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1. Введение

В качестве модельных объектов для различных поли-

мерных материалов могут быть выбраны схожие по хи-

мическому строению, однако существенно более низко-

молекулярные вещества — длинноцепочечные н-алканы

CnH2n+2, промышленно производимые монодисперсны-

ми (с точностью до одной C−C связи в скелете моле-

кулы) с различными длинами цепей (16 ≤ n ≤ 60) и чи-

стотой ≥ 95%. Исследование подобных модельных объ-

ектов позволит на количественном уровне ответить на

вопросы, касающиеся особенностей структурообразова-

ния в процессах кристаллизации из расплавов и раство-

ров, взаимосвязи между структурой возникающих над-

молекулярных образований и их физико-химическими

свойствами, механизма структурных превращений при

изменении фазового состояния кристалла и т. д.

Общность термодинамических свойств длинноцепо-

чечных молекулярных кристаллов (ДМК), к числу

которых относятся н-алканы, и алифатических поли-

меров основана на схожем строении кристалличе-

ских сердцевин ламелей из метиленовых CH2 транс-

последовательностей [1,2]. Основное структурное от-

личие ДМК от полимеров заключается в том, что

ламеллярные кристаллы образованы из выпрямленных

цепей (КВЦ), т. е. поверхности ламелей формируются

концевыми группами молекул, а не их складками. В свя-

зи с существенным влиянием концевых групп на укладку

молекул в ламелях для ДМК возникают эффекты, не ха-

рактерные для полимерных материалов, например, т. н.

”
эффект четности“. В зависимости от четного/нечетного

значения числа атомов углерода в цепи изменяется сим-

метрия индивидуальных молекул гомологов (транс- или
цис-форма), и, как следствие, меняется характер распо-

ложения регулярных транс-зигзагов в кристаллических

сердечниках ламелей относительно базовых плоскостей

из концевых групп — вертикальное расположение для

нечетных гомологов и наклонное для четных [3].

Кроме того, актуальным направлением в физике по-

лимеров на протяжение многих лет остается выяснение

механизма полиморфных превращений длинноцепочеч-

ных н-алканов при переходе из твердого состояния

в расплав и обратно [4–8]. В частности, при исполь-

зовании комбинации методов синхротронной рентге-

новской дифрактометрии и дифференциальной скани-

рующей калориметрии [9] нам удалось впервые вы-

явить кинетику развития полной последовательности

фазовых переходов различной природы в трикозане n-

C23H48, а именно кинетику переходов между фаза-

ми: низкотемпературная орторомбическая кристалли-

ческая фаза Oi → высокотемпературная орторомбиче-

ская кристаллическая фаза Odci → моноклинная рота-

ционная фаза RV ⇒ орторомбическая ротационная фа-

за RI → ромбоэдрическая (гексагональная) ротационная

фаза R → жидкость. Более детальную информацию о

структурных перестроениях при полиморфных превра-

щениях трикозана на уровне молекулярных колеба-

ний удалось получить на основе метода ИК Фурье-

спектроскопии [10].

Мы полагаем, что обнаруженный сложный меха-

низм полиморфных превращений одних ротационно-

кристаллических фаз в другие в н-алканах обусловлен
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термической активацией различного вида конформа-

ционных дефектов (преимущественно концевых гош-

дефектов и кинков), которые, нарушая симметрию инди-

видуальной молекулы, приводят к возникновению упоря-

доченных областей с иной кристаллической симметрией.

Соответствующие результаты получены нами при анали-

зе нарушения регулярности цепей в сердцевинах ламе-

лей при полиморфных превращениях для ближайшего

гомолога трикозана–тетракозана n-C24H50 [11].
Настоящая статья является продолжением ранее на-

чатой работы [11] по анализу конформации молекул

длинноцепочечных н-алканов в низкотемпературной по-

лиморфной модификации на основании данных ИК

Фурье-спектроскопии. Данная работа будет основана

на исследовании структуры транс-зигзага молекул в

сердцевинах ламелей нечетного н-алкана трикозана n-

C23H48 и сравнении с полученными ранее результатами

для четного тетракозана n-C24H50 [11]. Изучение исход-

ной структуры молекул необходимо для дальнейшего

анализа ее изменения при полиморфных превращениях.

