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Исследованы обратные магнитооптические эффекты, возникающие при воздействии коротких лазерных

импульсов на редкоземельные ионы в различных материалах. Основное внимание уделено прямым

разрешенным электродипольным f −d и f −g переходам. Разработана теоретическая модель, описывающая

взаимодействие ионов с электрическим полем волны лазерного импульса. Получены выражения для расчета

состояний редкоземельных ионов в поле электромагнитной волны. Результаты показывают, что прямые

f −d переходы определяющим образом формируют динамику магнитных возбуждений в материале, что
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1. Введение

Исследование обратных магнитооптических эффек-

тов, несмотря на продолжительную историю, до сих

пор представляет большую научную значимость. Среди

этих эффектов наиболее интересным является обратный

эффект Фарадея, заключающийся в индуцировании у

магнитного иона магнитного момента при действии

на ион циркулярно поляризованного света. Создание

лазеров большой мощности позволило изучать обрат-

ные магнитооптические эффекты экспериментально. Так,

в работе [1] был исследован обратный эффект Фара-

дея в Eu2+ : CaF2 при использовании мощного лазера

с длительностью импульса τ ≈ 30 ns. Эффект возникал

в течение действия импульса и практически совпадал с

ним по продолжительности.

Теоретическое рассмотрение обратного эффекта Фа-

радея, проведенное в работе [2], основывалось на ис-

пользовании эффективного гамильтониана, получаемого

при анализе действия на ион бесконечно длящейся

монохроматической электромагнитной волны. При этом

возникала задача о нахождении собственных значений,

решение которой приводило к выводу о наличии у иона

постоянного во времени магнитного момента.

Данный подход представляется весьма упрощенным,

особенно в связи с тем, что в последние годы в экс-

периментальной практике нашли широкое применение

лазеры с достаточно короткими импульсами продолжи-

тельностью τ ∼ 10 fs и меньше [3–5]. Поэтому большую

актуальность приобретает проведение теоретического

анализа действия столь коротких импульсов на магнит-

ные ионы.

Среди магнитных материалов важное место занимают

соединения, уникальные магнитные, магнитоупругие и

магнитооптические свойства которых обусловлены на-

личием в их составе редкоземельных ионов [6].
В настоящей работе проведен теоретический ана-

лиз обратных магнитооптических явлений, возникаю-

щих при действии коротких лазерных импульсов на

редкоземельные ионы и обусловленных прямыми разре-

шенными электродипольными f −d и f −g переходами

(4 f N → 4 f N−15d и 4 f N → 4 f N−15g).

2. Нестационарная теория возмущений

Рассмотрим смешивание состояний редкоземельного

иона в поле волны лазерного импульса, используя под-

ход, предложенный в работе Першана с соавторами [2],
основанный на получении эффективного гамильтони-

ана. В случае излучения в инфракрасном, видимом

и ультрафиолетовом диапазонах актуальным является

взаимодействие иона с электрическим полем волны.

Гамильтониан возмущения представим в виде

V(t) = v(t)eiωt + v∗(t)e−iωt . (1)
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Для импульса, огибающая которого имеет гауссову

форму,

v(t) = −
(

dE0 + mH0

)

e−t2/τ 2

, (2)

где d = −e
∑N

i=1 ri — оператор электрического диполь-

ного момента редкоземельного иона, имеющего N элек-

тронов в своей f -оболочке, m = −µBgJJ — оператор

магнитного момента иона, E0 и H0 — амплитуды со-

ответственно электрического и магнитного полей вол-

ны в центре импульса (в общем случае, комплексные

величины), τ — параметр, определяющий длительность

импульса.

Нестационарное уравнение Шредингера представим

в виде

i~
∂ψ

∂t
= (H0 + V(t))ψ,

где H0 — невозмущенный гамильтониан, уровни энер-

гии Ek и собственные функции ϕk которого счита-

ются известными. Волновые функции ϕk от времени

не зависят.

