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Исследование диффузии лития, интеркалированного в слоистый

диселенид титана, методом ядерного магнитного резонанса
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Для исследования динамических свойств интеркалированных соединений LixTiSe2 (x = 0.25, 1) проведены
измерения спектров ядерного магнитного резонанса и скоростей спин-решеточной релаксации на ядре
7Li в этих соединениях в широком температурном диапазоне (80−593K). Показано, что поведение

скоростей спин-решеточной релаксации при температурах выше 300K определяется квазидвумерной

трансляционной диффузией ионов Li+. Диффузия лития в соединении Li0.25TiSe2 характеризуется энергией

активации 501(28)meV, а в соединении LiTiSe2 — 509(15)meV. Оценены коэффициенты диффузии и ионная

проводимость лития в Li0.25TiSe2 и LiTiSe2 при 297K.
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1. Введение

Слоистые дихалькогениды переходных металлов при-

влекли внимание благодаря способности к внедре-

нию в свое межслойное пространство (интеркалирова-
нию) различных органических и неорганических объек-

тов [1–4]. Такие соединения с общей формулой MX2

(M= переходный металл, X= S, Se, Te) формируют

структуры, которые состоят из слоев X−M−X, удержи-

ваемых вместе силами Ван-дер-Ваальса. Известно, что

слоистые дихалькогениды могут быть интеркалированы

различными материалами без существенного изменения

структур исходных соединений [5,6]. В результате ин-

теркалации щелочных металлов возникает зарядовый

(электронный) перенос между внедренными атомами и

X−M−X слоями, который приводит к замене ван-дер-

ваальсовских сил кулоновским взаимодействием. Исход-

ная решетка после интеркалирования немного изменя-

ется вдоль кристаллографической оси c (увеличивается
расстояние между слоями) [7].
Различные классы слоистых дихалькогенидов имеют

широкий спектр практического применения, например,

используются для создания электродов, твердотельных

ионных проводников и полупроводниковых материа-

лов [2,3]. Интеркалированые литием дихалькогениды

LixMX2 рассматриваются как перспективные соедине-

ния для создания катодных материалов. В частности,

соединения типа LixTiS2 активно изучались с целью

их возможного применения в качестве катодных мате-

риалов для литиевых аккумуляторов [2,6,8]. Диселенид
титана TiSe2 является соединением, родственным ди-

сульфиду титана TiS2, и недавние исследования интер-

калированых литием соединений типа LixTiSe2 также

показали возможность использования данных соедине-

ний в качестве ионных проводников [9,10]. Помимо

прикладного использования, соединения типа LixTiSe2
привлекают внимание как модели для исследования

механизмов движения объектов, внедренных в слоистые

дихалькогениды. Ядерный магнитный резонанс (ЯМР)
хорошо зарекомендовал себя как эффективный метод

для получения информации на микроуровне об атомной

динамике в твердом теле, такой как катионная подвиж-

ность в литий-ионных проводниках [11,12]. В настоящей

работе проведены измерения спектров ЯМР и времен

спин-решеточной релаксации на ядре 7Li с целью ис-

следования динамических свойств Li+ в соединениях

LixTiSe2 (x = 0.25, 1) в широком диапазоне температур.

2. Методика эксперимента

Синтез соединений LixTiSe2 был проведен способом

аналогичным тому, который был описан в работе [13].
Согласно данным рентгеновской дифракции, соедине-

ния имеют тригональную симметрию (пространственная
группа P-3m1) с параметрами решетки: a = 3.6027(1)�A
и c = 6.4663(2)�A для LiTiSe2 [13], a = 3.5542(5)�A и

c = 6.1142(16)�A для Li0.25TiSe2 [13]. Схематичное изоб-
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Рис. 1. Схематичное изображение структуры LixTiSe2 . Крас-

ным цветом изображены атомы Li, синим — Ti, зеленым —

Se.