Как известно [12,13], наличие регулярных транс-

последовательностей в структуре длинноцепочечных н-

алканов приводит к появлению прогрессий полос погло-

щения в ИК спектрах. Появление прогрессий в спектрах

обусловлено нелокализованным характером колебаний,

охватывающих большое число атомов в молекуле. Чис-

ло полос в прогрессии, их частоты и интенсивности

зависят как от длины цепи, так и от ее конформации,

поэтому прогрессии полос оказываются чрезвычайно

чувствительными к структурным изменениям в строении

регулярных транс-последовательностей в сердцевинах

ламелей.

Один из наиболее простых методов расчета нелокали-

зованных колебаний длинноцепочечных молекул осно-

ван на модели линейной цепи связанных осцилляторов,

где каждый осциллятор представляет собой электриче-

ский диполь [12,14]. Простая модель связанных осцил-

ляторов для цепи из N параллельных/антипараллельных

диполей с фиксированными концами позволяет найти

N возможных дискретных частот нормальных колеба-

ний [12]:

ω2
i = ω2

0 + 2ω∗2
(

1± cos
iπ

N + 1

)

, i = 1, . . . N, (1)

где ω0 — частота невозмущенного осциллятора, ω∗ —

параметр взаимодействия, имеющий размерность часто-

ты, ωi — частота осцилляторов i-ой колебательной

моды, N — число мономерных единиц в цепи или

число связанных диполей. Набор частот со знаком
”
+“

соответствует колебаниям цепи параллельных диполей,

со знаком
”
−“ — цепи антипараллельных диполей.

Для цепи параллельных диполей получаем, что при

i = N + 1 колебание происходит на частоте ω0, а при

i = 0 — на частоте, равной

√

ω2
0 + 4ω∗2 . Таким образом,

все величины ω2
i

(при i = 1, . . . N) лежат в интер-

вале, который имеет ширину 4ω∗2 (аналогично и для

колебаний антипараллельных диполей). Таким образом,

самая низкочастотная полоса серии сдвинута в сторону

частоты ω0 и приближается к ней асимптотически при

возрастании длины цепи до бесконечности. В случае

бесконечной цепи активным в ИК спектре оказывает-

ся только одно нормальное колебание, тогда как для

цепей конечной длины многие из полос серии могут

быть активны [12]. В большинстве случаев число ИК-

активных колебаний или наблюдаемых полос в прогрес-

сиях определяется как N/2 или (N + 1)/2 в зависимости

от четности величины N. Поскольку возникновение

прогрессий обусловлено различием величины фазового

сдвига колебаний соседних осцилляторов, частоты полос

в прогрессиях укладываются на фононные дисперсион-

ные кривые, рассчитанные для полиметиленовых цепей

в транс-конформации [14–18].
Таким образом, на основании модели связанных ос-

цилляторов будет проведен анализ транс-структуры мо-

лекул длинноцепочечных н-алканов, на примере трико-

зана, в низкотемпературной полиморфной модификации.

2. Экспериментальная часть

В работе исследуется низкотемпературная модифи-

кация нечетного н-алкана трикозана n-C23H48, моно-

дисперсные образцы (с чистотой 99%) которого про-

изведены фирмой Sigma-Aldrich в виде пластинчатых

хлопьевидных продуктов синтеза.

Образцы микрометровой толщины готовились путем

нанесения хлопьев н-алкана на полированные пластины

NaCl. Затем осуществлялось их плавление и последую-

щее медленное охлаждение для получения равновесной

кристаллической структуры.

Запись спектров поглощения при комнатной темпе-

ратуре проводилась в области ν = 400−5000 cm−1 на

ИК Фурье-спектрометре Bruker IFS-88 с разрешени-

ем 2 cm−1. При записи число сканов составляло 50. Для

устранения возможного искажения спектров проводи-

лось вычитание спектров атмосферной влаги и CO2 с

помощью встроенного ПО фирмы Bruker.

Разделение налагающихся полос поглощения в экспе-

риментально полученных ИК спектрах на индивидуаль-

ные компоненты и последующий их анализ проводились

с помощью программы Fityk 1.3.1 [19] при использова-

нии функции Pearson VII.