Решение нестационарного уравнения Шредингера бу-

дем искать в виде

ψg(t) =
∑

k

akg(t)e
−iωk tϕk

= ϕge−iωg t + ψ(1)
g (t) + ψ(2)

g (t) + . . . , (3)

где

ψ(1)
g (t) =

∑

e

a (1)
eg (t)e−iωe tϕe

и

ψ(2)
g (t) =

∑

n

a (2)
ng (t)e−iωntϕn, (4)

а зависящие от времени коэффициенты разложения

a
(1)
eg (t) и a

(2)
ng (t) выражаются через матричные элемен-

ты Veg(t) = 〈ϕe |V(t)|ϕg 〉 = 〈e|V(t)|g〉 оператора возму-

щения V(t) по состояниям ϕk следующим образом:

a (1)
eg (t) =

1

i~

t
∫

−∞

eiωeg t′Veg(t
′)dt′, (5)

a (2)
ng (t) =

1

(i~)2

∑

e

t
∫

−∞

Vne(t
′)eiωnet′

t′
∫

−∞

Veg(t
′′)eiωeg t′′dt′dt′′.

В уравнениях (3)−(5) используются обозначения

ωk = Ek/~ и ωeg = (Ee−Eg)/~. В том случае, когда

возмущение определяется формулой (1), в которой ве-

личина v не зависит от времени, выражения для a
(1)
kn (t)

и a
(2)
kn (t) можно записать в более простом виде:

a (1)
eg (t) = −1

~

(

veg

ei(ωeg+ω)t

ωeg + ω
+ v∗eg

ei(ωeg−ω)t

ωeg − ω

)

,

a (2)
ng (t) =

1

~2

∑

e

(

v∗neveg

ωeg + ω
+

vnev
∗
eg

ωeg − ω

)

eiωng t

ωng

.

Для гауссовой формы (2) импульса интегрирование

выражений (5) приводит к следующим результатам:

a (1)
eg (t) =

iτ
√
π

2~
〈e|dE0|g〉

(

f +(ωeg , t) + f −(ωeg , t)
)

,

f ±(ωeg , t) = exp

(

− τ 2(ωeg ± ω)2

4

)

erfc
(

z±(ωeg , t)
)

,

z±(ωeg , t) =
iτ (ωeg ± ω)

2
− t

τ
, (6)

a (2)
ng (t) = − τ 2

√
π

2~2

∑

e

〈n|dE∗

0 |e〉〈e|dE0|g〉F+(t)

+ 〈n|dE0|e〉〈e|dE∗

0 |g〉F−(t),

F±(t) =
1

τ

t
∫

−∞

φ±(t′)dt′,

φ±(t) = exp

(

iωngt − 2t2

τ 2

)

× exp
(

z 2
±(ωeg , t)

)

erfc
(

z±(ωeg , t)
)

. (7)

Символом erfc x обозначена дополнительная функция

ошибок, определяемая соотношением

erfc x =
2√
π

∞
∫

x

e−t2dt.

Выражение (6) дает описание прямых магнитооп-

тических явлений. В свою очередь, представляющие

для нас интерес обратные магнитооптические явления,

определяются соотношением (7).
Заметим, что в выражениях (6) и (7) состояния

ϕg и ϕn принадлежат основной 4 f N конфигурации

(орбитальное квантовое число l = 3), а возбужденные

состояния ϕe , обладающие противоположной четностью,

принадлежат 4 f N−15d (l′ = l − 1 = 2) или 4 f N−15g

(l′ = l + 1 = 4) электронным конфигурациям. Далее мы

будем пренебрегать расщеплением уровней возбужден-

ных конфигураций (приближение Джадда−Офельта) и

заменим в уравнениях (6) и (7) все величины ωeg на ве-

личину ωl′ = El′/~ (здесь l′ = l ± 1), где El′ — средняя

энергия состояний электронных конфигураций 4 f N−15d

(l′ = 2) или 4 f N−15g (l′ = 4). Типичные значения El′

составляют 104−105 cm−1 [10].
Введем операторы Wαβ = dαP l′dβ (индексы

α, β = x , y, z ), где оператор проецирования

P l′ =
∑

el′
|el′〉〈el′ |, и разложим их на симметричную

W S
αβ(l

′) и антисимметричную W A
αβ(l

′) составляющие:

