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Устойчивость плоских щелей в многослойном кристалле графита
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С использованием двухмерной крупнозернистой цепной модели проведено моделирование плоских щелей

в многослойных кристаллах графита. Показано, что при покрытии многослойным графеном линейной

полости на плоской поверхности кристалла графита открытая (незаполненная щель) может образовываться

только при ширине полости, не превышающей предельного значения Lo (при ширине L > Lo образуется

только закрытое состояние щели, с пространством полости, заполненным покрывающим графеном).
Предельное значение ширины открытой щели Lo монотонно увеличивается с ростом количества листов

графена K в покрывающем слое. Для однослойной полости существует конечное предельное значение

ее ширины Lo < 3 nm, а для двух- и трехслойных полостей максимальная ширина открытой щели с

увеличением K бесконечно растет как степенная функция Kα с показателем 0 < α < 1. Внутри кристалла

двух- и трехслойные щели при любой ширине могут иметь устойчивые открытые состояния. Для

щели с шириной L > 7.6 nm также возможно стационарное закрытое состояние, в котором ее нижняя

и верхняя поверхности примыкают друг к другу. Моделирование тепловых колебаний показало, что

открытые состояния двухслойных щелей ширины L < 15 nm всегда устойчивы к тепловым колебаниям, а

более широкие щели при T > 400K переходят из открытого состояния в закрытое. Открытые состояния

трехслойных щелей всегда устойчивы к тепловым колебаниям.
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1. Введение

Поры и капилляры наноразмеров активно изучают-

ся из-за их важности для понимания многих природ-

ных явлений и их возможного использования. Так по

ним может происходить перенос жидкости, обладающей

новыми свойствами, невозможными в более крупных

масштабах [1]. Нанопоры используются для изучения

биофизики и химии отдельных молекул [2]. Для со-

здания гладких капилляров с точно контролируемыми

размерами был предложен метод их сборки на основе

взаимодействия Ван-дер-Ваальса [3] из двух атомарно

плоских листов, разделенных прокладками из двумерных

кристаллов [4]. В качестве двумерных материалов были

использованы однослойные и многослойные графены с

точно контролируемым количеством слоев [5]. Такая

сборка позволяет создавать структуры, которые можно

рассматривать как плоские пустые щели высотой в

несколько атомов в кристалле графита [6]. Такие щели

были использованы для изучения переноса воды по

каналам с высотой от одного [7] до нескольких десятков

атомных слоев [5,8]. На основе таких каналов предложен

программируемый наножидкостный переключатель [9].
Внутренние полости также могут быть использованы

в качестве нанодатчиков давления [10–13]. Плоские ще-

ли в слоистых структурах могут служить эффективными

оптическими волноводами [14]. Другие варианты исполь-

зования двумерных щелей приведены в обзоре [15].
При создании нанощелей в графене и других сло-

истых материалах возникает проблема устойчивости

полученных пор к воздействию внешней среды. Так,

например, в одной из первых работ наноканалы высотой

в один слой атомов углерода не были стабильными и

схлопывались в эксперименте [5]. Фактически, удалось

получить только наноканалы высотой в два, три или

большее число слоев. Как было показано в более

поздней работе, невозможность получения наноканалов

высотой в один слой была связана с недостаточно

аккуратной обработкой краев нанокристалла графита,

которая вызывала закрытие канала [7]. В работе [9] была
предложена феноменологическая модель для описания

устойчивости нанощелей. В этой модели устойчивость

пор определяется балансом Ван-дер-Ваальсовых взаимо-

действий верхней и нижней поверхности поры, энер-

гией деформации поры при ее схлопывании, а также

капиллярным давлением, вызванным наноконденсацией

растворителя внутри канала. Хотя данная модель позво-

ляет получить результаты, которые достаточно хорошо

согласуются с экспериментом, в ней уделяется мало

внимания случаю небольшого числа слоев в верхней

2173



2174 А.В. Савин, А.П. Клинов

части поры (применяется континуальное приближение),
а также не учитывается влияние скольжения слоев и

тепловых флуктуаций. В данной работе благодаря ис-

пользованию крупнозернистой и полноатомной модели

поры графена будет более подробно учтено влияние

этих факторов на устойчивость нанопор.

Графеновые листы (наноленты) могут легко изги-

баться и скользить друг по другу, что позволяет им

заполнять неровности подложки [16]. Такая высокая

подвижность листов не позволяет образовываться боль-

шим плоским полостям (щелям) с высотой в несколько

слоев, так как из-за смещения и изгиба верхний и

нижний слои полости могут сблизиться, заполнив ее

пространство [17]. В данной работе с помощью дву-

мерной крупнозернистой цепной модели многослойного

кристалла будут определены максимально возможные

размеры полости. Будет показано, что допустимые раз-

меры зависят от количества листов графена, образую-

щих поверхность полости.