3. Анализ прогрессий полос
поглощения трикозана C23H48

Для анализа структуры транс-зигзага молекулы нечет-

ного н-алкана трикозана в низкотемпературной поли-

морфной модификации (орторомбической кристалличе-

ской фазе Oi) выбрана область ИК спектра, содержащая

две наиболее интенсивные прогрессии колебаний мети-

леновых транс-последовательностей. Прогрессия полос,

обусловленная маятниковыми колебаниями CH2 групп
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в н-алканах, проявляется в области ν = 700−1100 cm−1

и обозначена Снайдером как Pk [20]. Высокочастотный
край этой области перекрывается другой прогресси-

ей, обусловленной валентными (скелетными) колебани-

ями C−C связей и занимающей частотный диапазон

ν = 950−1150 cm−1. Для этой прогрессии принято обо-

значение Rk [20]. Нужно отметить, что сильное влияние

на обе прогрессии оказывает достаточно интенсивная

полоса вблизи 890 cm−1, принадлежащая локализован-

ному in-plane маятниковому колебанию концевой ме-

тильной CH3 группы и обозначаемая β (или PCH3) [20].

Необходимо подчеркнуть, что валентное колебание

C−C транс-связи приводит к очень слабому изменению

дипольного момента вследствие локальной центральной

симметрии связи. Фактически, эти колебания не должны

быть активны в ИК спектре. Однако полагают [21],
что наблюдаемые интенсивности полос скелетных ко-

лебаний н-алканов в выпрямленной транс-конформации

почти полностью обусловлены вкладом маятниковых

колебаний концевых метильных CH3 групп.

Спектр трикозана в фазе Oi представлен на рис. 1,

приписывание полос проводилось в соответствии с

работами [20,22]. Экспериментальные значения частот

представлены в табл. 1.

Большинство выделенных частот колебаний в спектре

трикозана при комнатной температуре (табл. 1) несколь-
ко сдвинуто в сторону меньших значений, по сравнению

с литературными данными для аналогичной молекулы

в ее вытянутой конформации (при T = −180 ◦С) [22].
Такое спектральное поведение обусловлено более низ-

кой концентрацией транс-конформеров [21], что свиде-

тельствует о наличии нерегулярных конформеров уже

в низкотемпературном упорядоченном кристаллическом

состоянии. Тем не менее, наличие всех ожидаемых

членов прогрессии маятниковых колебаний CH2 групп

(Pk) позволяет утверждать, что большинство молекул

в ламелях находятся в полностью транс-конформации

без каких-либо конформационных дефектов, и лишь

единичные молекулы, вероятно, имеют один простейший

концевой гош-дефект [11].

Хорошо известно [23], что в области деформационных

колебаний ИК спектра трикозана наблюдаются интен-

сивные дублеты характеристических полос, в том числе

для маятниковых колебаний: ν(P1) = 719.4/729.1 cm−1

(рис. 1). Такое расщепление полос называют фактор-

групповым. Дублет возникает в результате синфазных

и противофазных колебаний двух неэквивалентно рас-

положенных молекул в субъячейке [12,24]. Степень

расщепления таких полос зависит от величины межмо-

лекулярного взаимодействия [23], которое изменяется

с температурой [10]. Таким образом, появление дубле-

тов полос деформационных колебаний в ИК спектрах

свидетельствует об образовании субъячеек ортором-

бической симметрии [23], включающих две молекулы

на ячейку. Более общее рассмотрение этого вопроса

было представлено Давыдовым [25], поэтому появление

Таблица 1. Экспериментальные значения частот в прогрес-

сиях полос маятниковых (Pk) и скелетных (Rk) колебаний

трикозана n-C23H48 при T = 21 ◦С

Обозначение (согласно [20]) Наблюдаемая частота, cm−1

P1 719.4/729.1

P5 724.2

P7 737.1/742.0

P9 750.8/755.3

P11 784.9

P13 832.3

P15 884.9

β(PСН3) 891.0

P17 938.2/942.2

R8 969.4

R9 973.2

R7+R10 985.3

P19 990.8/995.7

R11 1000.4

R6 1012.9

R12 1017.0

R13 1031.1

P21+R5 1037.8

R14 1042.7

R15 1048.4

R16 1053.2

R17 1057.5

R18 1061.8

R19 1066.7

R4 1071.2

R3 1098.7

R2 1124.6

R1 1133.2

мультиплетов в спектрах молекулярных кристаллов но-

сит название Давыдовского расщепления. Наблюдаемый

эффект связан с образованием молекулярных экситонов

в субъячейках, содержащих идентичные молекулы, ори-

ентированные под углом ∼ 90◦ друг к другу, при этом

число соответствующих полос в спектре равно числу

молекул в субъячейке.

