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Показана возможность создания и изучены оптические свойства структуры, представляющей собой

матрицу эпитаксиального GaAs со встроенной периодической последовательностью квазидвумерных слоев

нановключений Bi. В спектрах оптического отражения от такой структуры обнаружен резонансный пик, обус-

ловленный брэгговской дифракцией электромагнитных волн, рассеивающихся на системе нановключений.

Значительная амплитуда пика отражения (около 15% при нормальном падении света) обусловлена тем, что

длина волны брэгговского резонанса близка к длине волны локализованного поверхностного плазмонного

резонанса в системе наночастиц висмута в матрице арсенида галлия.
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1. Введение

Явление локализованного поверхностного плазмон-

ного резонанса (ЛППР) дает возможность сфокусиро-

вать электромагнитное поле в субволновом диапазоне

и значительно усилить взаимодействие между светом

и веществом [1], что обусловливает его практическую

ценность. Ключевыми объектами для изучения в плаз-

монике считаются системы металлических наночастиц,

которые могут демонстрировать ЛППР внутри полу-

проводниковой среды [2–6]. На их основе разрабатыва-

ются биологические сенсоры [6,7]; подобные системы

плазмонных наночастиц могут повышать КПД солнеч-

ных элементов [8,9]; плазмонный резонанс позволя-

ет на порядки усилить сигнал рамановского рассея-

ния [10–12]; с его помощью можно добиться высокоско-

ростной обработки информации в квантовых компьюте-

рах [13]; ЛППР может кардинально менять оптические

свойства полупроводника, значительно расширяя сферу

применения классических полупроводниковых материа-

лов [14–17].
Основная сложность в создании систем плазмонных

наночастиц в полупроводниках заключается в том, что

наиболее распространенные плазмонные металлы, такие

как золото, серебро, медь, платина и др., могут быть

нанесены на поверхность полупроводника в форме тон-

ких пленок или наночастиц [18], однако формирование

массива таких наночастиц внутри эпитаксиального слоя

на сегодняшний день неосуществимо. Вместе с тем

существуют металлы, способные формировать наноча-

стицы непосредственно в полупроводниковой среде. Для

полупроводников типа A3B5, в частности, для GaAs,

такими плазмонными материалами служат элементы

пятой группы — As, Sb и Bi. Согласно теоретическим

расчетам ЛППР для наночастиц этих материалов в

матрице GaAs [19–21], наиболее подходящим кандида-

том для реализации ЛППР в пределах прозрачности

GaAs является висмут. Для системы наночастиц висмута

в арсениде галлия резонансная энергия ЛППР соот-

ветствует энергиям фотонов вне границ прозрачности

полупроводниковой матрицы. Тем не менее, благодаря

большой ширине резонанса, ЛППР должен воздейство-

вать на оптические характеристики материала и в длин-

новолновой части спектра, где матрица GaAs считается

прозрачной. Для увеличения эффекта от ЛППР систему

можно сделать периодической, так чтобы в области

плазмонного резонанса осуществлялась конструктивная

брэгговская дифракция электромагнитных волн [22,23].

Следует отметить, что введение в матрицу арсенида

галлия значительной концентрации висмута, необходи-

мой для формирования системы нановключений, пред-

ставляет собой сложную технологическую задачу. Ее ре-

шение возможно с применением метода молекулярно-

лучевой эпитаксии (МЛЭ) [24]. В исследовании [25]
было показано, что с помощью МЛЭ можно создавать

квазидвумерные слои наночастиц висмута в матрице

GaAs. Для этого структуру следует вырастить в несте-
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хиометрических условиях при пониженных темпера-

турах, а затем подвергнуть отжигу при повышенных

температурах.

Ранее мы уже сообщали об экспериментальном на-

блюдении брэгговского резонанса в системе квазидву-

мерных слоев наночастиц Bi в матрице GaAs [26], однако
из-за разупорядоченности структуры резонанс распадал-

ся на несколько квазибрэгговских пиков в отражении.

Это обстоятельство, однако, не помешало нам построить

численную модель, адекватно описывающую результаты

эксперимента. На основе этих промежуточных результа-

тов была разработана новая структура, реализующая бо-

лее добротный брэгговский резонанс в данной системе.

Целью настоящей работы было создание и иссле-

дование оптических свойств периодической структуры

на основе квазидвумерных слоев нановключений Bi в

матрице GaAs, обеспечивающей одну моду брэгговской

дифракции в оптическом отражении вблизи края запре-

щенной зоны GaAs. В статье представлены результа-

ты экспериментальных оптических исследований такой

структуры, состоящей из 24 слоев наночастиц Bi. По-

строена модель, которая количественно описывает все

ключевые особенности полученных оптических спектров

отражения.

2. Методы и материалы

Исследованный образец был выращен методом

молекулярно-лучевой эпитаксии на подложках полуи-

золирующего GaAs с ориентацией (001) ± 0.5 ◦ . Про-

цессы на поверхности роста контролировались методом

дифракции быстрых электронов на отражение (ДБЭО).
Плотность молекулярных потоков As4 и Bi измерялась

манометрическим датчиком ионизационного вакууммет-

ра на время измерения помещаемого в зону роста.