В разделе 2 описывается двухмерная крупнозернистая

цепная модель многослойного кристалла графита в виде

системы параллельных линейных цепочек. В разделе 3

с помощью этой модели находятся стационарные со-

стояния плоских щелей, образующихся при покрытии

полости на плоской поверхности кристалла многослой-

ным графеном. В разделе 4 моделируются плоские щели

внутри кристалла графита, а в разделе 5 анализируется

их устойчивость к тепловым колебаниям. В разделе 6

для проверки полученных результатов проводится моде-

лирование с использованием полноатомных 3D моделей.

Основные выводы представлены в заключении.

2. Цепная модель многослойного
графена

Лист графена является упруго изотропным материа-

лом, его продольная и изгибная жесткости слабо зави-

сят от его хиральности. Поэтому для определенности

рассмотрим деформации листа в направлении зигзаг;

см. рис. 1, a.

Пусть в основном состоянии лист лежит в плоско-

сти xy трехмерного пространства. В направлении оси x

(в направлении зигзаг) лист является периодической

структурой с шагом ax = rc cos(π/6), где rc =1.418�A—

равновесная длина валентной связи C−C. Трансляци-

онные ячейки этой структуры образуют атомы, рас-

положенные вдоль линий, параллельных оси y . Если

рассмотреть движения листа графена, при которых ато-

мы, расположенные на одной вертикальной линии, син-

хронно смещаются, то динамику листа можно описать

как смещения узлов линейной цепи атомов в плоско-

сти xz ; см. рис. 1, b. Здесь каждый узел цепи описывает

смещения всех атомов листа, расположенных на одной

вертикальной линии (всех атомов, имеющих одинаковые

координаты x , z ). Такая двухмерная цепная модель впер-

вые была использована для моделирования динамики

a

b

y

n

x

M

Mc

c

Mc
un

2ax

C

n

Рис. 1. Схема построения модели двухмерной цепи для (a)
плоского листа графена, лежащего в плоскости xy (un — век-

тор координат n-го атома углерода). Модель цепи (b) c шагом

a = ax и (c) a = 2ax (n — номер звена цепи, Mc — масса

атома углерода, M = 2Mc — масса объединенного атома).

рулонов углеродных нанолент [18,19] и складок у листа

графена, лежащего на плоской подложке [20].

Гамильтониан такой цепи имеет вид

H =
∑

n

[

1/2Mc(u̇n, u̇n) + V (rn) + U(θn)
]

, (1)

где индекс n задает номер узла цепи, Mc = 12mp —

масса узла цепи (масса атома углерода), un = (xn, z n) —
вектор, задающий положение n-го узла, rn = |vn| —

расстояние между соседними узлами n и n + 1 (вектор
vn = un+1 − un), θn — угол между соседними звеньями

цепи (угол меду векторами vn и −vn−1).

Продольная жесткость цепи описывается гармониче-

ским потенциалом

V (r) = 1/2Kr (r − a)2, (2)

где a = ax = 1.228�A — шаг цепи, Kr = 405N/m —

жесткость межузельного взаимодействия. Изгибная

жесткость цепи описывается потенциалом

U(θ) = εθ[cos(θ) + 1], (3)

где косинус n-го угла cos(θn) = −(vn−1, vn)/rn−1rn,

энергия εθ = 3.5 eV. При этих значениях K и εθ дис-

персионные кривые цепи наиболее точно совпадают

с дисперсионными кривыми продольных и изгибных

колебаний плоской наноленты графена [18].
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Рис. 2. Цепная модель многослойного графена, k — номер

цепи (слоя листа), n — номер узла цепи (вектор un,k задает

координаты узла n, k), M — масса узла. Потенциал V (r) опи-

сывает продольную жесткость, а U(θ) — изгибную жесткость

цепи. Серые круги показывают Ван-дер-Ваальсовы радиусы

узлов цепей.

В цепной модели многослойному графену соответ-

ствует система параллельных цепочек (рис. 2), имеющих

гамильтониан

H =

K
∑

k=1

N
∑

n=1

1/2Mc(u̇n,k , u̇n,k) + E1 + E2, (4)

где индекс k задает номер цепи, а n — номер узла.

Вектор un,k = (xn,k , z n,k) задает координаты n-го узла

k-ой цепи (K — число цепочек, N — число звеньев

в цепи).

Первый член в гамильтониане (4) задает кинети-

ческую энергию молекулярной системы, второй член

описывает потенциальную энергию цепочек

E1 =

K
∑

k=1

N
∑

n=1

[

V (rn,k) + U(θn,k )
]

, (5)

где расстояние между соседними звеньями цепи

rn,k = |vn,k | (вектор vn,k = un+1,k − un,k), косинус валент-
ного угла cos θn,k = −(vn−1,k , vn,k)/rn−1,k rn,k .