ражение данной структуры показано на рис. 1. Для ЯМР-

экспериментов порошковые образцы были запаяны в

ампулы из пирекса под вакуумом 10−5 Torr.

ЯМР-эксперименты на ядре 7Li были проведены на

импульсном спектрометре с квадратурным фазовым де-

тектированием на резонансных частотах ω/2π = 14.8 и

28MHz в температурном интервале 80−593K. Магнит-

ное поле создавалось с помощью электромагнита фирмы

Bruker. Для стабилизации магнитного поля использо-

вался многоядерный магнитометр ЯМР собственного

производства, работающий в диапазоне 0.32−2.15 T. Для

генерации радиочастотных импульсов были использова-

ны компьютерный импульсный программатор SpinCore,

синтезатор частоты PTS (Programmed Test Sources, Inc.)
и широкополосной импульсный усилитель Kalmus мощ-

ностью 1 kW. Типичная длительность 90◦-ного импульса

составляла 5−6µs. Для измерений при температурах

T ≤ 300K резонансная ячейка с образцом помещалась в

проточный криостат Oxford Instruments CF1200, исполь-

зующий гелий или азот в качестве хладагента. Темпе-

ратура образца контролировалась с помощью хромель-

алюмелевой термопары с точностью ±0.1K. Измерения

при температурах T > 300K проводились с использова-

нием резонансной ячейки со встроенной печкой, где тем-

пература контролировалась медь-константановой термо-

парой с точностью ±0.5K. Для измерения значений вре-

мен ядерной спин-решеточной релаксации использовали

методику
”
насыщение–восстановление“. Спектры ЯМР

записаны через Фурье-преобразования сигналов солид-

эха (импульсная последовательность π/2x − t − π/2y ).

3. Результаты и обсуждение

Основные особенности записанных спектров ЯМР 7Li

одинаковы для обоих исследуемых соединений. В каче-

стве примера, на рис. 2 приведена эволюция спектров

ЯМР 7Li с температурой для LiTiSe2, измеренных на

частоте 28MHz. При низких температурах ширина 1ν

(полная ширина на половине высоты) спектра ЯМР
7Li определяется диполь-дипольным взаимодействием

между статичными ядерными спинами. Данный пара-

метр называют шириной линии
”
жесткой решетки“ 1νR.

С увеличением температуры, ширина линии
”
жесткой

решетки“ начинает уменьшаться вследствие усреднения

диполь-дипольных взаимодействий, когда частота пере-

скоков атомов лития, τ −1, становится примерно равной

величине 2π1νR [14]. В исследуемых соединениях суще-

ственное сужение линии происходит при температуре,

при которой τ −1 достигает порядка 104 s−1. При низких

температурах форма спектра ЯМР 7Li для LiTiSe2 имеет

также характерные
”
крылья“, которые могут быть связа-

ны с неразрешенными квадрупольными сателлитами.

На рис. 3 показаны температурные зависимости ши-

рины 1νLi спектров ЯМР, измеренные на ядре 7Li в

Li0.25TiSe2 и LiTiSe2 . Поведение 1νLi(T ) в обоих образ-

цах является типичным для соединений с трансляци-

онной диффузией ионов Li+ [15–17]. Из рис. 3 видно,

что существенное сужение линии ЯМР начинается при

температурах 300K в Li0.25TiSe2 и 350K в LiTiSe2. В об-

ласти высокотемпературного плато значения 1νLi очень

низкие (∼ 0.37 kHz для Li0.25TiSe2 и ∼ 0.26 kHz для

LiTiSe2 при 570K), что указывает на практически полное

усреднение диполь-дипольного взаимодействия 7Li−7Li.

Такое поведение 1νLi наблюдается в случае трансляци-
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Рис. 2. Эволюция спектров ЯМР 7Li для LiTiSe2 с темпера-

турой.
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Рис. 3. Температурная зависимость ширины (полная ширина

на половине высоты) спектра ЯМР, измеренная на ядре 7Li, в

Li0.25TiSe2 и LiTiSe2 на частоте 28MHz.

