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Обнаружено, что нанотрубки с дефектами содержат более крупные частицы core-shell Fe/Fe3O4 с большей

коэрцитивной силой, чем совершенные нанотрубки, однако при этом относительная доля таких частиц

в 4 раза меньше в дефектных нанотрубках при прочих равных условиях (скорость роста в бутаноле,

температура).
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1. Введение

Углеродные нанотрубки (УНТ) представляют собой

один из наиболее многообещающих классов нанострук-

тур благодаря своим выдающимся электрическим, теп-

ловым, механическим и структурным свойствам. В част-

ности, способность УНТ к высокой проводимости, значи-

тельной удельной поверхности делает их привлекатель-

ными для широкого спектра применений — от композит-

ных материалов и электродов до сенсоров и магнитных

систем [1,2].
В последние годы внимание исследователей сме-

стилось к модификации УНТ посредством включения

металлических частиц в реакционную смесь при вы-

ращивании нанотрубок [3–5]. Это позволяет интегри-

ровать магнитные, каталитические и/или ферромагнит-

ные функции наночастиц в углеродную матрицу. УНТ,

содержащие ферромагнитные металлические наноча-

стицы, интересны тем, что могут выполнять следу-

ющие функции: 1) быть маркерами нанотрубок, поз-

воляя по измерениям магнитных свойств материала

судить о локальном окружении частиц и его изме-

нении в различных процессах, 2) модифицировать на-

нотрубки, определяя условия их роста, в частности

диаметр и многослойность, 3) создавать условия для

эффектов близости (proximity), обеспечивая магнит-

ное упорядочение спинов дефектов в самих нано-

трубках, 4) выступать как магнитно-активные компо-

ненты, управляющие проводимостью УНТ при намаг-

ничивании наночастиц. Такие системы привлекательны

для магнитных нанокомпозитов, устройств записи, маг-

нитного управления или катализа с магнитной сепа-

рацией [6,7].
Поскольку магнетизм углеродных систем всегда свя-

зан с наличием дефектов в них, которые приводят

либо к оборванным углеродным связям, либо являются

дефектами магнитной примеси, можно ожидать, что вза-

имодействие совершенных УНТ и нанотрубок с дефекта-

ми с металлическими ферромагнитными наночастицами

будет различаться, изменяя статистику декорирования

нанотрубок наночастицами. В данной работе основной

акцент сделан на установление роли дефектов в УНТ

на магнитные свойства ансамбля наночастиц, ассоции-

рованного с углеродными нанотрубками.

Может оказаться, что и присутствие ферромагнитных

частиц влияет на рост УНТ. В контексте роста и об-

работки УНТ важно отметить, что контроль морфоло-

гии, числа стенок, диаметра и длины трубок остается

ключевым для достижения высоких функциональных

характеристик. В работах [8,9] показано, что можно

контролировать тип УНТ (одностенные/многостенные)
при получении, варьируя соотношение концентрации

прекурсора и катализатора, а также температуру реак-

ции. Поэтому мы контролировали степень дефектности

и многослойность УНТ с помощью Рамановской спек-

троскопии.

Целью нашей работы является выявление влияния

скорости формования нанотрубок на получаемые разме-

ры железных допирующих частиц и магнитные свойства

волокон УНТ.
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Рис. 1. Изображения волокон образца 1, полученные с помощью СЭМ.

2. Методика и образцы

Волокна углеродных нанотрубок были синтезированы

в лаборатории методом химического осаждения из па-

ровой фазы плавающего катализатора [8,9] в лаборатор-

ном реакторе вертикальной конфигурации с внутренним

диаметром 70mm и вводом прекурсоров сверху. Реактор

был оснащен муллитовой трубчатой печью. Это односта-

дийный метод газофазного синтеза, при котором сборка

очень длинных УНТ приводит к их спутыванию по мере

роста, образуя аэрогель, который затем вытягивается из

реактора и наматывается на катушку.