Третий член

E2 =

K−1
∑

k1=1

K
∑

k2=k1+1

N
∑

n1=1

N
∑

n2=1

W (rn1,k1 ;n2,k2
), (6)

описывает слабые невалентные (Ван-дер-Ваальсовы)
межцепные взаимодействия, rn1,k1 ;n2,k2

=|un2,k2
−un1,k1

| —

расстояние между узлами цепей (n1, k1) и (n2, k2). Энер-
гия взаимодействия может быть с высокой точностью

описана потенциалом Леннард−Джонса (5,11)

W (r) = ε0[5(r0/r)11 − 11(r0/r)5]/6, (7)

с равновесной длиной связи r0 = 3.61�A, энергией взаи-

модействия ε0 = 0.0083 eV [20].
Однородное состояние многослойного графена

(рис. 2) задается координатами

{u0
n,k = (x0

n,k , z 0
n,k)}

N,K
n=1,k=1,

где x0
n,k = na для нечетных k и x0

n,k = (n + 1/2)a для

четных k , z 0
n,k = kh0, h0 = 3.352�A — расстояние между

соседними цепями (слоями). Для моделирования бес-

конечного графена удобно использовать периодические

граничные условия, а для графена конечного размера —

условия свободных краев.

Для нахождения основного состояния нужно решить

задачу на минимум потенциальной энергии молекуляр-

ной системы

E = E1 + E2 → min : {un,k}
N,K
n=1,k=1. (8)

Задача на минимум (8) решалась численно методом

сопряженных градиентов [21,22]. Для системы цепей,

соответствующей кристаллическому графиту, расстоя-

ние между соседними цепями (слоями) h0 = 3.352�A, а

энергия взаимодействия одного узла цепи с соседней

цепью E0 = −52meV. Здесь для сдвига цепи на один

период нужно для каждого узла преодолеть энергети-

ческий барьер 1E = 0.1meV. Для сравнения энергия

адгезии и пиннинга на один атом, рассчитанные в

приближении теории функционала плотности (ТФП), со-
ставляют E0 = 49meV, 1E = 6meV, соответственно [23].
Таким образом, двухмерная цепная модель достаточ-

но точно описывает энергию взаимодействия листов

графита, но в силу очень низкой энергии пиннинга

1E позволяет цепям практически свободно скользить

относительно друг друга. В трехмерных моделях при

описании энергии взаимодействия атомов соседних сло-

ев графена потенциалом Леннард−Джонса (6,12) [24]
также получаются заниженные оценки энергии пиннинга

на один атом 1E = 0.43meV. Точное согласие с данными

из ТФП можно получить в моделях с потенциалом

Колмогорова−Креспи для межслоевых взаимодействий

атомов [23,25,26]. Этот потенциал учитывает зависи-

мость энергии взаимодействия от взаимной ориентации

нормалей к листу графена, что позволяет более точно

описать энергетические поверхности скольжения.

В цепной модели увеличить энергию пиннинга можно

за счет увеличения шага цепи a (за счет использо-

вания более крупнозернистой цепи). Введем параметр

дискретности d = a/ax . Для того, чтобы при увеличении

в d раз шага цепи сохранилась ее линейная плотность,

продольная и изгибная жесткость, нужно массу звена

цепи увеличить в d раз, а параметры K и εθ — в d раз

Физика твердого тела, 2025, том 67, вып. 11
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Таблица 1. Изменения параметров цепной модели при увели-

чении шага цепи в d раз (1E — энергия пиннинга)

d a M K0 (N/m) εθ (eV) ε0 (eV) r0 (�A) 1E (meV)

1 ax Mc 405.0 3.500 0.0083 3.610 0.1

2 2ax 2Mc 202.5 1.750 0.0316 3.673 4.3

2.129 dax dMc 190.2 1.644 0.0352 3.694 6.0

уменьшить. Параметры потенциала (7) нужно изменить

так, чтобы в основном состоянии сохранились расстоя-

ние между соседними цепями h0 и энергия их взаимодей-

ствия E0, приходящаяся на длину цепи ax . Конкретные

значения измененных параметров приведены в табл. 1.

Конечно, при увеличении дискретности цепи мы теряем

полное соответствие положения ее узлов атомам листа

графена, но в континуальном приближении деформации

цепи будут продолжать соответствовать деформациям

листа.

3. Критическая ширина щели
в зависимости от толщины
верхнего слоя

Для моделирования подложки с линейной полостью

рассмотрим систему из Ks = 50 цепей с периодически-

ми граничными условиями по оси x (число звеньев

в каждой цепи Ns = 200, 400). Для создания полости

из Kg верхних цепей удалим в ее центре Ng звеньев;

см. рис. 3. Число цепей Kg = 1, 2, 3 определяет глубину

полости Lz = Kgh0, а число звеньев Ng — ее ши-

рину Lx = (Ng + 1)a . Затем покроем подложку сверху

системой из K параллельных цепочек (число звеньев

N = 160, 320). Эти цепочки будут моделировать K-

слойный графен, покрывающий полость в подложке, для

них будем использовать условия свободных краев. Таким

образом, системой из Ka = Ks + K цепей, состоящей

из Na = Ks Ns−KgNg + KN звеньев, мы промоделируем

линейную полость (щель) размера Lx × Lz в плоской

поверхности кристалла графита, покрытую сверху ко-

нечным многослойным графеном.