Wαβ(l
′) = W S

αβ(l
′) + W A

αβ(l
′), где W S,A

αβ = (Wαβ ±Wβα)/2, и
найдем, что выражение (7) можно представить в виде

a (2)
ng = − τ 2

√
π

2~2

∑

l′=l±1

〈

n|qS
l′(E)(F+ + F−)

+ qA
l′(E)(F+ − F−)|g

〉

, (8)
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где

qS
l′(E) =

∑

α

|Eα|2Wαα(l
′) + (E∗

x Ey + Ex E∗

y )W S
xy(l

′)

+ (E∗

x Ez + Ex E∗

z )W S
xz (l

′) + (E∗

y Ez + Ey E∗

z )W S
yz (l

′),
(9)

qA
l′(E) = (E∗

x Ey − Ex E∗

y )W S
xy(l

′) + (E∗

x Ez − Ex E∗

z )W S
xz (l

′)

+ (E∗

y Ez − Ey E∗

z )W S
yz (l

′). (10)

Оператор проецирования P l′ инвариантен отно-

сительно пространственных вращений R3, поэтому

операторы W (0)(l′) = 1
3

∑

α Wαα(l
′), W

(1)
αβ (l′) = W A

αβ(l
′) и

W
(2)
αβ (l′) = W S

αβ(l
′) −W (0)(l′)δαβ преобразуются соответ-

ственно по D0, D1 и D2 неприводимым представлениям

группы R3. Отметим также, что операторы W
(1)
αβ (l′) и

Lαβ = LαLβ − LβLα = i
∑

γ εαβγLγ (здесь L — оператор
орбитального углового момента иона) при операциях

группы вращений R3 преобразуются по одному и то-

му же представлению D1, поэтому, согласно теореме

Вигнера−Эккарта, матричные элементы этих операто-

ров на волновых функциях L−S терма иона пропорцио-

нальны друг другу: W
(1)
αβ (l′) = ic1

∑

γ εαβγLγ . Аналогично,

операторы W
(2)
αβ (l′) при операциях группы R3 преобразу-

ются так же, как и операторы квадрупольного момента

Qαβ(L), поэтому на волновых функциях L−S терма

иона W
(2)
αβ = c2Qαβ . Однако, ради удобства вычислений,

выгоднее выразить операторы W
(2)
αβ и, следовательно,

операторы qS(E) и qA(E), через неприводимые тензор-
ные операторы C

k
q, широко используемые в теории кри-

сталлического поля. В этом случае поправки к волновым

функциям второго порядка ψ
(2)
g (t), введенные уравнени-

ем (4), определяющие обратные магнитооптические эф-

фекты, можно представить в виде, см. приложение (34),

ψ(2)
g (t) = −

√
π

2

(

τ

~

)2
∑

n

(

c1〈n|qS(E0)|g〉

+ c2(2− gJ)i[E
∗

0E0]〈n|J|g〉
)

e−iωnt |n〉, (11)

где qS(E), c1 и c2 определяются соответственно форму-

лами (25) и (33). Второе слагаемое в этом выражении

определяет обратный эффект Фарадея, обусловленный

наличием эффективного магнитного поля, возбуждаемо-

го электрическим полем циркулярно поляризованного
лазерного импульса:

Heff ∼ i[E∗
E].

Первое слагаемое в соотношении (11) определяет чет-

ные обратные магнитооптические эффекты, наведенную

излучением анизотропию и др.

3. Динамические магнитные структуры

В настоящем разделе на основе развитой общей

теории мы рассмотрим динамические магнитные струк-

Локальные оси симметрии редкоземельных ионов в ортофер-

рите диспрозия

k e
x
k e

y

k e
z
k

1 (0; 0;−1) (− sin δ;+ cos δ; 0) (+ cos δ;+ sin δ; 0)
2 (0; 0;+1) (− sin δ;− cos δ; 0) (+ cos δ;− sin δ; 0)
3 (0; 0;−1) (+ sin δ;− cos δ; 0) (− cos δ;− sin δ; 0)
4 (0; 0;+1) (+ sin δ;+ cos δ; 0) (− cos δ;+ sin δ; 0)

туры подсистемы редкоземельных ионов, возбуждаемые

лазерным импульсом в ортоферрите диспрозия.