Прекурсоры вводились через инжекторную трубку

с внешним диаметром 1.5mm и внутренним диамет-

ром 0.1mm для раствора толуола (или бутанола) и фер-

роцена, а также с внешним диаметром 6mm и внут-

ренним диаметром 4mm для испаренной серы, которая

выходила через фланец реакторной трубки при темпера-

туре 100 ◦C.

В настоящей работе печь нагревалась до температуры

1300 ◦C. Условия синтеза были подобраны для иссле-

дования различных атомных соотношений серы и угле-

рода, тогда как другие параметры, такие как скорость

инжекции, расход водорода и т. д., поддерживались по-

стоянными. Аэрогель УНТ извлекали на выходе из реак-

тора и непрерывно собирали на бобине, вращающейся со

скоростью 30−140 rpm, что соответствовало скоростям

формования волокон 6−28m/min. Точное время сбо-

ра всех образцов фиксировалось секундомером. Затем

нити аэрогеля конденсировали в автономном режиме

(не снимая их с бобины) с помощью изопропилового

спирта и оставляли сушиться на ночь. Дополнительное

растяжение на этапах сбора и конденсации не приме-

нялось, что сохраняло внутреннюю ориентацию пучков

УНТ в волокнах. (Для обеспечения воспроизводимости

образцы волокон УНТ, полученные в течение первого

часа работы реактора, были отбракованы.)
В работе сравнивается два типа прекурсоров: бутанол

и толуол. Для УНТ, полученных из толуола, путем

варьирования температуры реакции и соотношения S/C

подбирали режим стабильного формирования волокон,
который оставался стабильным при повышении темпера-
туры. Для УНТ, полученных на основе бутанола, повы-
шение температуры реакции приводило к нестабильно-
му формованию волокон. Для обоих типов материалов
скорость вытяжки была близка к оптимальной с точки
зрения продольных свойств и простоты изготовления.
Процесс формирования углеродных нанотрубок мож-

но описать с помощью теории термодинамического
равновесии фаз, согласно которому зародышеобразова-
ние нанопроволоки представляется в виде траектории
на изотермической фазовой диаграмме, начинающейся
с конца катализатора и движущейся к компонентам
нанопроволоки. Тройная диаграмма Fe−S−C при вы-
сокой температуре представляет собой богатую желе-
зом жидкость (L) и две несмешивающиеся жидкости,
одна из которых богата углеродом (L1), а другая —
сульфидом (L2). При высоком содержании углерода
несмешивающиеся жидкости находятся в равновесии
с твердым углеродом (L1+L2+C(s)). Предположитель-
но, рост УНТ происходит при более низком содержании
серы на границе раздела L и L1+L2, где твердый
углерод не находится в равновесии и, следовательно,
выбрасывается в виде боковых стенок УНТ. Образование
оболочки, содержащей серу, предсказывается фазовой
диаграммой при охлаждении и наблюдается эксперимен-
тально. В предыдущих работах было показано для таких
допированных УНТ, что чем выше соотношение S/C,
тем больше количество стенок у каждой УНТ. При кон-
центрации S/C 0.01% наблюдаются одностенные УНТ,
сгруппированные вместе. Увеличение S/C увеличивает
число слоев от 1 до 8 и уменьшает среднюю длину
с 34 до 6µm.
В работе исследуются пять образцов: № 1 и 2 —

прекурсор: бутанол, скорости формования 6 и 20m/min
соответственно, № 3−5 — прекурсор: толуол, скорости
формования 7, 14 и 28m/min соответственно.
Типичное изображение волокна, состоящего из нано-

трубок, показано на рис. 1 для образца 1 с разным
увеличением сканирующего электронного микроскопа
(СЭМ).
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Рис. 2. Рамановские спектры образцов, полученных с использованием в качестве прекурсора a) бутанола в образцах 1 и 2

и b) толуола в образцах 3−5.