Нужно отметить, что члены прогрессии маятниковых

колебаний CH2 групп (Pk) при k = 3 и 5 оказываются

скрыты интенсивным дублетом полос P1 (k = 1). Од-
нако, на основании разложения области дублета уда-

лось выделить отдельно полосу P5, что согласуется с

приписыванием аналогичной полосы в более коротких

гомологах n-C17H36 и n-C19H40 с орторомбическими

субъячейками [20]. Кроме того, выделенная частота

хорошо укладывается на дисперсионную зависимость

(см. ниже).

В отличие от четных н-алканов, для нечетных гомоло-

гов характерно, что в прогрессии скелетных колебаний

появляются нечетные члены. Вероятно, именно цис-

симметрия молекулы нечетного гомолога, при которой

концевые метильные группы располагаются по одну

сторону от оси транс-зигзага, является основной при-
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Рис. 1. ИК спектр трикозана n-C23H48 при T = 21 ◦С. Выделены полосы поглощения, отнесенные к прогрессиям маятниковых

колебаний CH2 групп (Pk) (зеленые полосы) и валентных колебаний C−C связей (Rk) (фиолетовые полосы), а также отмечено

характеристическое маятниковое колебание метильной CH3 группы (β) (красная полоса).

чиной появления дополнительных членов прогрессии.

Отметим, что четные члены скелетных колебаний имеют

очень слабую интенсивность, в чем также проявляется

отличие от аналогичной прогрессии четного н-алкана,

имеющего транс-симметрию молекул [11]. На точном со-

ответствии частот высших членов прогрессии (R17, R18,

R19) затруднительно настаивать, поскольку в литературе

эти члены ранее не выделялись и не анализировались.

Вместе с тем, частоты этих полос прекрасно укладыва-

ются на дисперсионную кривую (см. ниже).

Полоса при ν = 1134 cm−1 в полиэтилене отвечает

валентному колебанию всех C−C связей в фазе [21],
соответствующая полоса в н-алканах R1 при k = 0 по-

является в спектрах только нечетных членов (отметим,
что обоснование использования здесь значения сдвига

k = k − 1 приведено в [20], и оно связано с наличием

минимума на дисперсионной кривой). Иногда в литера-

туре скелетные колебания характеризуют как симмет-

ричные и асимметричные, при этом в первом случае

колебания C−C связей находятся в фазе, во втором —

в противофазе [26]. Для полиметиленовой цепи соот-

ветствующие частоты равны νs (C−C) = 1131 cm−1 и

νa(C−C) = 1060−1070 cm−1 [15,26,27]. Наиболее близ-

кой по частоте к колебаниям в противофазе в спектре

трикозана оказывается полоса R19.

На рис. 2 частоты наблюдаемых нами полос прогрес-

сий маятниковых колебаний CH2 групп (Pk) (a) и ске-

летных колебаний (Rk) C−C связей (b) представлены в

виде зависимостей от ϕ/π, где сдвиг фазы между двумя

соседними осцилляторами ϕ = kπ/(N + 1), k = 1, . . . N

(k — номер колебательной моды k = N − i + 1, N —

число мод, равное числу осцилляторов в цепи, т. е. для

CH2 групп N = 21, для C−C связей N = 22). Получен-

ные экспериментально частотно-фазовые зависимости

свидетельствуют о справедливости проведенного нами

приписывания полос прогрессий [14–17,20,22]. Более

того, на полученные графики рис. 2 нанесены также

результаты для тетракозана n-C24H50 из нашей предыду-

щей статьи [11]. Отметим очень хорошее соответствие

полученных дисперсионных кривых для двух гомологов.

В соответствие с литературными данными для даль-

нейшего анализа примем, что самая низкочастотная по-

лоса (719.4 cm−1) в области маятниковых колебаний n-

C23H48 является частотой невозмущенного осциллятора

ω0, а самая высокочастотная (1037.8 cm−1) соответству-

ет величине (ω2
0 + 4ω∗2)1/2. Принятые упрощения поз-

воляют нам оценить среднюю величину параметра взаи-

модействия осцилляторов ω∗ = 374.0 cm−1. Полученное

значение немного ниже, чем рассчитанные аналогичным

образом для n-C24H50 в [11] — 384.8 cm−1 или в [12] —
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Рис. 2. Экспериментальные частотно-фазовые зависимости для маятниковых колебаний (Pk) метиленовых групп (a) и скелетных

колебаний (Rk) C−C связей (b) трикозана n-C23H48 при T = 21 ◦С (полученные в этой работе данные представлены черным

цветом). Результаты сопоставлены с зависимостью для четного гомолога тетракозана n-C24H50 (красный цвет) [11].