Для нахождения стационарного состояния данной

молекулярной системы нужно численно решить зада-

чу на минимум ее потенциальной энергии (8). Для

фиксации положения щели зафиксируем x -координаты

у первых внешних звеньев цепей, образующих щель.

Решение задачи (8) показало, что для Kg = 1, 2, 3 всегда

существует конечная максимально возможная ширина

полости Lo = aNg , при которой покрытие многослойным

графеном не будет приводить к заполнению верхним

слоем пространства щели (щель остается в стационар-

ном открытом состоянии, в котором покрывающий гра-

фен не касается ее дна); см. рис. 3, a, c, e. При большей

ширине (при Lx > Lo) пространство щели будет всегда

a

b

c

d

e

f

Рис. 3. Стационарное состояние двухслойной щели (Kg = 2)
ширины Lx = (Ng + 1)a , покрытой K-слойным графеном,

при (a) Ng = 15, K = 1; (b) Ng = 16, K = 1, (c) Ng = 22,

K = 3, (d) Ng = 23, K = 3, (e) Ng = 29, K = 6, (f ) Ng = 30,

K = 6. Красным цветом показана верхняя часть графена, зеле-

ным цветом — листы подложки, участвующие в образовании

щели, синим цветом — остальные слои подложки. Использо-

вана цепная модель с параметром дискретизации d = 2 (шаг
цепи a = 2ax = 2.456�A). Показаны только 8 верхних слоев

подложки из Ks = 50 слоев (число узлов в цепи Ns = 200,

N = 180).

заполняться верхним слоем (покрытие полости приво-

дит к переходу образующейся щели в стационарное

закрытое состояние); см. рис. 3, b, d, f. Здесь возможно

только стационарное состояние, в котором верхний слой

примыкает к дну щели.

Отметим, что такое закрытое состояние возможно

только для щелей с шириной Lx ≥ Lc . Для узких щелей

с Lx < Lc существует только стационарное открытое

состояние, а при Lx ∈ (Lc , Lo) существуют два устойчи-

вых стационарных состояния с пустым и заполненным

пространством щели. Здесь щель (покрытая полость)
является бистабильной системой. Для широких щелей

с Lx > Lo существует только стационарное состояние

с заполненным пространством щели. Зависимость пре-

дельных значений ширины щели Lc и Lo от количества

листов графена K в покрывающем слое дана в табл. 2.

Как видно из таблицы, для двухслойной цепи эти значе-

ния монотонно растут с увеличением числа слоев K.

Таблица 2. Зависимость предельных значений ширины щели

Lc, Lo от количества листов графена K в покрывающем слое

для двухслойной щели (Kg = 2, d = 2)

K 1 2 3 4 6 8 10 14 20 30

Lc (nm) 3.17 3.42 3.67 3.91 4.16 4.41 4.66 5.15 5.40 5.64

Lo (nm) 3.93 4.67 5.65 6.39 7.37 8.35 9.34 10.56 12.28 14.00

Физика твердого тела, 2025, том 67, вып. 11



Устойчивость плоских щелей в многослойном кристалле графита 2177

1

1 10

K

a

10

L
, 
n
m

o

1 10

K

b

12

11

10

3

2

1

0.22K

0.17K

0.52K

0.4K

15

14

13

7

5

6

9

8

4

Рис. 4. Зависимость максимальной ширины открытого состояния щели Lo от количества листов графена K в покрывающем

слое. В рамках различных моделей эти зависимости были рассчитаны для щели высотой в один, два и три слоя. На панели (a)
сравниваются результаты исходной двухмерной модели (параметр дискретизации d = 1, кривые 1,2,3) с полноатомной LJ-моделью

(кривые 10,11,12). На панели (b) приведены значения максимальной ширины в двухмерной модели при d = 2 (кривые 4,5,6),
при d = 2.129 (кривые 7,8,9), а также в рамках трехмерной KC-модели (кривые 13,14,15). Кривые 1,4,7,10,13 дают зависимость

для однослойной щели (Kg = 1), кривые 2,5,8,11,14 — для двухслойной щели (Kg = 2), а 3,6,9,12,15 — для трехслойной щели

(Kg = 3). Использованы логарифмические оси, пунктирные прямые показывают степенные зависимости Kα .

На рис. 4 показана зависимость максимальной ши-

рины Lo от количества листов графена K в по-

крывающем слое. Как видно из рисунка, для одно-

слойной щели (Kg = 1) существует ограничение на

размер незаполненной (открытой) щели. Независимо

от числа слоев K максимальная ширина открытой

щели Lo ≤ 2.16 nm при использовании цепной моде-

ли с дискретностью d = 1, Lo ≤ 2.70 nm при d = 2

и Lo ≤ 2.88 nm при d = 2.129. Для двух- и трехслой-

ных щелей (Kg = 2, 3) максимальная ширина открытой

щели монотонно растет как степенная функция числа

слоев K:

Lo ∼ Kα, при K → ∞.