онной диффузии. Стоит отметить, что несмотря на изо-

структурность соединений, ширина линии в Li0.25TiSe2
меньше в области низких температур, чем в LiTiSe2, что

можно объяснить разницей диполь-дипольного взаимо-

действия 7Li−7Li из-за разной концентрации ионов Li+

в системах [14]. Сужение линии в Li0.25TiSe2 происходит

при более низкой температуре, чем в LiTiSe2 . Данный

факт свидетельствует о том, что атомные перескоки ли-

тия в Li0.25TiSe2 на шкале частот ∼ 104 s−1 начинаются

при более низкой температуре, чем в LiTiSe2 . Данные

с рис. 3 можно сравнить с поведением ширины линии

ЯМР 7Li для Li0.7TiSe2, измеренными на 77.7MHz [18].
В целом, поведение 1νLi(T ) для Li0.7TiSe2 совпадает

с полученными нами результатами для Li0.25TiSe2 и

LiTiSe2 . Единственным отличием является то, что в

Li0.7TiSe2 сужение линии вследствие атомного движения

начинается около температуры 200K, при которой τ −1

достигает величины порядка 104 s−1 [18]. Вероятно, это
связано с более низкими энергетическими барьерами

для атомного движения лития в Li0.7TiSe2 по сравнению

с барьерами в Li0.25TiSe2 и LiTiSe2 .

Температурные зависимости измеренных скоростей

спин-решеточной релаксации 7Li (в одноэкспоненци-

альном приближении) на частотах 14.8 и 28MHz для

образцов Li0.25TiSe2 и LiTiSe2 представлены на рис. 4.

Необходимо отметить, что измеряемая скорость спин-

решеточной релаксации R1, как правило, определяется

суммой вкладов от взаимодействия ядерных спинов с

электронами проводимости (R1e), с парамагнитными

примесями (R1p), и от межъядерного диполь-дипольного

и электрического квадрупольного взаимодействий,

модулированных атомным движением (R1d) [19]. Вклад
от электронов проводимости (корринговский вклад) R1e

пропорционален температуре и не зависит от частоты,

R1e = CeT . В парамагнетиках электронный вклад в ско-

рость спин-решеточной релаксации доминирует при низ-

ких температурах, в то время как вклад, обусловленный

атомным движением R1d, становится доминирующим в

температурном диапазоне, при котором частота атомных

перескоков τ −1 находится в пределах от 107 до 1011 s−1.

Из вставки на рис. 4 видно, что измеренная темпера-

турная зависимость скорости релаксации при T < 300K

может быть удовлетворительно описана линейной функ-

цией CeT + B с параметрами Ce = 1.62 · 10−4 s−1K−1

и B = 3.79 · 10−2 s−1 для Li0.25TiSe2 и Ce =
= 1.48 · 10−3 s−1K−1 и B = 7.17 · 10−3 s−1 для LiTiSe2 .

Коэффициент Ce пропорционален квадрату плотности

электронных состояний на уровне Ферми [19].
Параметр B определяет парамагнитный вклад R1p

в пределе низких температур. Для оценки параметров

движения Li+ нам необходимо выделить температурную

зависимость вклада, создаваемого атомным движением

R1d, т. е. вычесть вклады R1e и R1p из экспериментальных

данных. Данная процедура обычно основана на экстра-

поляции низкотемпературных данных CeT + B [20].