381 cm−1. Поскольку дисперсионная кривая для маятни-

ковых колебаний полностью соответствует полученной

ранее для тетракозана (рис. 2, a), то настоящая работа

позволяет уточнить значения параметров ω0 и ω∗ из

работы [11] применительно к нечетному гомологу.

Аналогично полученная в данной работе диспер-

сионная кривая для скелетных колебаний (рис. 2, b)
полностью соответствует найденной ранее для тетра-

козана [11], а также содержит вдвое больше значений

экспериментальных частот. Таким образом, настоящая

работа позволяет определить более точные значения

параметров ω0 и ω∗ для скелетных колебаний.

Согласно модели связанных осцилляторов зависи-

мость квадрата частот маятниковых колебаний CH2

групп, представляющих собой параллельные диполи, от

параметра
(

1 + cos iπ/(N + 1)
)

можно представить в ви-

де линейной функции (выражение (1)), что соответству-

ет красной сплошной линии на рис. 3, a для эксперимен-

тально полученных значений ω0 и ω∗ . Подчеркнем, что

CH2 группы представляют собой набор параллельных

диполей (↑↑) в случае маятниковых колебаний. Как

известно [11,12], квадраты экспериментальных значений

частот маятниковых колебаний (Pk) не укладываются

на линейную зависимость (рис. 3, a), соответствующую

простой теории взаимодействующих осцилляторов, учи-

тывающей влияние только ближайших соседей. В случае

маятниковых колебаний квадраты экспериментальных

значений частот располагаются ниже расчетной прямой

зависимости, и для устранения этого отклонения необ-

ходимо учитывать взаимодействие не только ближайших

соседей, но и следующих за ними осцилляторов.

Квадрат частот скелетных колебаний (Rk)
также должен линейно зависеть от параметра
(

1± cos iπ/(N + 1)
)

. Как предположено в [11],
наличие минимума на дисперсионной зависимости

может означать переход от режима антипараллельных

диполей (↑↓) к режиму параллельных диполей (↑↑) при

ϕ/π = 0.3−0.4, поэтому эти области необходимо рас-

сматривать по отдельности. Такое поведение дипольных

моментов в цепи возможно только для колебаний C−C

связей, что обусловлено особенностью дисперсионной

кривой (рис. 2, b). Поскольку найти точные граничные

значения частот двух областей оказывается затрудни-

тельно (кроме полосы R1 при k = 0, что соответствует

i = N + 1, т. е. высокочастотной границе), предположим,
что крайние точки в обоих областях, обнаруженные

экспериментально, принадлежат теоретической кривой.

Тогда оказывается возможным оценить значения

параметров в области антипараллельных диполей:

|ω′

0| = 586.0 и ω∗′ = 637.9 cm−1. При этом ω′

0 для

антипараллельных диполей оказывается чисто мнимой

величиной, что приводит к резкому уменьшению частот

в этой области и обращению их в ноль при значении

параметра
(

1− cos iπ/(N + 1)
)

≈ 0.42. Однако, этого не

наблюдается, колебания не прекращаются, а переходят

в режим параллельных диполей при значении параметра
(

1 + cos iπ/(N + 1)
)

≈ 0.47. В области параллельных

диполей получаем значения параметров: ω′′

0 = 916.7 и

ω∗′ = 283.1 cm−1.

Проведенный нами теоретический расчет зависимости

квадратов частот скелетных колебаний (Rk) представлен
на рис. 3, b в виде синей прямой для режима антипарал-

лельных диполей и красной прямой для режима парал-

лельных диполей (в обоих случаях зависимости сведены

к параметру
(

1 + cos iπ/(N + 1)
)

). Следует подчеркнуть,

что аналогично результатам для маятниковых колебаний

квадраты экспериментальных значений частот Rk не

укладываются на прямую, соответствующую простой

теории взаимодействующих осцилляторов (рис. 3, b).
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Рис. 3. Зависимости квадратов экспериментальных значений частот маятниковых колебаний (Pk) метиленовых групп (a) и

скелетных колебаний (Rk) C−C связей (b) трикозана n-C23H48 при T = 21 ◦С от параметра
(

1 + cos(iπ/N + 1)
)

. Теоретически

ожидаемые линейные зависимости для параллельных диполей представлены красным цветом, для антипараллельных — синим

цветом. Пунктирными линиями представлены линейные зависимости, соответствующие дополнительному разбиению областей

параллельных и антипараллельных диполей.