Для двухслойной щели показатель α = 0.17, 0.4, а

для трехслойной — α = 0.22, 0.52 (значения получе-

ны при использовании модели с дискретностью це-

пи d = 1 и d = 2, 2.129). Таким образом, увеличение

параметра дискретизации d приводит к увеличению

максимальной ширины щели Lo. На эту ширину вли-

яет способность верхнего слоя заполнять собой щель,

которая связана с возможностью продольного движе-

ния краев этого слоя. При увеличении d эта воз-

можность уменьшается, так как увеличивается энергия

пиннинга.

Отметим, что предельное значение ширины ще-

ли Lo не зависит от длины покрывающей цепочки

L = (N − 1)a , если N ≫ Ng . Так при Kg = 2, K = 1, зна-

чение Lo = 3.93 nm (Ng = 15) получается при N = 90,

180, 360, а при N = 45 ширина Lo = 3.68 nm (Ng = 14),
при N = 25 ширина Lo = 3.44 nm (Ng = 13).
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Полученные зависимости Lo(K) позволяют заключить,
что внутри кристалла графита (многослойного графена)
однослойные незаполненные линейные полости (пустые
щели) могут иметь ширину не более 3 nm, а ширина

устойчивых открытых двухслойных и трехслойных по-

лостей практически не ограничена. Заметим, что если

полость в подложке перед ее покрытием была предва-

рительно чем-то заполнена, например, водой, то размер

такой полости неограничен. Здесь молекулы, заполняю-

щие полость, будут препятствовать ее схлопыванию.

4. Щели внутри многослойного
кристалла

Для моделирования щелей внутри многослойного

кристалла рассмотрим систему из K = 100 цепочек

из N = 200 звеньев с периодическими граничными усло-

виями по обеим осям. Для определенности ограничим-

ся далее использованием цепной модели с дискретно-

стью d = 2.

Удалим у Kg = 1, 2 соседних цепочек Ng зве-

ньев, создав тем самым в кристалле щель размера

Lx = (Ng + 1)a × Lz = Kgh0. Для нахождения стационар-

ного состояния щели решим задачу на минимум энергии

системы (8). Численное решение задачи показало, что

однослойная щель в кристалле может находиться в

незаполненном состоянии только при Ng ≤ 11; см. рис. 5.

Таким образом, ширина открытой однослойной щели

всегда меньше 2.95 nm, что совпадает с оценкой, полу-

ченной в предыдущем разделе.

Решение задачи (8) показало, что открытое состояние

двухслойной щели является устойчивым при любой

длине (здесь предельное значение Lo = ∞). При Ng ≥ 30

(при Lx ≥ Lc = 31a = 7.61 nm) существует также за-

крытое стационарное состояние щели, в котором ее

верхняя и нижняя поверхности примыкают друг к другу;

см. рис. 6. Зависимость разницы энергий этих стаци-

онарных состояний щели 1E = Ec − Eo от ее ширины

Lx = (Ng + 1)a показана на рис. 7. Разница энергии

практически линейно растет с увеличением ширины

щели. При Lx < L1 = 12.77 nm открытое состояние щели

более выгодно по энергии (Eo < Ec), а при Lx > L1

основным уже будет закрытое состояние (Eo > Ec).

5. Влияние тепловых колебаний

Для проверки устойчивости стационарных состояний

щели проведем молекулярно-динамическое моделирова-

ние при температуре T ≤ 930K. Для моделирования

тепловых колебаний многослойной структуры нужно

численно проинтегрировать систему уравнений Ланже-

вена

Mün,k = −
∂H

∂un,k

− ŴMu̇n,k − 4n,k , (9)

где индекс k = 1, . . . , K задает номер цепи, индекс

n = 1, . . . , N — номер звена цепи. Здесь M = 2Mc —

a b

c d

Рис. 5. Вид стационарного состояния однослойной щели в

многослойном кристалле c шириной Lx = aNg при Ng = 10,

11, 12, 13 (a, b, c, d). Шаг цепи a = 2ax (дискретность це-

пи d = 2).

a

b

Рис. 6. Вид стационарного состояния двухслойной (a) откры-

той и (b) закрытой щели в многослойном кристалле c шириной

Lx = 24.8 nm (Ng = 100, шаг цепи a = 2ax ).

масса звена цепи, Ŵ = 1/tr — коэффициент трения

(время релаксации термостата tr = 10 ps),

4n,k = (ξn,k,1, ξn,k,2)

двухмерный вектор нормально распределенных случай-

ных сил с функциями корреляции

〈ξn1,k1,i (t1)ξn2,k2, j(t2)〉 = 2MkBTŴδk1k2
δn1n2δi jδ(t2 − t1)

(kB — постоянная Больцмана, T — температура термо-

стата).
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Рис. 7. Зависимость разницы энергий 1E = Eo − Ec открытого

и закрытого стационарного состояния двухслойной щели в

многослойном кристалле от ее ширины Lx .
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Рис. 8. Зависимость среднего расстояния между соседними

цепями h от температуры T . Маркеры дают значения полу-

ченные численно, сплошная линия соответствует зависимо-

сти (10).