Недавно был проведен ряд экспериментальных и тео-

ретических исследований обратных магнитооптических

эффектов в редкоземельных материалах, в частности,

в ортоферрите диспрозия DyFeO3 [7]. В ортоферритах

редкоземельные ионы размещены по четырем неэквива-

лентным узлам, симметрия окружения которых описыва-

ется точечной группой CS (отражение в ab-плоскости)
и не содержит центра инверсии, что приводит к воз-

никновению сложных магнитных структур при действии

светового импульса [7]. Кристаллическое поле расщеп-

ляет мультиплеты редкоземельных ионов на синглеты

в случае некрамерсовских ионов и на дублеты в случае

крамерсовских ионов.

Выбор для изучения диспрозиевого ортоферрита обу-

словлен (с
”
теоретической“ точки зрения) тем, что

ион Dy3+ в DyFeO3 обладает простыми и хорошо

изученными низколежащими состояниями [6,8,9]. Кри-
сталлическое поле расщепляет основной мультиплет
6H15/2 иона Dy3+ на дублеты с энергиями E0 = 0 cm−1,

E1 = 52 cm−1, E2 = 147 cm−1 и т. д., см. работу [9].
При этом основной и первый возбужденный дублеты

являются изинговскими и описываются соответственно

функциями | ± 15/2〉 и | ± 13/2〉 в системах коорди-

нат с осями z , лежащими в ab-плоскости под углами

δ = ±60◦ к a -оси. Координаты локальных осей симмет-

рии e
α
k (α = x , y, z , а k = 1, 2, 3, 4) неэквивалентных по-

зиций редкоземельных ионов в ортоферрите диспрозия

приведены в таблице.

Помимо этого, энергия кванта излучения лазера с дли-

ной волны λ = 0.8 µm лежит весьма близко к разности

энергий мультиплетов 6H15/2 и 6F5/2 ионов диспрозия.

Данное обстоятельство инициировало теоретическое ис-

следование учета состояний возбужденного мультиплета
6F5/2 иона диспрозия в качестве промежуточных при

рассмотрении возбуждений магнитной подсистемы ор-

тоферрита диспрозия полем световой волны [7].
Однако, согласно результатам работы [7], близость

энергии кванта излучения лазера к разности энергий

мультиплетов 6H15/2 и 6F5/2 в случае коротких импуль-

сов не приводит к резкому резонансному возрастанию

амплитуды колебаний магнитных моментов. В связи

с этим представляется несомненно актуальным учет

прямых переходов ( f −d и f −g) на формирование

магнитных возбуждений в ортоферрите диспрозия, чего

не было проведено в работе [7] и что ниже рассматри-

Физика твердого тела, 2025, том 67, вып. 11
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вается в качестве примера применения общей теории
настоящей работы.
Волновую функцию ψg(t) редкоземельного иона в

поле импульса гауссовой формы согласно уравнению (3)
при ωg = 0 представим в виде

ψg(t) = ϕg + ψ(2)
g (t).

В случае иона диспрозия в ортоферрите диспрозия
имеем

ψg(t) = | ± g〉 =

∣

∣

∣

∣

±15

2

〉

+ C
(2)
± (E, t)

∣

∣

∣

∣

±13

2

〉

, (12)

где введены функции

C
(2)
± (E, t) = −

√
π(er f d)

2

2
√
7~2

{

〈

±13

2

∣

∣

∣

∣

qS

∣

∣

∣

∣

±15

2

〉

(

F+(ω1, t)

+ F−(ω, t)
)

+

〈

±13

2

∣

∣

∣

∣

qA

∣

∣

∣

∣

±15

2

〉

×
(

F+(ω1, t) − F−(ω, t)
)

}

e−iω1t, (13)