Однако, хотелось бы отметить, что на полученных

экспериментальных зависимостях для квадратов частот

колебаний Pk и Rk можно выделить отдельные участки

(рис. 3), по всей видимости, в большей степени соот-

ветствующие модели связанных осцилляторов. Следова-

тельно, можно применить простую теорию взаимодей-

ствующих осцилляторов в модифицированном виде для

выделенных групп колебательных мод.

Область скелетных колебаний в режиме

параллельных диполей может быть разделена на

два участка (I и II) с различными параметрами:

ω′′

0 (I) = 898.8 и ω∗′′(I) = 323.4 cm−1, ω′′

0 (II) = 978.3 и

ω∗′′(II) = 220.7 cm−1. Как видно из рис. 3, b, модель

связанных осцилляторов превосходно описывает

область параллельных диполей скелетных колебаний.

Таким образом, дополнительное разбиение области

параллельных диполей позволяет минимизировать вли-

яние взаимодействия между дальними осцилляторами и

охарактеризовать область, соответствующую приближе-

нию взаимодействия между ближайшими соседями.

Аналогичным образом можно рассмотреть дополни-

тельные области и для маятниковых колебаний, и для

скелетных колебаний в режиме антипараллельных ди-

полей. Расчетные значения параметров ω0 и ω∗ для

различных областей, которые в большей степени соот-

ветствуют простой теории взаимодействующих осцил-

ляторов, представлены в табл. 2. Тогда для скелетных

колебаний можно уточнить значения параметров, при

которых колебания антипараллельных диполей перехо-

дят в режим параллельных:
(

1− cos iπ/(N + 1)
)

≈ 1.52

и
(

1 + cos iπ/(N + 1)
)

≈ 0.48 соответственно.

Таким образом, экспериментально полученные зависи-

мости квадратов частот маятниковых (Pk) и скелетных

колебаний (Rk) можно разделить на несколько линей-

ных участков, которые хорошо описываются простой

моделью связанных осцилляторов (рис. 3). Для Pk это

области — I, II, III; для Rk — III, IV, I, II. На основании

полученных результатов и с учетом того, что параметр
(

1 + cos iπ/(N + 1)
)

может быть представлен в виде

(1− cosϕ), можно сделать вывод, что параметр взаимо-

действия ω∗ осцилляторов зависит от фазового сдвига ϕ

и при этом существенно.

Изменения параметра взаимодействия ω∗ колебаний

в прогрессиях Pk и Rk в зависимости от величины

фазового сдвига ϕ представлены на рис. 4. Как видно

из рис. 4, a, сила взаимодействия маятниковых осцилля-

торов возрастает с увеличением величины сдвига фаз, а

для скелетных колебаний эта зависимость оказывается

обратной и значительно не линейной (рис. 4, b).

Можно предположить, что сила взаимодействия ма-

ятниковых осцилляторов возрастает в значительной

степени при стремлении фазового сдвига к значению

ϕ ≈ π, поскольку маятниковые колебания представляют

собой набор параллельных диполей и большие фазовые

сдвиги приводят к повышению энергии взаимодействия.

Аналогичным образом можно объяснить и то, что мак-

симальная энергия связи для режима антипараллельных

скелетных колебаний достигается при ϕ ≈ 0. Вероятно,

продолжение спадающей зависимости и в режиме парал-

лельных скелетных колебаний при увеличении сдвига

фаз может быть обусловлено спецификой изменения

дипольного момента этой моды колебаний C−C связи.
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Таблица 2. Значения параметров ω0, ω
∗, ̹ и α, определенные по модели связанных осцилляторов для различных областей

зависимости квадратов частот в прогрессиях полос маятниковых колебаний (Pk) метиленовых групп и скелетных колебаний (Rk)
C−C связей трикозана n-C23H48 при T = 21 ◦С от параметра

(

1 + cos iπ
N+1

)