Анализ наших экспериментальных результатов вы-

явил, что в обоих соединениях восстановление ядерной

намагниченности 7Li отклоняется от одноэкспоненци-

ального поведения. В рассматриваемом температурном

диапазоне кривые восстановления 7Li могут быть удо-

влетворительно аппроксимированы суммой двух экспо-

ненциальных функций. Двухэкспоненциальная релакса-

ция 7Li ранее уже наблюдалась в некоторых соединени-

ях, содержащих литий [16]. Такое поведение может быть

связано с ненулевым электрическим квадрупольным мо-

ментом ядра 7Li [14]. На рис. 5, a и 5, b показано пове-

дение быстрых компонент скоростей спин-решеточной

релаксации RLi
1F , связанных с атомным движением, на

ядре 7Li, измеренных на двух резонансных частотах для
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Рис. 4. Температурные зависимости скоростей спин-решеточ-

ной релаксации на ядре 7Li, измеренные на частотах 14.8

и 28MHz для Li0.25TiSe2 и LiTiSe2 . На вставке приведено

поведение скоростей релаксации ниже T = 300K, и красными

линиями показаны линейные аппроксимации CeT + B для

каждого соединения.

Физика твердого тела, 2025, том 67, вып. 11



Исследование диффузии лития, интеркалированного в слоистый диселенид... 2199

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
1

10

102
680 600 520 480 440 400 360

10 / , K3 –1T

T, K

R
L

i
1
F

–
1

, 
s

Li TiSe0.25 2
7Li

28 MHz

14.8 MHz

a

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
1

10

102
680 600 520 480 440 400 360

10 / , K3 –1T

T, K

R
L

i
1
F

–
1

, 
s

LiTiSe2
7Li

28 MHz

14.8 MHz

b

Рис. 5. Связанные с атомным движением компоненты скоростей спин-решеточной релаксации на ядре 7Li, измеренные на

частотах 14.8 и 28MHz в Li0.25TiSe2 (a) и LiTiSe2 (b), в зависимости от обратной температуры. Сплошными линиями показана

аппроксимация данных моделью для квазидвумерной диффузии.

Li0.25TiSe2 и LiTiSe2, соответственно, в зависимости от

обратной температуры. Значительный разброс точек на

графике может быть отнесен к определенной неустойчи-

вости двухэкспоненциального описания кривых восста-

новления. Частотно-зависимый пик RLi
1 наблюдается при

температуре 463K для Li0.25TiSe2 и 475K для LiTiSe2
на частоте 14.8MHz. Такой пик является типичным

для вкладов в скорость спин-решеточной релаксации,

обусловленных атомным движением [14]. Максимум ско-

рости спин-решеточной релаксации должен наблюдаться

при температуре, при которой частота атомных переско-

ков τ −1 становится приблизительно равной резонансной

частоте ω. Принимая во внимание поведение ширины

линии ЯМР 7Li (см. рис. 3), можно утверждать, что дан-

ный максимум RLi
1 подтверждает наше предположение о

существовании трансляционной диффузии ионов Li+ в

обоих соединениях.

Согласно стандартной теории ядерной спин-реше-

точной релаксации, обусловленной атомным движени-

ем [14], в пределе медленных движений (низкотемпе-
ратурный склон, где ωτ ≫ 1), RLi

1F должна быть про-

порциональна ω−2τ −1, а в пределе быстрых движений

(высокотемпературный склон, где ωτ ≪ 1) она про-

порциональна τ и не зависит от частоты. Однако, из

рис. 5, а и 5, b можно видеть, что частотная зависимость

сохраняется на высокотемпературном склоне, хотя и

становится слабее, чем на низкотемпературном склоне.

Такая особенность поведения может быть объяснена

в рамках низкоразмерной диффузии [21]. Хорошо из-

вестно, что скорости спин-решеточной релаксации не

зависят от резонансной частоты в пределе быстрых

движений только в случае изотропной (3D) атомной

диффузии, тогда как в случае низкоразмерной (квази-1D,
квази-2D) трансляционной диффузии частотная зависи-

мость сохраняется на высокотемпературном склоне [21].

