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Высокоэффективными репличным-обменным алгоритмом метода Монте-Карло исследована модель Изинга

со смешанным спином S = (1/2, 1) на квадратной решетке. Изучена система с фиксированными параметрами

обменных взаимодействий и анизотропии: J1 = −1 (между спинами в подрешетках A и B), J2 = −0.5

(между спинами в подрешетке B) и D = 1.0 (анизотропия для спинов в подрешетке B). Рассчитаны

температурные и полевые зависимости основных термодинамических характеристик (энергии, теплоемкости,
энтропии, намагниченности). Визуализированы структуры основного состояния. Обнаружено наличие двух

последовательных фазовых переходов: при TC1 = 0.285 происходит переход в частично разупорядоченное

состояние, а при TC2 = 0.35 — переход в парамагнитное состояние. Детальный анализ полевых зависимостей

выявил сложную, многоступенчатую кривую намагничивания, указывающую на множественные фазовые

переходы, индуцированные полем. Обнаружена серия плат намагниченности, для каждой из которых

определена магнитная структура. Рассчитаны критические значения поля, соответствующие переходам между

этими фазами, что способствовало всестороннему пониманию фазовой диаграммы системы и ее реакции на

внешние воздействия.
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1. Введение

Исследование магнитных свойств низкоразмерных

спиновых систем остается одной из центральных задач

физики конденсированного состояния. Эти системы не

только демонстрируют богатое разнообразие критиче-

ских явлений и фазовых переходов, но и представляют

значительный интерес для прикладных областей, таких

как спинтроника, хранение информации и разработка

новых магнитных материалов [1–3]. Среди множества

теоретических моделей, используемых для описания

таких систем, модель Изинга занимает особое место бла-

годаря своей концептуальной простоте и одновременно

способности описывать сложные физические явления,

включая кооперативное поведение, возникновение даль-

него порядка и влияние беспорядка [4,5]. Несмотря

на существование точных решений для одномерного и

двумерного случая однородной модели, более сложные

модификации, такие как модели со смешанным спином,

до сих пор представляют собой нерешенную и актуаль-

ную проблему.

Особый интерес в этом контексте представляют моде-

ли Изинга со смешанным спином, в которых кристалли-

ческая решетка состоит из двух или более подрешеток с

разными значениями спинов [4–18]. Такие системы явля-

ются естественными моделями для описания ферримаг-

нетиков, в которых компенсация магнитных моментов

приводит к появлению уникальных термодинамических

характеристик, таких как точка компенсации. Комбина-

ции целых и полуцелых спинов, например, S = (1/2, 1)
и S = (3/2, 2), являются особенно интересными, так как

в них сочетаются эффекты квантовой и классической

природы, что приводит к сложному конкурентному пове-

дению между обменными взаимодействиями, анизотро-

пией и внешними полями [9–11].
Значительное количество работ было посвящено изу-

чению моделей со смешанным спином с использованием

различных теоретических и вычислительных подходов,

включая метод среднего поля, теорию эффективного

поля и метод Монте-Карло (ММК) [12–16]. В частности,

для системы S = (1/2, 1) на квадратной решетке была

исследована фазовая диаграмма и критическое поведе-

ние [12,13]. Было показано, что введение следующего

за ближайшим соседом обменного взаимодействия (J2)
и одноионной анизотропии (D) может приводить к

появлению новых фаз, включая частично упорядоченные

состояния, и влиять на последовательность фазовых

переходов [14,15].

Несмотря на значительный прогресс в изучении мо-

делей со смешанным спином, их фазовое поведение и,

в особенности, тонкие эффекты, связанные с последо-

вательностью фазовых переходов, требуют дальнейшего

углубленного исследования. Применение современных

вычислительных методов, в частности, высокоэффектив-
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ных алгоритмов Монте-Карло, открывает новые возмож-

ности для детального анализа таких систем, позволяя

преодолевать ограничения, связанные с их сложным

энергетическим ландшафтом и сильными флуктуациями.

В нашей предыдущей работе [18] с использованием

репличного обменного алгоритма Монте-Карло были

проведены исследования модели Изинга со смешанным

спином S = (1/2, 1) на квадратной решетке. Исследова-

ние, выполненное для системы с линейным размером

L = 10, позволило идентифицировать четыре различные

магнитные фазы (AF , B−AF , 0I и 0II) и построить

общую фазовую диаграмму в зависимости от параметров

обмена и анизотропии. Для каждой из идентифицирован-

ных фаз были рассчитаны температурные зависимости

ключевых термодинамических параметров.