. Для набора параллельных диполей принято

обозначение ↑↑, для антипараллельных — ↑↓

Тип Набор
Область ω0, cm

−1 ̹, dyn/cm ω∗, cm−1 α, dyn/cm
колебаний диполей

Маятниковые
719.4 4.28 · 105 374.0 1.16 · 105

колебания ↑↑
I 718.9 4.28 · 105 180.6 0.27 · 105

CH2 групп
II 610.0 3.08 · 105 365.2 1.10 · 105

III 474.0 i −1.86 · 105 571.9 2.71 · 105

916.7 6.96 · 105 283.1 0.66 · 105

Скелетные
↑↑ I 898.8 6.69 · 105 323.4 0.87 · 105

колебания
II 978.3 7.92 · 105 220.7 0.40 · 105

C−C связей 586.0 i −2.84 · 105 637.9 3.37 · 105

↑↓ III 1249.9 i −12.93 · 105 843.6 5.89 · 105

IV 400.3 1.33 · 105 497.2 2.05 · 105
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Рис. 4. Зависимости параметров взаимодействия маятниковых колебаний (Pk) метиленовых групп (a) и скелетных колебаний

(Rk) C−C связей (b) трикозана n-C23H48 при T = 21 ◦С от фазового сдвига ϕ.

На основании расчетных значений параметров ω0

и ω∗ для областей, соответствующих простой теории

взаимодействующих осцилляторов, могут быть оцене-

ны значения силовых постоянных колебаний ̹ и кон-

стант связи α из соотношений: ω2
0 = ̹/m и ω∗2 = α/m,

где масса осциллятора (СН2 группы) определяется

как m = mC + 2mH = 2.33 · 10−23 g (mH = 1.674 · 10−24 g,

mC = 1.994 · 10−23 g [28]). Расчетные значения парамет-

ров ̹ и α представлены в табл. 2. Порядок получен-

ных величин хорошо согласуется со средними значе-

ниями валентных и деформационных силовых посто-

янных для C−C и C−H связей в различных веще-

ствах [15,27,29–33].

Отметим, что отрицательная силовая постоянная ко-

лебаний ̹ (табл. 2) может указывать на неустойчивость

системы. В таких случаях любое небольшое возмущение

приводит к тому, что система стремится удаляться от

положения равновесия и не возвращаться к нему. Если

для скелетных колебаний ̹ < 0 связана с переходом

от режима ↑↓ в ↑↑, то для маятниковых колебаний

(область IV), вероятно, ̹ < 0 приводит к переходу в

крутильные колебания [34].

4. Заключение

Проведен детальный анализ двух наиболее интен-

сивных прогрессий колебаний метиленовых транс-

последовательностей в области ν = 700−1200 cm−1 ИК

Фурье-спектра нечетного н-алкана трикозана n-C23H48:

прогрессий маятниковых колебаний СН2 групп (Pk) и

валентных (скелетных) колебаний C−C связей (Rk).

Анализ прогрессий полос (Pk и Rk) проводился

на основе широко используемой модели одномерной
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линейной цепи связанных осцилляторов. Определены

параметры, описывающие взаимодействие соседних ос-

цилляторов (ω0, ω∗, ̹ и α). Более того, удалось вы-

делить области на зависимостях квадрата частот по-

лос в прогрессиях от параметра
(

1 + cos iπ/(N + 1)
)

,

которые хорошо описываются линейной зависимостью

и соответствуют приближению взаимодействия только

между ближайшими соседями. Впервые на основании

полученного разбиения колебательных мод на группы,

в большей степени соответствующие простой теории

взаимодействующих осцилляторов, установлено, что па-

раметр взаимодействия ω∗ колебаний в прогрессиях

Pk и Rk существенно зависит от величины фазового

сдвига ϕ.

Наличие четко выраженных прогрессий Pk и Rk в

ИК спектре указывает на почти бездефектную транс-

конформацию молекул длинноцепочечного н-алкана три-

козана при T = 21 ◦С, находящегося в самой низкотем-

пературной полиморфной (орторомбической) модифи-

кации. Закономерности полиморфных превращений при

нагревании н-алкана n-C23H48 вплоть до температур

плавления исследованы в работе [35], где проведен ана-

лиз термической активации конформационных дефектов

различных типов и сопутствующего уменьшения длин

транс-последовательностей в сердцевинах ламелей при

полиморфных превращениях.

Полученные в работе численные результаты полезны

при моделировании структуры длинноцепочечных н-

алканов, поскольку задание точных параметров исходно-

го строения н-алкана необходимо для установления ки-

нетики структурных трансформаций при полиморфных

превращениях.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.
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