Поскольку TiSe2 является слоистым дихалькогенидом,

и литий в обоих соединениях был внедрен между

слоями, мы можем предположить, что в данном случае

действительно наблюдается квазидвумерная диффузия

Li+. Вследствие этого, для аппроксимации данных была

использована полуэмпирическая модель, ранее представ-

ленная в работе [21]:

RLi
1F = 1Mτ ln

(

1 +
1

(ωτ )2

)

, (1)

где τ определяется из уравнения Аррениуса:

τ = τ0 exp(Ea/kBT ). (2)

Параметрами данной модели являются амплитудный

множитель 1M, энергия активации для диффузии Ea

и предэкспоненциальный множитель из соотношения

Аррениуса τ0. Данные параметры варьировались на

двух частотах одновременно для достижения наилучшей

аппроксимации экспериментальных данных. Результаты

такой аппроксимации показаны сплошными линиями на

рис. 5, а и 5, b. Как можно видеть из рис. 5, a и 5, b

экспериментальные данные описываются достаточно хо-

рошо, что подтверждает наше предположение о квази-

двумерном механизме диффузии ионов Li+ в Li0.25TiSe2
и LiTiSe2 . Соответствующие параметры аппроксимации

приведены таблице.

Подводя итог обсуждению ЯМР-измерений на ядре
7Li в Li0.25TiSe2 и LiTiSe2, мы можем заключить, что

диффузионная подвижность Li+ в обоих соединениях

связана с особенностями структуры слоистых дихаль-

когенидов. Известные исследования диффузии ионов

Li+ в соединениях LixTiSe2 [18,22,23] предсказывают,

что данный механизм должен быть подобен тому, ко-

торый реализуется в родственном классе соединений
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Параметры атомного движения, полученные с помощью модели для квазидвумерной диффузии

Соединение Ea (meV) τ0 (s) 1M (s−2)

Li0.25TiSe2 501± 28 (1.90± 0.16) · 10−14 (5.9± 0.2) · 109

LiTiSe2 509± 15 (2.20± 0.12) · 10−14 (5.2± 0.2) · 109

LixTiS2 [24,25]. Исходя из того, что ионы Li+ в Li0.25TiSe2
и LiTiSe2 занимают только одну кристаллографически

неэквивалентную позицию (1b), в которой они октаэд-

рически координированы шестью атомами Se (рис. 1),
наиболее предпочтительный диффузионный путь Li+ от

одной октаэдрической позиции к другой может вклю-

чать промежуточное заселение тетраэдрической пози-

ции (2d) [18,22]. Таким образом, элементарный акт

процесса диффузии в Li0.25TiSe2 и LiTiSe2, вероятно,

происходит по схеме 1b→ 2d→ 1b, аналогичной случаю

LixTiS2 [18,25], как показано на рис. 6.

Стоит отметить, что расстояние между двумя соседни-

ми октаэдрическими позициями (1b−1b) Li+ в ван-дер-

ваальсовской щели составляет 3.60�A, что является до-

статочно большим расстоянием для элементарного скач-

ка. Данный факт подтверждает предположение о про-

межуточном заселении тетраэдрической позиции (2d) в

процессе диффузии Li+ в Li0.25TiSe2 и LiTiSe2. Прене-

брегая любыми корреляциями атомных перескоков Li+,

коэффициент диффузии D для случая квазидвумерного

движения можно оценить, как:

D = L2τ −1/4, (3)

где L — длина элементарного скачка. Значение ча-

стоты перескоков τ −1 ионов Li+ в обоих соединени-

ях может быть получено при комнатной температуре

(297K) с помощью параметров аппроксимации, приве-

денных в таблице, и уравнения Аррениуса (2); такая

оценка дает τ −1(297K) ≈ 2.75 · 104 s−1 для Li0.25TiSe2
и τ −1(297K) ≈ 1.07 · 105 s−1 для LiTiSe2 . Если для

определения длины L использовать расстояние 1b−2d

(2.08�A), мы получаем D (297K) ≈ 2.98 · 10−11 cm2/s для

Li0.25TiSe2 и D (297K) ≈ 1.16 · 10−11 cm2/s для LiTiSe2.