Последующие, более детальные расчеты на системах с

увеличенными линейными размерами (L = 20, 40 и 100)
в целом подтвердили установленную ранее картину.

Однако ключевым отличием и основным предметом

настоящего исследования стало поведение системы в фа-

зе 0I. Было обнаружено, что при L > 20 в этой фазе

наблюдается не один, а два последовательных фазовых

перехода, ранее не идентифицированных. С повышением

температуры система претерпевает переход из упорядо-

ченной фазы 0I в промежуточную частично разупорядо-

ченную фазу, а затем — в парамагнитное состояние.

В рамках данной работы проведены детальные ис-

следования двухэтапного механизма фазового перехода

в фазе 0I, который проявляется только при корректном

учете конечно-размерных эффектов с использованием

достаточно больших систем.

Настоящая статья посвящена всестороннему изуче-

нию этого сложного явления. Мы фокусируемся на

наборе параметров (J1 = −1, J2 = −0.5, D = 1.0), соот-
ветствующем фазе 0I, с целью установить физическую

природу каждого из двух фазовых переходов и охаракте-

ризовать свойства возникающей промежуточной частич-

но разупорядоченной фазы. Нами, используя расчеты

термодинамических величин и визуализацию спиновых

конфигураций, дано микроскопическое описание процес-

са разрушения магнитного порядка при нагревании.

2. Модель и метод исследования

Модель Изинга со смешанным спином S=(1/2, 1) мо-

жет быть задана следующим гамильтонианом [6–11,18]:

H = −J1

∑

〈i, j〉

σi S j − J2

∑

〈i, j〉∈B

SiS j + D
∑

j∈B

S2
j

− h
∑

i∈A

σi − h
∑

i∈B

Si ,

σi = ±1/2, Si = 0,±1, (1)

где первая сумма учитывает обменное взаимодействие

между спинами в подрешетке A и подрешетке B , вторая
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Рис. 1. Модель Изинга со смешанным спином.

сумма — обмен только между спинами в подрешетке B ,

третья — одноионную анизотропию спинов в подрешет-

ке B , четвертая и пятая — влияние внешнего магнитного

поля.

Решетка со спинами в узлах, условные обозначения

различных состояний спинов и обменные взаимодей-

ствия между спинами приведены на рис. 1. Квадратная

решетка разбивается на две подрешетки A и B , каждая

из которых также делится на две подподрешетки A1,

A2, B1 и B2. На рис. 1 для части узлов указаны и

соответствующие подрешетки.

Данная модель обладает достаточно богатой карти-

ной фаз, в которых система оказывается в зависи-

мости от значений J1, J2 и D. В настоящей работе

нами приводятся результаты моделирования для случая

фиксированного значения J1 = −1, J2 = −0.5, D = 1.0.

При данных значениях параметров в основном состо-

янии система находится в фазе, обозначаемой как 0I,

в которой спины в подрешетке A направлены вверх,

спины в подрешетке B1 принимают нулевые значения,

а спин в подрешетке B2 направлены вниз. В отсутствии

внешнего магнитного поля основное состояние системы

вырождено четырехкратно. Одно из четырех возмож-

ных структур основного состояния системы приведено

на рис. 2. Энергия основного состояния системы при

этом определяется как

E0I =
1

2
J1 +

1

4
D = −0.25.

Температурные и зависимости модели Изинга со сме-

шанным спином S = (1/2, 1) исследованы с помощью

репличного обменного алгоритма Монте-Карло. Выбор

данного метода обусловлен его доказанной эффектив-

ностью при изучении систем с конкурирующими вза-

имодействиями и сложной энергетической структурой.

Подробности реализации и обоснование применимости

репличного обмена Монте-Карло можно найти в ра-

ботах [18–20] и ссылках в них. Расчеты проводились
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0I

Рис. 2. Магнитная структура основного состояния при

J1 = −1, J2 = −0.5, D = 1.0.