Таблица 1. Положения и ширины на полувысоте для максимумов рамановских спектров образцов 1−5

№ образца
D-пик G-пик 2D-пик

Max, cm−1 FWHM, cm−1 Max, cm−1 FWHM, cm−1 Max, cm−1 FWHM, cm−1

1 1360 45 1592 34 2700 56

2 1349 42 1598 33 2682 54

3 − 1593 30 2692 65

4 − 1593 32 2695 66

5 − 1590 31 2695 66

Оптические свойства изучались с помощью спек-

трофотометра комбинационного рассеяния Confotec

NR500 с лазером на длине волны 532 nm, объекти-

вом ×40 и объективом Horiba LabRAM ×100, решет-

ками 600 line/mm, мощность лазера 50mW. Спектры

усреднялись по трем−пяти измерениям, записанным

с разных областей образца для получения представлений

о разбросе. Время записи спектра составляло 300 s. Маг-

нитные измерения проводили с помощью магнитометра

SQUID MPMS 5XL Quantum Design в диапазоне темпе-

ратур от 2 до 300K и в магнитном поле от 0 до 50 kOe.

3. Экспериментальные результаты
и обсуждение

3.1. Рамановская спектроскопия

На рис. 2 представлены спектры рамановского рассея-

ния образцов с различным типом прекурсоров: бутанола

(рис. 2, a) и толуола (рис. 2, b).

В табл. 1 показаны положения максимумов пиков D, G

и 2D (Max) и их ширина на полувысоте (FWHM) для

всех образцов 1−5.
На спектрах образцов, полученных с помощью

бутанола, имеется три пика (см. табл. 1). Со-

отношение амплитуд максимумов для образца 1:
JD/JG=0.62, J2D/JD=0.96, для образца 2: JD/JG=0.08,

J2D/JD=2.83.
Видно, что образцы, выращенные в бутаноле, 1 и 2,

характеризуются более узкими пиками 2D и уширен-

ными пиками G по сравнению с пиками образцов 3−5,
выращенных в толуоле.

Пик при ∼ 1350 cm−1 в литературе называют D-
пиком. Он характеризует нарушенные s p2-связи в УНТ,

ассоциирующиеся с дефектами. Образец 1 имеет более

широкий и интенсивный D-пик, что говорит о том, что
в нем выше концентрация дефектов и число функци-

ональных групп по сравнению с образцом 2. G-пик
(∼ 1580−1600 cm−1), отвечающий за упорядоченность

структуры УНТ, также демонстрирует, что образец 2

имеет более совершенную структуру. И, наконец, 2D-
пик (∼ 2700 cm−1) являющийся индикатором числа сте-

нок, у образца 2 смещен в меньшие длины волн

Физика твердого тела, 2025, том 67, вып. 11



Селекция ферромагнитных наночастиц в процессе синтеза совершенных и дефектных углеродных... 2133

20 20

 

–10 –5 0 5 10
–20

–10

0

10

H, kOe
 

M
, 
em

u
/g

–0.4 0 0.4

–4

0

4
M

, 
em

u
/g

H, kOe
–2 –1 0 1 2

0

10

H, kOe

–10

M
, 

em
u

/g

–10 –5 0 5 10
–20

–10

0

10

H, kOe
 

M
, 
em

u
/g

 

a b
 № 1

 № 2

 № 1

 № 2

Рис. 3. Зависимости намагниченности от поля для образцов 1 и 2, полученных с использованием бутанола при a) 300K и b) 2K.
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Рис. 4. Зависимости магнитного момента от поля для образцов 3−5, полученных с использованием в качестве прекурсора толуола

при a) 300K и b) 2K.

(2682 cm−1), что типично для одностенных, либо мало-

стенных УНТ (см. табл. 1). В образце 1 пик 2D шире,

что указывает на перекрытие сигналов от разных стенок

(характерно для многостенных УНТ или дефектных

пучков УНТ). Можно предположить, что в образце 1

доля одностенных УНТ не превышает 40%, а в образце 2

доля одностенных УНТ — 90−95%.