где ω1 = E1/~ = 9.9 · 1012 s−1, а операторы qS и qA

даются формулами (9).
Электромагнитная волна лазерного импульса индуци-

рует зависящий от времени магнитный момент у иона
диспрозия, компоненты которого при низких температу-

рах T ≪ E1/kB ∼ 75K в локальных осях

Mα = 〈+g|µ̂α|+g〉 + 〈−g|µ̂α|−g〉, (14)

где состояния |±g〉 определены соотношением (12), а
оператор магнитного момента µ̂α = −µBgJJα, фактор
Ланде gJ = 4/3.
Пусть свет распространяется вдоль кристаллографи-

ческой b-оси. Компоненты вектора E в локальных осях

E(k)
x = Ec

(

ce
x
k

)

, E(k)
y = Ea

(

ae
y
k

)

, E(k)
z = Ea

(

ae
z
k

)

,

где e
α
k приведены в таблице, а Ea и Ec — проекции

вектора E на оси a и c , направления которых задаются
единичными векторами a и c соответственно.
Рассмотрим падающий импульс гауссовой формы с

линейной и круговой поляризациями. Для линейно по-
ляризованного света

M(k)
a = AµBgJ(sin 2δ)E0a E0c81(F±, t)(−1)k+1,

M
(k)
b = 2AµBgJ(cos

2 δ)E0aE0c81(F±, t),

M(k)
c = AµBgJ(sin 2δ)E

2
0a81(F±, t)(−1)k . (15)

Для поляризованного по кругу света с левым направле-

нием поляризации

M(k)
a =

1

2
BµBgJ(sin 2δ)E

2
082(F±, t)(−1)k ,

M
(k)
b = BµBgJ(cos

2 δ)E2
082(F±, t),

M(k)
c =

1

2
BµBgJ(sin 2δ)E

2
082(F±, t)(−1)k . (16)

В случае правого направления круговой поляризации

величины M
(k)
a и M

(k)
b в формулах (16) должны быть

записаны со знаком минус. При записи выражений (15)
и (16) использованы следующие обозначения:

A =

√
πτ 2

4~2
27

√
5 · 7α2(er f d)

2,

B =

√
πτ 2

12~2
5
√
3(2− gJ)(er f d)

2,

где α2 = −2/(5 · 7 · 9) — параметр Стевенса.

Функции 81(F±, t) и 82(F±, t) определяются согласно

соотношениям

81(F±, t) = Im (F+ + F−) cosω1t − Re (F+ + F−) sinω1t

= C1(t) cos
(

ω1t + ϕ1(t)
)

, (17)

82(F±, t) = Im (F+ − F−) sinω1t + Re (F+ − F−) cosω1t

= C2(t) cos
(

ω1t + ϕ2(t)
)

, (18)

где C1,2(t) и ϕ1,2(t) — соответственно модули и аргумен-

ты (−π 6 ϕ 6 π) комплекснозначных функций F+ ± F−:

C1,2(t) =
√

Re 2(F+ ± F−) + Im 2(F+ ± F−),

ϕ1,2(t) = sign

(

Re (F+ ± F−)

C1,2(t)

)

· arccos
(

Im (F+ ± F−)

C1,2(t)

)

.

(19)
Для длины волны λ = 0.8µm импульса (круговая часто-

та ω = 2.35 · 1015 s−1), длительности импульса τ = 40 fs,

круговой частоты ω0 = 2 · 1016 s−1 графики зависимо-
стей C1,2(t) и ϕ1,2(t) при −2τ 6 t 6 2τ изображены

на рисунке.
Отсюда можно заключить, что в случае линейной

поляризации света колебания всех компонент магнит-
ного момента происходят по закону cosω1t, а в случае

циркулярно поляризованного света для компонент Ma и

Mb по закону sinω1t, а для компоненты Mc по закону
cosω1t .

