1063/1.5143061

[24] J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865

(1996). https://doi.org/10.1103/PhysRevLett.77.3865
[25] А.К. Аржников, Л.В. Добышева. ФТТ 50, 11, 2009 (2008).
[26] D. Kaptas, E. Svab, Z. Somogyvari, G. Andre, L.F. Kiss,
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