Для всех образцов толуоловой серии наблюдалось

широкое двойное гало с максимумами при 1100 cm−1

и 2500 cm−1, которые могут говорить о наличии большо-

го количества аморфного углерода (
”
I-band“) или, реже,

о сильной модификации УНТ посторонними частица-

ми [10].

3.2. СКВИД-магнитометрия

На рис. 3 представлены петли гистерезисов намагни-

ченности M образцов 1 и it2 с прекурсором: бутанола

при температуре 300K (рис. 3, a) и 2K (рис. 3, b). Видно,
что для образцов, полученных с прекурсором бутанола

(рис. 3, а), наблюдается сильная зависимость коэрцитив-

ной силы от скорости вытягивания волокна: с ростом

скорости в ∼ 3 раза в образце 2 наблюдается двукратное

уменьшение коэрцитивной силы и увеличение намагни-

ченности насыщения Ms в ∼ 3 раза. Если пренебречь

вкладом окисленной оболочки и принять, что намаг-

ниченности насыщения железного ядра наночастицы

при комнатной температуре Ms(Fe) ≈ 200−220 emu/g,

то, учитывая разную намагниченность насыщения образ-

цов 1 и 2, содержание железа по массе в них будет ∼ 2

и ∼ 8% соответственно.

На рис. 4 представлены петли гистерезисов образ-

цов 3−5, полученных с использованием в качестве пре-

курсора толуола, при a) 300K и b) 2K. Рост магнитной

анизотропии при уменьшении температуры ожидаемо

приводит к увеличению коэрцитивной силы, которая

Физика твердого тела, 2025, том 67, вып. 11
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Таблица 2. Коэрцитивная сила, намагниченность насыщения, отношение остаточной намагниченности к намагниченности

насыщения Mr/Ms и расчетная эффективная константа анизотропии K образцов 1−5

№ образца
Скорость Hc , Oe Ms , emu/g K, 104 erg/cm3 Mr/Ms

формования, m/min 2K 300K 2K 300K 2K 300K 2K 300K

1 6 1320 300 9.85 5.77 5.12 0.68 0.285 0.215

2 20 720 135 22.95 18.12 6.51 0.96 0.290 0.134

3 7 880 70 10.23 6.74 3.54 0.19 0.262 0.111

4 14 930 76 11.30 7.62 4.14 0.23 0.305 0.123

5 28 900 70 11.09 6.43 3.93 0.18 0.264 0.111

не зависит от скорости вытягивания волокон и одинакова

во всех образцах 3−5. Намагниченность насыщения

немонотонно зависит от скорости вытягивания волокна.

Поскольку коэрцитивная сила Hc для однодомен-

ных наночастиц может быть вычислена по формуле

Hc = 2K/Ms , это дает возможность сравнить константы

анизотропии K для всех образцов 1−5 (см. табл. 2).
В образцах 1 и 2 константа анизотропии K оказывает-

ся заметно выше, чем в образцах 3−5, как при 300K, так

и при 2K. При этом K растет с повышением скорости

вытягивания волокон в образцах 1 и 2 и немонотонно

зависит от этой скорости в образцах 3−5.

Согласно [11], при размерах частиц ниже предела

однодоменности, когда частица перемагничивается коге-

рентно в магнитном поле, ее коэрцитивная сила зависит

от объема V и диаметра D согласно формуле:

Hc = Hc0

[

1−

(

Vcr

V

)1/2]

= Hc0

[

1−

(

Dcr

D

)3/2]

,

где Vcr — критический объем частицы.

Из этой формулы следует, что коэрцитивная сила рас-

тет с увеличением объема или диаметра однодоменных

наночастиц. Поэтому для частиц в образцах 1 и 2,

различающихся лишь скоростью вытягивания волокна,

можно предполагать уменьшение размеров частиц со

скоростью вытягивания при увеличении их количества.