Небольшая разница в значениях коэффициентов диффу-

зии может быть связана с более высокой энергией акти-

вации диффузии лития в LiTiSe2 (см. таблицу). Данные
значения могут быть использованы для оценки ионной

проводимости σ из соотношения Нернста–Эйнштейна:

σ =
nD(Ze)2

kBT
, (4)

где n — плотность носителей заряда в едини-

це объема, а Ze — электрический заряд носите-

лей. Согласно структурным данным [13], плотность

ионов Li+ составляет n = 3.44 · 1021 cm−3 в Li0.25TiSe2
и n = 1.376 · 1022 cm−3 в LiTiSe2. Используя при-

веденные выше значения, мы получаем следующие

оценки: σ (297K)= 6.39 · 10−7 S/cm для Li0.25TiSe2 и

a b

1b

2d

1b 1b

1b

2d

Рис. 6. а) Схематичное изображение перескоков Li+ в

кристаллической структуре LixTiSe2 из одной октаэдрической

позиции в другую через промежуточную тетраэдрическую

позицию (красным цветом изображены атомы Li в октаэдри-

ческой позиции, желтым — промежуточная тетраэдрическая

2d позиция Li, синим — Ti, зеленым — Se). b) Схема-

тичное изображение перескоков Li+ через промежуточную

тетраэдрическую позицию в литиевой подрешетке (красным
цветом изображены атомы Li, желтым — промежуточные

тетраэдрические 2d позиции Li).

σ (297K) = 9.96 · 10−7 S/cm для LiTiSe2. Разница зна-

чений может быть связана с меньшей концентрацией

ионов Li+ в структуре Li0.25TiSe2 [13]. Полученные в

данной работе величины можно сравнить с результа-

тами ЯМР исследований Li0.7TiSe2 [18]. В упомянутой

работе энергия активации диффузии лития состави-

ла ∼ 370meV, что существенно меньше полученных

нами величин [18]. Такая разница в энергии актива-

ции между родственными соединениями может быть

связана с тем, что концентрация интеркалированого

лития Li0.7 является наиболее энергетически выгодной

для диффузии ионов. В дополнение, можно провести

сравнение оцененных нами значений коэффициентов

диффузии D с данными для родственного соединения

LiTiS2. Коэффициент диффузии Li+ в монокристалле

LiTiS2 был определен потенциостатическим методом и

составил D (LiTiS2) ∼ 1.0 · 10−8 cm2/s при комнатной

температуре [5]. Данное значение на три порядка вели-

чины больше, чем определенные нами для Li0.25TiSe2 и

LiTiSe2. Из этого следует, что диффузия лития в соеди-

нениях LixTiSe2 происходит значительно медленнее, чем

в соединениях LixTiS2 [18,26], что, по всей видимости,

связано с более высоким активационным барьером для

диффузии лития [18].
Для энергии активации диффузии серебра Ea в

AgxTiS2 в работе [27] была предложена формула, кото-

рую можно использовать для описания диффузии во всех
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интеркалатных соединениях, где интеркалант занимает

октаэдрическую позицию в ван-дер-ваальсовой щели:

Ea = 1H0 −
J

α + x
(5)

Здесь 1H0 — разность энтальпии связи иона интер-

каланта в октаэдрически (основной) и тетраэдрически

(возбужденной) координированных халькогеном пози-

циях; второй член правой части описывает упругое

взаимодействие в виде, предложенном в [28]. Согласно
этому представлению, межслоевая химическая связь

моделируется пружиной с жесткостью k и длиной c0,

которые изменяются при интеркалации до величин K

и cL, соответственно. Тогда результирующая энергия в

расчете на ион будет:

E

N
= J

x

α + x
. где J =

K

2
(cL − c0)