одновременно для 300 реплик с периодическими гра-

ничными условиями и линейными размерами L × L = N,

где L — линейный размер решетки (L = 10, 20, 40

и 100), N — количество спинов в системе. Для вывода

системы в состояние термодинамического равновесия

отсекался участок длиной τ0 = 2 · 104 шагов ММК на

спин, что в несколько раз больше длины неравновесно-

го участка. Усреднение термодинамических параметров

проводилось вдоль марковской цепи длиной до τ = 50τ0.

Основные термодинамические параметры (энергия E ,

теплоемкость C, энтропия S, намагниченность систе-

мы m и магнитные моменты подрешеток mA и mB , а так-

же параметр порядка q) были вычислены по формулам:

〈E〉 = 〈H〉, (2)

C =
1

NkBT 2

(

〈E2〉 − 〈E〉2
)

, (3)

S =

T
∫

0

C

T
dT, (4)

m =
1

N

〈

∑

i∈A

σi +
∑

j∈B

S j

〉

, (5)

mA =
1

N

〈

∑

j∈A

σi

〉

, (6)

mB =
1

N

〈

∑

j∈B

S j

〉

, (7)

q = |mB1 − mB2| =
1

N

〈∣

∣

∣

∣

∑

j∈B1

S j −
∑

j∈B2

S j

∣

∣

∣

∣

〉

, (8)

где E — энергия системы. Температура дана в едини-

цах |J1|.

3. Результаты моделирования

Температурная зависимость внутренней энергии си-

стемы для различных линейных размеров решетки пред-

ставлена на рис. 3. Следует отметить, что для удобства

сравнения и обобщения результаты представлены в

безразмерных единицах, нормированных на обменное

взаимодействие J1. Такая нормировка позволяет сравни-

вать результаты для систем с разными J1 и выявлять

общие закономерности.

Температурная зависимость теплоемкости для си-

стем с различными линейными размерами приведена

на рис. 4. Анализ этой зависимости позволяет получить

информацию о том, как система аккумулирует и высво-

бождает энергию при изменении температуры, а также

о наличии фазовых переходов.
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Рис. 3. Температурная зависимость внутренней энергии си-

стемы E .

T

0.1 0.2 0.3 0.4 0.5
0

0.5

1.0C

1.5

2.0

J  = –1.01

J  = –0.52

D = 1.0

0I PD PM

L = 10

20

40

100

0.285 0.350

Рис. 4. Температурная зависимость теплоемкости системы C .
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0I, T < 0.285 PM, T > 0.350PD, 0.285< T < 0.350

Рис. 5. Магнитные структуры системы при различных температурах.
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Рис. 6. Температурные зависимости магнитных моментов

подрешеток mA, mB и параметра порядка q = |mB1−mB2|.

Визуально, на графике наблюдаются два максимума

теплоемкости — в системе происходят два фазовых

перехода. Первый фазовый переход происходит в кри-

тической точке TC1 = 0.285, соответствующей первому

максимуму теплоемкости. При этом система переходит

из упорядоченного состояния (фаза 0I), в частично разу-

порядоченное состояние (фаза PD). В этом состоянии

спины в подрешетке A сохраняют порядок и принимают

значения +1/2, а спины в подрешетке B принимают

случайные значения −1 или 0, при этом доля спинов

с значением −1 равняется доле спинов со значени-

ем 0. Таким образом расчет значений намагниченности

подрешеток не дают информации о фазовом переходе.

Для обнаружения данного фазового перехода следует

воспользоваться параметром порядка q, заданным фор-

мулой (8). При достижении температуры TC2 = 0.35

происходит второй фазовый переход: система из частич-

ной разупорядоченной фазы переходит в парамагнитное

состояние (фаза PM).

Более наглядно данный процесс приведен на рис. 5, на

котором приведены типичные магнитные структуры при

T < TC1, TC1 < T < TC2 и T > TC2.

На рис. 6 приведены температурные зависимости

магнитных моментов подрешеток mA, mB и параметра

порядка q = |mB1−mB2|. Для наглядности на рисунке

приведены данные только для систем с линейными

размерами L = 100. Как видно из рисунка, величины

mA, mB хорошо описывают фазовый переход из частично

разупорядоченного состояния в парамагнитное состоя-

ние при TC2 = 0.35, в то время как параметр поряд-

ка q является чувствительным к фазовому переходу из

упорядоченного состояния в частично разупорядоченное

состояние при TC1 = 0.285.
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Рис. 7. Температурная зависимость энтропии системы S.
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Рис. 8. Полевая зависимость намагниченности m.
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Рис. 9. Полевая зависимость энергии системы E .