При моделировании мы будем использовать периоди-

ческие граничные условия с фиксированным размером

ячейки. Поэтому для корректного моделирования необ-

ходимо при задании начальных размеров ячейки учесть

тепловое расширение системы вдоль оси z при нагреве

(сжатием вдоль оси x можно пренебречь). Чтобы изу-

чить изменение расстояния между соседними слоями

графена h(T ), рассмотрим вначале систему из K = 80

цепей из N = 200 звеньев. Возьмем по оси x (по индек-

су n) периодические граничные условия с периодом Na ,

а по оси z (по индексу k) — условие свободных кра-

ев. В качестве начального условия системы уравнений

движений (9) возьмем стационарное состояние системы

из K параллельных цепей

{un,k(0) = u0
n,k , u̇n,k(0) = 0}N,K

n=1,k=1.

Численно проинтегрируем систему уравнений движе-

ния (9) методом Верле [27] с шагом интегрирования

1t = 1 fs. После наступления равновесия с термостатом

проинтегрируем систему в течение времени t = 10 ns и

найдем среднее значение расстояния между соседними

центральными цепочками h.

Численное моделирование показало, что тепловые

колебания приводят к увеличению расстояния между со-

седними цепочками, с высокой точностью описываемое

формулой

h(T ) = h0 + α1T + α2T 2, (10)

где h0 = 3.3576�A, α1 = 3.0 · 10−4
�

A/K, α2 =
= 7.3 · 10−8

�

A/K2; см. рис. 8.

Для моделирования влияния тепловых колебаний на

форму щели возьмем систему из K = 100 параллель-

ных цепочек, расположенных на расстоянии h(T ) друг

от друга. Возьмем цепочки с числом звеньев N = 200,

400, 800. По оси x используем периодические граничные

условия с периодом Na , а по оси z (по индексу k) —

периодические граничные условия с периодом Kh(T ).
В силу неустойчивости однослойных щелей ширины

L > 3 nm больший интерес представляет щели с высотой

более одного слоя, который мы рассмотрим далее.

Для создания двухслойной щели ширины

L = (Ng + 1)a удалим у двух соседних цепей Ng узлов.

Численное интегрирование системы уравнений движе-

ния (9) показало, что щель с шириной L < Lo = 15 nm

(Ng < 60) всегда остается в открытом состоянии при

любых значениях температуры. Более широкие щели

при высоких температурах будут переходить в закрытое

состояние. Так при Ng = 50 плоская щель оставалась

открытой при T ≤ 930K в течение всего времени чис-

ленного интегрирования t = 5 ns. При Ng = 60 щель

остается открытой при T ≤ 600K (при более высоких

температурах щель периодически переходит из откры-

a

b

c

Рис. 9. Состояние двухслойной щели (Kg = 2, Ng = 100)
в многослойном кристалле при температуре (a) T = 300,

(b) 510 и (c) 540K. Показана конфигурация многослойной

системы в окрестности щели в момент времени t = 5 ns.
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того состояния в закрытое и обратно). При Ng = 70,

80, 100 и 200 (L = 17.4, 19.9, 24.8 и 49.4 nm) щель

остается открытой при температуре T ≤ Tc = 510, 630,

510 и 420K, соответственно. Здесь при T > Tc щель

переходит в закрытое состояние и далее остается в нем;

см. рис. 9.

Трехслойная щель (Kg = 3) всегда устойчива к тепло-

вым колебаниям. Так при любой температуре T ≤ 930K

она всегда остается в открытом состоянии.

6. Полноатомное моделирование

Предсказания двумерной модели графена естественно

сравнить с более полной трехмерной атомной моде-

лью, в которой отдельная частица соответствует атому

углерода, а не полосе атомов шириной dax . Будем

считать, что к атомам углерода на свободных краях

листа графена присоединены атомы водорода. Группу

этих атомов CH будем рассматривать как один (объеди-
ненный) атом массы 13mp .

Потенциальная энергия многослойного графена, со-

стоящего из K нанолент, находящегося на плоской

подложке, имеет вид:

E =

K
∑

k=1

N
∑

n=1

[En,k + P(z n,k)]

+
K−1
∑

k1=1

K
∑

k2=k1+1

N
∑

n1=1

N
∑

n2=1

W (rn1,k1;n2,k2
), (11)

где вектор un,k = (xn,k , yn,k , z n,k) задает координаты

n-го атома углерода k-ой наноленты, N — число атомов

в каждом слое.