Сопоставление величин вкладов в амплитуду колеба-
ний (магнитных мод) магнитных моментов ионов дис-

прозия прямых f −d переходов по уравнениям (15)−(18)
и резонансных 6H15/2−6F5/2 переходов [7] свидетельству-
ет о том, что вклад прямых f −d переходов на 3−4 по-

рядка превосходит вклад 6H15/2−6F5/2 переходов.
Заметим также, что для кристаллов с неэквивалентны-

ми позициями редкоземельных ионов, что соответствует
нечетному кристаллическому полю, возникают эффекты,

линейные по напряженности электрического поля, опи-

сываемые возмущением

Vodd = −dE + V odd
CF .

В этом случае

a (2)
ng ∼

∫

〈n|Ed|e〉〈e|Vodd |g〉eiωt + 〈n|E∗
d|e〉〈e|Vodd |g〉e−iωt

+ 〈n|Vodd|e〉〈e|Ed|g〉eiωt + 〈n|Vodd|e〉〈e|E∗
d|g〉e−iωtdt,

в характерном диапазоне частот порядка ω.
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ϕ

 a
n
d
 ϕ

, 
d
eg

1
2

180

120

–180

–120

–60

60

2–2 –1 0 0

t/τ

ϕ
1

ϕ
2

C
 a

n
d
 C

1
2

0.004

0.001

0.002

0.003

2
0
–2 –1 0 0

t/τ

C
1

C
2

0

Зависимость амплитуд C1,2 и фаз ϕ1,2 от времени t/τ .

Поправки второго порядка, определяющие обратные

магнитооптические эффекты, действие электрического

поля волны, f −d переходы:

ψ(2)
g (t) = −

√
π

2

( τ

~

)2 (er f d)
2

√
7

×
∑

f

{

(

F+(ω f g , t) + F−(ω f g , t)
)

〈 f |qS |g〉

+
(

F+(ω f g , t) − F−(ω f g , t)
)

〈 f |qA|g〉
}

e−iω f t | f 〉,
(20)

где в приближении Джадда−Оффельта

F±(ω f g , t) =
1

τ

t
∫

−∞

ϕ±(ω f g , t′)dt′,

ϕ±(ω f g , t)=exp

(

−2t2

τ 2
+iω f gt

)

ez 2
±(ω0,t)erfc

(

z±(ω0, t)
)

,

z±(ω0, t) =
iτ

2
(ω0 ± ω) − t

τ
,

ω0 ∼ 2 · 1016 s−1 — частота f −d перехода. Операторы

qS и qA выражаются следующим образом:

qS =
3√
5

(

|E0z |2 −
1

3

∑

α

|E0α|2
)

C
2
0

+
3

2

√

6

5

(

Re (E∗

0x E0z )(C
2
−1−C

2
1)+i Re (E∗

0y E0z )(C
2
−1+C

2
1)

+ i Re (E∗

0x E0y)(C
2
−2−C

2
2) +

1

2
(|E0x |2−|E0y |2)(C2−2+C

2
2)

)

,

(21)

qA =
2− gJ

3
√
3

(JHv), где Hv = i[E∗

0 × E0].

Достаточно простые формулы получаются, если пред-

ставить импульс в виде синусоидального цуга продолжи-

тельностью τ (−τ /2 6 t 6 τ /2):

ψ(2)
g (t)=− (er f d)

2

4
√
7~2

∑

f

{

(

G+(ω f g , t)+G−(ω f g , t)
)

〈 f |qS |g〉

+
(

G+(ω f g , t) − G−(ω f g , t)
)

〈 f |qA|g〉
}

.

Функции G± при этом имеют вид

G±(ω f g , t) =

=































1

(ω0±ω)ω f g

(

e−iω f g τ /2−eiω f g t
)

при − τ

2
6 t 6

τ

2
,

τ

i(ω0 ± ω)
sinc

(ω f gτ

2

)

при t >
τ

2
,

0 при t < − τ

2
.

4. Заключение

В представленной работе были проведены теоретиче-

ские исследования обратных магнитооптических эффек-

тов, возникающих при воздействии коротких лазерных

импульсов на редкоземельные ионы в различных ма-

териалах. Основной акцент сделан на анализе прямых

разрешенных электродипольных f −d и f −g переходов,

которые оказывают значительное влияние на динамику

магнитных возбуждений в материале.