Скорость роста измерялась по осцилляциям зеркально-

го рефлекса картины дифракции быстрых электронов.

Температура подложки определялась по показаниям тер-

мопары, калиброванной по температурам переходов по-

верхностных структур на поверхности арсенида галлия.

После сгона защитного окисного слоя на поверх-

ности подложки выращивался буферный слой GaAs

толщиной 0.3µm со скоростью роста 1µm/hour. Рост

проходил при температуре роста 580 ◦С в условиях су-

ществования суперпозиции поверхностных сверхструк-

тур ((2)(3)× (4)(6)). Это обеспечивало условия роста,

близкие к стехиометрическим.

После завершения роста буферного слоя подложка

охлаждалась до температуры 200 ◦С и при этой низ-

кой температуре (low temperature, LT) выращивалась

сверхрешетка, состоящая из 24 периодов. В состав

периода входили слои LT GaAs толщиной 125 nm и

дельта слои GaBi толщиной один монослой. Скорость

роста составляла 1µm/hour. Плотность потока мышьяка

и висмута в зоне роста составляли соответственно

PAs4 = 3 · 10−5 Torr и PBi = 8 · 10−8 Torr. После роста

слоя LT GaAs потоки галлия и мышьяка перекрыва-

лись, открывалась заслонка источника Bi и осаждал-

ся 1 монослой висмута. Время осаждения рассчитыва-

лось из изменения интенсивности зеркального рефлекса

картины ДБЭО и составляло 45 секунд. Затем поток

висмута перекрывался, и подавались потоки мышьяка

и галлия.

В начальной стадии роста LT слоев GaAs на картине

ДБЭО наблюдалась сетка тяжей основных рефлексов,

что позволяет сделать заключение об атомарной глад-

кости поверхности и высоком кристаллическом совер-

шенстве. На картине ДБЭО, во время роста, наблю-

далось диффузное рассеяние, возрастающее по мере

увеличения толщины растущего слоя. Это явление, по-

видимому, обусловлено возрастанием внутренних на-

пряжений, в растущей гетероструктуре, вызванных, как

захватом избыточного мышьяка, так и влиянием дельта

слоев Bi. Существенного огрубления дифракционной

картины после завершения роста не наблюдалось.

После выращивания образец был подвернут высоко-

температурному отжигу с целью формирования разви-

той структуры нановключений Bi. Процессы быстрого

термического отжига проводились в кварцевом реак-

торе в постоянном потоке предварительно очищенного

палладиевым фильтром водорода. Для предотвращения

деградации поверхности при температурной обработке

образцы накрывались пластиной GaAs. Нагрев образцов

осуществлялся при помощи печи трубчатого типа до

температуры 600 ◦С с точностью ±1 ◦С. Время вы-

держки на температуре отжига составило 15min. Та-

кая термообработка обеспечивала существенное пони-

жение концентрации собственных точечных дефектов

в LT GaAs и формирование квазидвумерных слоев

нановключений Bi [25]. Проведенные в предшествующей

работе [25] электронно-микроскопические исследования

показали, что нановключения Bi формируются из ма-

териала дельта-слоев GaBi, так что пространственное

положение слоев нановключений Bi и дельта-слоев GaBi

совпадают. Характерный размер включений висмута со-

ставляет 10−15 nm.

Оптическое исследование образца было выполнено

с помощью спектроскопии оптического отражения при

различных углах падения света. Источником белого све-

та являлась галогеновая лампа. Для передачи света ис-

пользовались оптоволоконные кабели. Поляризация све-

та осуществлялась с помощью призмы Глана−Тейлора.

Для записи спектров нами использовались мини-

спектрометры NIRQuest-512 и QE65000, а также про-

граммное обеспечение SpectraSuite от OceanOptics. Все

исследования проводились при комнатной температуре.

Моделирование оптических спектров проводилось с

помощью метода матриц переноса. Для описания вза-

имодействия электромагнитной волны с квазидвумер-

ным слоем наночастиц висмута использовалась модель

Перссона−Либша [27]. Оптический отклик отдельной
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Рис. 1. Экспериментальные спектры отражения от перио-

дической структуры, состоящей из 24 квазидвумерных слоев

наночастиц Bi в матрице GaAs, при углах падения P-поля-

ризованного света от 27.5◦ до 80◦ . Спектры записаны при

комнатной температуре с шагом по углу 2.5◦.

наночастицы был найден с помощью теории Ми. По-

скольку, как было показано в прошлой работе [26], ча-
стицы в таких структурах принимают форму, близкую к

сферической, их оптический отклик может быть описан

с помощью поляризуемости следующего вида:

α = 4πa3 εm − εd

εm + 2εd

, (1)

где a — радиус частицы, εm — диэлектрическая про-

ницаемость металла, εd — диэлектрическая проница-

емость среды. Для описания диэлектрической функ-

ции материала матрицы GaAs использовалась модель

Адачи [28]. Данные о диэлектрических свойствах ме-

таллических нановключений Bi были взяты из работы

Ушанова и др. [21].