Первое слагаемое суммы (11) En,k задает энергию

взаимодействия n-го атома k-ой наноленты с сосед-

ними атомами наноленты (учитываются деформации

валентных связей, валентных и торсионных углов [28]).
Потенциал

P(z ) = e0[β(hz/z )α − α(hz /z )β ]/(α − β), (12)

описывает энергию взаимодействия атома наноленты

с плоской подложкой z ≤ 0, образованной поверх-

ностью кристалла графита, энергия взаимодействия

e0 = 0.0518 eV, равновесное расстояние до плоскости

подложки hz = 3.37�A, степени α = 10, β = 3.75 [29].
Последнее слагаемое в формуле (11) описывает энер-

гию невалентного взаимодействия атомов разных слоев,

rn1,k1 ; n2,k2
= |un2,k2

−un1,k1
| — расстояние между атомами

n1, k1 и n2, k2, потенциал

W (r) = εw{[(rw/r)6 − 1]2 − 1}, (13)

где εw = 0.002757 eV, rw = 3.807�A [24].
Как обсуждалось в разделе 2, описанная выше модель

с парными леннард-джонсовскими взаимодействиями

атомов (LJ-модель) дает заниженную энергию пиннинга.

a

b

c

d

Рис. 10. Стационарное состояние двухслойной щели (Kg = 2),
покрытой двухслойным графеном при ширине L = 2.70 nm

(Ng = 21): (a) открытое и (b) закрытое состояние; при ширине

L = 4.30 nm (Ng = 34): (c) открытое и (d) закрытое состояние.

Красным цветом показаны верхние листы графена, зеленым

цветом — листы подложки, участвующие в образовании щели.

Использована LJ модель.

a

b

c

d

Рис. 11. Стационарное состояние трехслойной щели (Kg = 3),
покрытой трехслойным графеном при ширине L = 3.44 nm

(Ng = 27): (a) открытое и (b) закрытое состояние; при ширине

L = 8.72 nm (Ng = 70): (c) открытое и (d) закрытое состояние.

Красным цветом показаны верхние листы графена, зеленым

цветом — листы подложки, участвующие в образовании щели.

Использована LJ модель.

Поэтому рассмотрим также силовое поле (KC-модель),
в котором энергия пиннинга листов графена согласу-

ется с результатами, полученными методом ТФП [23].
В этом силовом поле взаимодействие близких атомов

определяется потенциалом REBO [30], а невалентные

взаимодействия атомов из различных слоев — потенци-

алом Колмогорова−Креспи [25]. Потенциальная энергия

системы была дополнена слагаемым, отвечающим за

взаимодействие с подложкой (12). Расчеты методом

минимизации энергии для этой модели проводились

в пакете LAMMPS [31].
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Возьмем в качестве подложки многослойный гра-

фен из Ks = 5 нанолент, в которых направление

”
зигзаг“ совпадает с осью x , а направление

”
крес-

ло“ — c осью y . Рассмотрим наноленты размера

Lx = 2Nx ax × Ly = 3Ny rc , где Nx = 200, Ny = 5. Каждая

нанолента будет состоять из Ns = 4Nx Ny = 4000 атомов

углерода. При моделировании подложки будем исполь-

зовать периодические граничные условия с периодами

по осям x и y : 2Nx ax = 49.12 nm и 3Ny rc = 2.127 nm.

Для создания щели из Kg = 1, 2, 3 верхних нано-

лент удалим в их центре Ng × 4Ny атомов, создав тем

самым поперечную полость ширины L = (Ng + 1)ax ;

см. рис. 10 и 11. Затем покроем подложку с полостью K

нанолентами той же ширины Ly , но меньшей длины

(2N − 1)ax с числом поперечных ячеек N = 160. Здесь

будем использовать по оси x условия свободных краев,

а по оси y — периодические граничные условия. Данная

трехмерная молекулярная структура будет полностью

соответствовать двухмерной многослойной структуре,

рассмотренной в части 3.

Для нахождения стационарного состояния щели, по-

крытой многослойным графеном, нужно численно ре-

шить задачу на минимум потенциальной энергии

E → min : {un,k}
Nk ,Ka

n=1,k=1, (14)

где общее число слоев Ka = Ks + K, Nk — число атомов

в k-том слое (наноленте).

Численное решение задачи (14) показало, что для чис-

ла слоев, участвующих в образовании щели Kg = 1, 2, 3,

всегда существует максимально возможная ширина ще-

ли Lo, при которой существует устойчивое стационарное

состояние с открытой щелью (в этом состоянии верхний

слой не касается дна щели); см. рис. 10, a,c и 11, a,c. При

большей ширине возможно только закрытое стационар-

ное состояние щели, в котором верхний слой вплотную

примыкает к дну щели — см. рис. 10, b,d и 11, b,d.