2, α =
K

k
, (6)

x — безразмерная концентрация. Поскольку все величи-

ны в формуле (6) положительны, то упругие искажения,

вносимые интеркалированным ионом, понижают энер-

гию активации, определяемую формулой (5). Следова-
тельно, снижение упругих искажений должно приводить

к возрастанию энергии активации диффузии. Как пока-

зано в [29], возрастание межслоевого расстояния при

постоянном ионном радиусе снижает упругие искаже-

ния. Таким образом, увеличение параметра решетки c0

в TiSe2 по сравнению с этим параметром в TiS2 должно

приводить к росту энергии активации диффузии лития в

TiSe2. Используя разность энергий активации диффузии

лития в TiS2 и TiSe2, можно оценить вклады 1H0 и

упругости в общую величину Ea . Жесткость межсло-

евой связи можно оценить из величины сжимаемости

в направлении нормали к базисной плоскости. Для

TiS2 сжимаемость ηc = 1.46 · 10−11 Pa−1 [30], а для TiSe2
ηc = 1.53 · 10−11 Pa−1 [31]. Как видим, жесткость почти

одинакова, разница составляет не более 5%. Величина J

для TiS2 оценивалась как ∼ 0.1 eV [28], тогда как для

TiSe2 оценка дает J = 0.435 eV [27]. Таким образом,

если бы энергия активации изменялась бы только из-

за упругого вклада, то разница в значениях Ea для TiS2
и TiSe2 составляла бы не менее 0.3 eV. Реально же Ea

для TiS2 оценивается от 0.4 eV [32] до 0.45 eV [33], и раз-

ность Ea(TiSe2) − Ea(TiS2) составляет 0.06−0.1 eV. Это

означает, что основное изменение энергии активации

обусловлено различием 1H0, отражающим разницу в

величине ковалентного вклада в энтальпию связи иона

с решеткой-xозяином в октаэдрически и тетраэдрически

координированных халькогеном позициях. Видно, что

эта разность значительно меньше в случае TiSe2 и может

быть оценена как 0.6−0.66 eV [27] против 0.88 eV в TiS2.

Очевидно, что это обусловлено большей поляризуемо-

стью селена по сравнению с серой, обеспечивающей

более эффективное взаимодействие подвижного лития с

подрешеткой халькогена в случае TiSe2.

4. Заключение

Анализ температурных и частотных зависимостей

скоростей спин-решеточной релаксации 7Li в интер-

калированых литием диселенидах титана Li0.25TiSe2 и

LiTiSe2 выявил диффузионное движение ионов Li+ в

данных соединениях. В температурном диапазоне вы-

ше 370K основной вклад в скорость спин-решеточной

релаксации вносит трансляционная диффузия Li+ . Экс-

периментальные данные по релаксации в обоих со-

единениях демонстрируют поведение, характерное для

процесса низкоразмерной (квазидвумерной) диффузии.

Это может быть связано со структурными особенно-

стями диселенидов лития LixTiSe2, которые состоят из

слоев Se−Ti−Se с ионами Li+, внедренными в ван-

дер-ваальсовские пустоты между слоями. Максимум

скорости спин-решеточной релаксации 7Li наблюдает-

ся на частоте 14.8MHz при 463K для Li0.25TiSe2 и

475K для LiTiSe2 . Экспериментальные данные для обоих

соединений удовлетворительно описываются в рамках

полуэмпирической модели для квазидвумерной трансля-

ционной диффузии с энергией активации 501 meV для

Li0.25TiSe2 и 509meV для LiTiSe2. Наши оценки коэф-

фициента диффузии лития при комнатной температуре

показали значения D = 2.98 · 10−11 cm2/s для Li0.25TiSe2
и D = 1.16 · 10−11 cm2/s для LiTiSe2, что существенно

меньше, чем было получено для родственного соедине-

ния LiTiS2 [26].
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