Была разработана детальная теоретическая модель,

учитывающая взаимодействие ионов с электрическим

полем волны лазерного импульса. Эта модель позволяет

рассчитать смешивание состояний ионов и определить

индуцированные магнитные моменты, возникающие под

действием лазерного излучения. Важным результатом

модели стало выявление того, что прямые f −d пере-

ходы существенно влияют на процессы формирования

магнитных возбуждений в материале, что было проде-

монстрировано на примере ортоферрита диспрозия.

Численные расчеты, выполненные для данного мате-

риала, подтверждают выводы теоретической модели и

показывают, что учет прямых f −d переходов необходим
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для адекватного описания наблюдаемых магнитооптиче-

ских эффектов. Эти результаты подчеркивают важность

дальнейших исследований в области взаимодействия

света с магнитными материалами и открывают новые

перспективы для разработки инновационных оптомаг-

нитных устройств.

5. Приложение

Представим dE в виде произведения циклических

координат dµ и Eµ

dE =
∑

µ=0,±1

(−1)µdµE−µ,

где d±1 = ∓(dx ± idy)/
√
2, d0 = dz и E±1 =

= ∓(Ex ± iEy )/
√
2, E0 = Ez . Воспользуемся генеалоги-

ческой схемой построения волновых функций |g〉 основ-
ной 4 f N и волновых функций |e〉 возбужденных 4 f N−15d

и 4 f N−15g конфигураций [11], согласно которой

|lNSLMSML〉 =
∑

S1L1mµ

∑

MS1
ML1

ξ

GSL
S1L1

CLML

L1ML1
lm

×9S1L1MS1
ML1

(−1)N−ξψlm1/2µ(ξ),

|el′〉 =
1√
N

∑

ξ

(−1)N−ξ9S1L1MS1
ML1

ψl′m′1/2µ′(ξ), (22)

где C
jm
j1m1 j2m2

— коэффициенты Клебша−Гордана,

GSL
S1L1

— генеалогические коэффициенты [11,12], L1,

S1, ML1
, MS1

— квантовые числа исходного терма.

Используем выражение dµ = −er
∑N

ξ=1 C1
µ(ξ) и найдем,

что симметричная часть оператора dE
∗|el′〉〈el′ |dE,

см. (9), примет вид

qS
l′(E) =

∑

µτ mn

(−1)µ+τ E∗

−µE−τ A(ll′1n)Cnm
1µ1τCn

m, (23)

где

A(ll′1n)=(er ll′ )
2C l0

l′010C
l′0
l010

C l0
l0n0

{

1 1 n

l l l′

}

√

(2l′+1)(2l+1).

В формуле (23) фигурными скобками обозна-

чен 6 j-символ [12], а r ll′ = 〈l|r |l′〉 = 〈4 f |r |5d〉 и

r ll′ = 〈l|r |l′〉 = 〈4 f |r |5g〉 — радиальные интегралы. Сум-

мирование в выражении (23) дает

qS
l′(E) =

(2l − 1)(er ll′ )
2qS(E)

(2l′ + 1)
√
2l + 1

, (24)

где

qS(E) =
3√
5

(

|Ez |2 −
1

3

∑

α

|Eα|2
)

C
2
0

+
3

2

√

6

5

(

E∗
x Ez + E∗

z Ex

2

(

C
2
−1 − C

2
1

)

+
E∗

y Ez + E∗
z Ey

2
i
(

C
2
−1 + C

2
1

)

+
E∗

x Ey +E∗
y Ex

2
i
(

C
2
−2−C

2
2

)

+
|Ex |2 − |Ey |2

2

(

C
2
−2+C

2
2

)

)

.