Закрытое стационарное состояние существует только

для щелей с шириной L > Lc , где предельное значение

щели Lc < Lo. Таким образом, для ширины L < Lc суще-

ствует только открытое стационарное состояние щели,

при L ∈ (Lc , Lo) одновременно существуют два стацио-

нарных состояния (открытое и закрытое), а при L > Lo у

щели существует только закрытое состояние. Открытое

стационарное состояние является энергетически более

выгодным только при ширине щели L < L1, где значение

L1 ∈ (Lc , Lo). Характерные значения ширины щели Lc , L1

и Lo приведены в табл. 3.

Как видно из рис. 4, трехмерная LJ-модель хорошо

согласуется с двухмерной цепной моделью (d = 1),
а KC-модель — с этой же моделью при d = 2.129. Зна-

чения максимальной ширины щели в KC-модели, как и

ожидается, несколько превышают оценки из LJ-модели.

Отличия в энергии пиннинга двух трехмерных моделей

также влияют на деформационные изменения верхнего

слоя графена при схлопывании щели. Так в KC-модели

с более сильным пиннингом схлопывание однослойной

Таблица 3. Зависимость предельных значений ширины щели

Lc , L1, Lo от количества листов графена K в покрывающем

слое для Kg -слойной щели (значения даны в nm, использована

LJ-модель)

Kg K 1 2 3 4

1 Lo 1.72 1.97 2.09 2.21

2 Lc 2.09 2.46 2.58 2.82

2 L1 2.58 2.95 3.19 3.44

2 Lo 3.81 4.30 4.67 4.91

3 Lc 2.09 2.46 2.58 2.82

3 L1 3.56 4.05 4.42 4.79

3 Lo 7.37 7.61 8.37 9.09

щели приводит к сдвигу краев верхнего слоя относи-

тельно средних слоев на 0.1�A в отличие от 1�A для

LJ-модели. Аналогичные, но менее выраженные отличия

наблюдаются при схлопывании двухслойной (смещение

на 0.4�A против 1.3�A) и трехслойной щелей (смещение

на 1.5�A против 3.5�A).

7. Заключение

В данной работе была доработана предложенная ранее

двумерная цепная модель многослойного графена [17].
Путем увеличения шага цепи в d = 2.129 раз и пере-

масштабирования констант взаимодействий были сохра-

нены механические свойства и энергия когезии листов

графена, а энергия пиннинга приведена в соответствие

со значениями, расчитанными в рамках ТФП моделиро-

вания [23].
С использованием двухмерной крупнозернистой цеп-

ной модели проведено моделирование образования плос-

ких щелей в многослойных кристаллах графита. По-

казано, что при покрытии многослойным графеном

линейной полости на плоской поверхности кристалла

графита открытая (незаполненная щель) может образо-

вываться только при ширине полости, не превышающей

предельного значения Lo. При большей ширине полости

(при L > Lo) верхний слой графена за счет изгиба и

сдвига краев полностью примыкает к ее дну, образуя

закрытое (схлопнутое) состояние щели. Закрытое состо-

яние возможно только при ширине щели, превышающей

пороговое значение Lc < Lo . Таким образом, для узких

щелей с шириной L < Lc возможно только открытое

стационарное состояние. Для щелей средних размеров

L ∈ (Lc , Lo) существуют два устойчивых стационарных

состояния — открытое и закрытое. Здесь щель (покры-
тая полость) является бистабильной системой. А для

широких щелей с L > Lo может существовать только

закрытое стационарное состояние, с пространством по-

лости, заполненным покрывающим верхним слоем. Пре-

дельное значение ширины открытой щели Lo монотонно
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увеличивается с ростом количества листов графена K в

покрывающем слое. Для однослойной полости существу-

ет конечное предельное значение ее ширины Lo < 3 nm,

не зависящее от K. Для двух и трехслойных полостей

максимальная ширина открытой щели с увеличением K

растет как степенная функция: Lo ∼ Kα, при K → ∞
(показатель 0 < α < 1).
Проведенное моделирование показало, что однослой-

ная щель внутри кристалла графита может находиться

в открытом (незаполненном) состоянии только при

ее ширине L < 3 nm. Двух и трехслойные щели здесь

могут иметь устойчивые открытые состояния при любой

ширине (предельное значение Lo = ∞). При L > 7.6 nm

двухслойная щель также может находиться в стационар-

ном закрытом состоянии, в котором ее нижняя и верхняя

поверхности примыкают друг к другу. Разница энергий

этих стационарных состояний линейно растет с увели-

чением ширины щели. При ширине L < L1 = 12.8 nm

открытое состояние имеет меньшую, а при L > L1 —

большую энергию.

Моделирование тепловых колебаний показало, что

открытые состояния двухслойных щелей ширины

L < 15 nm устойчивы к тепловым колебаниям при

температуре T ≤ 930K. Более широкие щели при

T > 400K переходят из открытого в более выгодное

по энергии закрытое состояние. Открытые состояния

трехслойных щелей всегда устойчивы к тепловым коле-

баниям.

Проведенное частичное моделирование щелей с ис-

пользованием трехмерных полноатомных моделей под-

твердило основные результаты, полученные с использо-

ванием двухмерной цепной модели.
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