Коэрцитивная сила образцов 3−5, напротив, не зависела

от скорости вытягивания волокна (рис. 4), и потому

размеры частиц, скорее всего, были постоянными. Од-

нако при этом немонотонно менялась намагниченность

насыщения, что могло быть связано как с изменением

числа частиц, декорирующих нанотрубки, так и с ва-

риациями толщины окисленного слоя. В образцах 3−5,

судя по обширному гало в спектрах Рамана (рис. 2, b),
имеется значительная часть аморфного материала, так

что скорость вытягивания уже мало изменяет вклад

от совершенных нанотрубок, которые присутствуют

в небольшой доле.

На рис. 5 представлены зависимости намагниченности

образца 1 от температуры, измеренные при нагреве

образца в постоянном магнитном поле 2 kOe, после
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Рис. 5. Зависимости намагниченности образца 1 от температу-

ры, измеренные при нагреве образца в постоянном магнитном

поле 2 kOe, после охлаждения образца в магнитном поле 1 T

(FC) и после охлаждения образца в нулевом поле (ZFC).

охлаждения образца в магнитном поле (field cooling, FC)
1T и после охлаждения образца в нулевом поле (zero
field cooling, ZFC).
Из этих кривых можно заключить, что температура

блокировки Tb, определяемая как точка их пересече-
ния, примерно равна 300K для образца 1. Темпера-

тура блокировки зависит от константы анизотропии

материала K и их объема V : Tb = K ·V/25kB (kB —

постоянная Больцмана) при времени измерения од-

ной точки на графике ∼ 100 s. Поскольку K известно

из намагниченности насыщения и коэрцитивной си-
лы (см. табл. 2), можно оценить объем наночастицы

V = 25kBTb/K = 1.5 · 10−16 m3, что соответствует диа-

метру наночастиц ∼ 10�A. Поскольку в [12] средний

диаметр наночастиц был определен экспериментально

с помощью электронной микроскопии и составлял не бо-
лее 60�A, наша оценка оказывается сильно заниженной.

Эта ошибка может быть связана с существенной долей

оксидной оболочки в наночастицах, которая неизвестна,

но оксид железа обладает существенно иной магнитной
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анизотропией K = 24.3 · 104 erg/cm3 [13] по сравнению

с магнитной анизотропией железа, которое находится

в ядре наночастиц [14].

Детальный анализ магнитной анизотропии наночастиц

железа диаметром 10−100�A приведен в [14] на осно-

вании сравнения отношения остаточной намагниченно-

сти Mr к намагниченности насыщения Ms . Отмечается,

что для невзаимодействующих, случайно ориентирован-

ных одноосных частиц соотношение Mr/Ms ≈ 0.5 и уве-

личивается до 0.8 при наличии кубической анизотропии.

Отношение Mr/Ms меньше 0.5 (см. табл. 2) указы-

вает на: вклад суперпарамагнитных частиц, сильные

дипольные взаимодействия или неоднородности формы

(большая доля поверхностного оксида). Отметим, что

в образце 1 соотношение Mr/Ms практически не изме-

няется при переходе от 2 к 300K (см. табл. 2), вклад
суперпарамагнитных частиц в нем минимален. Следо-

вательно, доля суперпарамагнитной фазы в образце 1

ниже, чем в образцах 2−5.

4. Заключение

Обнаружено, что нанотрубки с дефектами содержат

более крупные частицы core-shell Fe/Fe3O4 с большей

коэрцитивной силой (в 2.2 раза), чем совершенные на-

нотрубки, однако при этом относительная доля таких

частиц в 4 раза меньше в дефектных нанотрубках при

прочих равных условиях (скорость роста в бутаноле,

температура). Неупорядоченная смесь нанотрубок со

значительной долей аморфного углерода, полученная

в толуоле, демонстрирует одинаковую коэрцитивную си-

лу наночастиц Fe/Fe3O4 независимо от скорости вытяги-

вания углеродного волокна. Таким образом, углеродные

структуры селекционируют и способствуют избиратель-

ному росту более крупных частиц Fe/Fe3O4 в бутаноле.

Этот эффект замаскирован присутствием большой доли

аморфной фазы углерода при выращивании нанотрубок

в толуоле.
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