3. Результаты эксперимента

На рис. 1 представлены экспериментальные спектры

отражения исследуемого образца при углах падения

P-поляризованного света от 27.5◦ до 80◦ с шагом 2.5◦.

Стрелкой отмечен край фундаментального поглощения

матрицы GaAs. Видно, что в спектральной области

870−910 nm проявляется знакопеременный резонанс,

который при увеличении угла падения света смещается

в коротковолновую область к краю фундаментального

поглощения матрицы. Такое смещение характерно для

брэгговских систем, в которых положение максимума

отражения описывается формулой:

λBr = 2d

√

εeff − sin2 θ, (2)

где λBr — спектральное положение максимума отраже-

ния, d — расстояние между отражающими интерфей-

сами, θ — угол падения света, εeff — эффективная ди-

электрическая проницаемость среды. В области больших

длин волн видны слабые затухающие побочные осцил-

ляции. Следует отметить, что в области длин волн бо-

лее 1µm наночастицы висмута теряют плазмонные свой-

ства [21]. В этой длинноволновой части спектра никаких

спектральных особенностей не наблюдалось. В области

коротких длин волн при энергии фотонов ~ω > EGaAs
g

матрица GaAs становится непрозрачной, и брэгговские

осцилляции перестают быть видны. Коэффициент отра-

жения вне области резонанса соответствует значениям,

которые могут быть получены по формулам Френеля.

При увеличении угла падения P-поляризованного света

коэффициент отражения уменьшается, достигая миниму-

ма при угле Брюстера, составляющего в GaAs около 74◦ .

При больших углах коэффициент отражения начинает

расти. При этом фаза отраженного света изменяется

на π. В целом вне области резонанса спектры отражения

соответствуют ожидаемым для обычного эпитаксиально-

го GaAs.

Область резонансного отражения нуждается в спе-

циальном рассмотрении. Формула (2) позволяет каче-

ственно объяснить смещение резонанса при изменении

угла падения. Для количественного описания необходи-

мо прибегнуть к численному моделированию, методика

которого была описана в разделе
”
Методы и материалы“.

4. Обсуждение результатов

На рис. 2 представлены расчетные спектры отра-

жения структуры, состоящей из 24 квазидвумерных
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Рис. 2. Расчетные спектры отражения от периодической

структуры, состоящей из 24 квазидвумерных слоев наночастиц

Bi в матрице GaAs, при углах падения P-поляризованного

света от 27.5◦ до 80◦. Спектры рассчитаны для комнатной

температуры с шагом по углу 2.5◦ .
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слоев наночастиц висмута в матрице арсенида галлия,

с периодом, равным 122.7 nm, диаметром наночастиц,

равным 12 nm, и фактором заполнения внутри дельта-

слоя (т. е. с отношением радиуса частиц к постоянной

решетки), равным 0.2. Эта конфигурация дает наиболее

точное соответствие расчета экспериментальным спек-

трам. Полученное значение периода близко к номиналь-

ной величине 125 nm, а полученный диаметр и кон-

центрация наночастиц согласуются с соответствующими

параметрами, найденными в предыдущих работах [25,26]
с помощью просвечивающей электронной микроскопии.

Из сравнения рис. 1 и рис. 2 видно достаточно хо-

рошее соответствие между экспериментом и расчетом.

Расчет, однако, дает более резкий край поглощения мат-

рицы GaAs, что выражается в резких пиках в спектрах

отражения при энергии фотонов, равной EGaAs
g . В экс-

периментальных спектрах такие пики не наблюдаются,

по-видимому, вследствие размытия края и формиро-

вания урбаховского
”
хвоста“ поглощения. В LT GaAs

такое размытие дополнительно усилено за счет высокой

концентрации точечных дефектов, формирующихся в

процессе низкотемпературной МЛЭ [29,30].

Таким образом, моделирование подтверждает, что экс-

периментальные спектры отражения соответствуют оп-

тическому отклику периодической структуры состоящей

из 24 квазидвумерных слоев плазмонных наночастиц

висмута.

5. Заключение

Проведенные исследования показали, что формиро-

вание 24 периодов квазидвумерных слоев наночастиц

висмута позволяет сформировать выраженный пик оп-

тического отражения в области длин волн 870−910 nm

вблизи края полосы фундаментального поглощения эпи-

таксиальной матрицы GaAs. Моделирование оптических

спектров методом матриц переноса на основе данных

структурных исследований и данных по диэлектриче-

ским свойствам висмута и арсенида галлия показало,

что физической причиной наблюдаемого пика отраже-

ния является брэгговская дифракция электромагнитных

волн, индуцированных локализованными плазмонными

возбуждениями в наночастицах Bi. Экспериментально

установлено, что абсолютная амплитуда резонансного

оптического отражения достигает 15%. Этот резуль-

тат обеспечивается при концентрации наночастиц Bi

в дельта-слоях, соответствующей фактору заполнения,

равному 0.2.
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