На рис. 7 приведена температурная зависимость эн-

тропии S для систем с различными линейными разме-

рами. С понижением температуры энтропия стремится

к значению ln(4)/N, что связано с четырехкратным

вырождением основного состояния. С повышением тем-

пературы энтропия постепенно возрастает, стремясь к

теоретическому пределу ln(6)/2 ≈ 0.89588. Эта величи-

на соответствует максимально возможной неупорядо-

ченности для системы, учитывая количество доступных

спиновых конфигураций. Как видно из рисунка, размер-

ные эффекты проявляются в основном вблизи фазовых

переходов.

Значительный фундаментальный интерес представля-

ет также исследование поведения системы во внешнем

магнитном поле. Полевые зависимости намагниченности

при различных температурах приведены на рис. 8. Как

видно из рисунка, с ростом магнитного поля происходят

несколько скачков намагниченности. При достижении

значения магнитного поля h = 1 система из фазы 0I

переходит в ферримагнитное состояние с намагничен-

ностью m = 0.25. Следующий скачок намагниченности

до значения m = 0.5 происходит при h = 3. Наконец,

при достижении значения магнитного поля h = 5 си-

стема переходит в полностью упорядоченное состоя-

ние (индуцированное полем ферромагнитное состоя-

ние). Ступенчатый характер намагниченности является

следствием конкуренции между Зеемановской энергией

(стремящейся выстроить спины по полю) и энергиями

обменного взаимодействия и анизотропии (стремящи-

мися сохранить антиферромагнитный порядок). Система
переходит в новое состояние, когда выигрыш в энергии

от взаимодействия с полем начинает превышать энер-

гию, необходимую для
”
переворота“ очередной группы

спинов.

На рис. 9 также приведена полевая зависимость пол-

ной энергии системы, состоящей из энергии обменного

взаимодействия и вклада спин-полевого взаимодействия.

Изломы на полевых зависимостях полной энергии соот-

ветствуют скачкам намагниченности.

На рис. 10 представлены магнитные конфигурации ос-

новного состояния, полученные при различных значени-

ях внешнего магнитного поля и температуре T = 0.01,

соответствующие различным плато намагниченности

на рис. 8.

4. Заключение

В данной работе проведено комплексное компью-

терное моделирование модели Изинга со смешанным

спином S = (1/2, 1) на квадратной решетке с исполь-

зованием высокоэффективного репличного обменного

алгоритма метода Монте-Карло. Исследование выпол-

нено для модели, в которой учитывается обменное

взаимодействие между спинами в подрешетке A и B

(J1 = −1), обменное взаимодействие между спинами в

подрешетке B (J2 = −0.5), а также анизотропия для

спинов в подрешетке B (D = 1.0).

Методом компьютерного моделирования определены

магнитные структуры основного состояния системы.

Рассчитаны температурные зависимости ключевых тер-

модинамических характеристик системы: энергии E , теп-

лоемкости C, энтропии S, намагниченности m. Показа-

но, что в системе происходят два фазовых перехода.

При температуре TC1 = 0.285 происходит фазовый пе-

реход из упорядоченного состояния в частично разу-

порядоченное состояние, а при достижении темпера-

туры TC2 = 0.35 происходит переход в парамагнитное

состояние.

Изучено влияние внешнего магнитного поля на маг-

нитную структуру системы. Показано, что наблюдает-

ся ступенчатый рост намагниченности с повышением
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E/N = –0.250 m = 0 h = 0 E/N = –0.250 m = 0 h = 0.5 E/N = –0.250 m = 0.25 h = 1.0

E/N = –0.250 m = 0.25 h = 1.0 E/N = –0.500 m = 0.25 h = 2.0

E/N = –0.500 m = 0.25 h = 2.0 E/N = –0.750 m = 0.38 h = 3.0 E/N = –1.250 m = 0.50 h = 4.0

E/N = –1.750 m = 0.63 h = 5.0 E/N = –2.500 m = 0.75 h = 6.0

Рис. 10. Магнитные структуры основного состояния при различных значениях магнитного поля h (при T = 0.01).
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магнитного поля. Определены магнитные структуры,

соответствующие каждому плато намагниченности.
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