(25)

Теперь выявим связь операторов W A
αβ(l

′) с

оператором Lγ . Для этого вычислим матричные

элементы 〈lNSLMSML|W A
xy(l

′)|lNSLMSML〉 и

〈lNSLMSML|Lz |lNSLMSML〉, a затем сравним их между

собой. Для первого матричного элемента имеем

〈lNSLMSML|W A
xy(l

′)|lNSLMSML〉

=
1

2

∑

el′

(

〈LML|dx |el′〉〈el′ |dy |LML〉

− 〈LML|dy |el′〉〈el′ |dx |LML〉
)

=
i

2

∑

el′

(

〈LML|d−1|el′〉〈el′ |d+1|LML〉

− 〈LML|d+1|el′〉〈el′ |d−1|LML〉
)

. (26)

Используем соотношение (10) и получим

〈LSMLMS |dτ |el′〉 =

=−er ll′

√
N

∑

GSL
S1L1

CLML

L1ML1
lml

C
SMS

S1MS1
1/2µC

lml

l′ml′1τ

〈l||C1||l′〉√
2l + 1

,

〈el′ |dτ ′ |SLMSML〉 =

=−er ll′

√
N

∑

GSL
S1L1

CLML

L1ML1
lml

C
SMS

S1MS1
1/2µC

l′ml′

lml1τ ′

〈l′||C1||l〉√
2l′ + 1

.

(27)
Используем соотношение (27) при τ = ∓1 и τ ′ = ±1

и найдем, что уравнение (26) примет вид

〈SLMSML|W A
xy(l

′)|SLMSML〉 =
i

2

∑

(

CLML

L1M1lml

)2 (

GSL
S1L1

)2

×
√

2l′ + 1

2l + 1

(

(

C lml

l′ml′1−1

)2 −
(

C lml

l′ml′11

)2
)

N(er ll′ )
2

× 〈l||C1||l′〉〈l′||C1||l〉
√

(2l + 1)(2l′ + 1)
= − i

2
N(er ll′ )

2 〈l||C1||l′〉〈l′||C1||l〉
l(2l + 1)

×
∑

S1 L1 ML1

(

GSL
S1L1

)2(
CLML

L1ML1
lml

)2
ml . (28)
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Далее, матричный элемент оператора Lz =
∑

i lz (i)

〈LSMLMS |Lz |LSMSML〉 = N
∑

(

GSL
S1L1

)2(
CLML

L1ML1
lml

)2
ml .

(29)
Сопоставим (28) и (29) и получим, что

W A
xy(l

′) = −i(er ll′)
2 〈l||C1||l′〉〈l′||C1||l〉

2l(2l + 1)
Lz . (30)

Поскольку 〈l||C1||l′〉 =
√
2l′ + 1C l0

l′010, то

〈l||C1||l′〉〈l′||C1||l〉 =

{

−l при l′ = l − 1,

−(l + 1) при l′ = l + 1
.

Используем (30) и найдем, что оператор qA
l′(E), согласно

определению (10),

qA
l′(E) =

(er ll′ )
2

4l(2l + 1)
(l + l′ + 1)i

(

[E∗
E]L

)

. (31)

Подставим (25) и (31) в уравнение (8) и получим

a (2)
ng = −

√
π

2

( τ

~

)2
(

c1〈n|qS(E)|g〉 + c2i[E
∗
E]〈n|L|g〉

)

.

(32)
Здесь величины c1 и c2 выражаются следующим обра-

зом:

c1 =
∑

l′

(er ll′ )
2(2l − 1)

(2l′ + 1)
√
2l + 1

(

F l′

+ + F l′

−

)

,

c2 =
∑

l′

(er ll′ )
2(l + l′ + 1)

4l(2l + 1)

(

F l′

+ − F l′

−

)

, (33)

где величины F l′

± определяются формулами (7), в кото-

рых частоты ωeg заменены на ωl′ .

В подавляющем большинстве случаев при рассмот-

рении редкоземельных ионов достаточно ограничиться

учетом состояний основного мультиплета. В этом при-

ближении в равенстве (32) оператор L можно заме-

нить оператором (2− gJ)J, где gJ — фактор Ланде

мультиплета. Таким образом, смешивание состояний

мультиплета электрическим полем волны определяется

выражением

ψ(2)
g (t) = −

√
π

2

(

τ

~

)2
∑

n

(

c1〈n|qS(E)|g〉

+ c2(2− gJ)i[E
∗
E]〈n|J|g〉

)

e−iωnt |n〉. (34)
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