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Исследована температурная зависимость ионной электропроводности для монокристалла суперион-

ного проводника La0.95Sr0.05F2.95 со структурой тисонита (пр. гр P3̄c1) при 210−1073K. Обнаружено,

что в исследованном интервале температур ионная проводимость имеет неаррениусовское поведение

и удовлетворяет уравнению Фогеля-Таммана-Фулчера: σdc T 1/2 = σ0 exp
(

−1HVTF/(T − T0)
)

с параметрами

σ0 = 1.2 · 102 SK1/2/cm, 1HVTF = 0.18 eV и T0 = 85K. Причиной такого поведения зависимости σdc(T ) явля-

ется, по-видимому, энергетическое распределение прыжков ионных носителей (вакансий фтора) вследствие

структурной микронеоднородности твердого раствора. Применение математического формализма Фогеля-

Таммана-Фулчера представляет несомненный интерес для исследования суперионных фторпроводящих

твердых растворов.
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1. Введение

Нестехиометрические фторидные фазы (гетерова-
лентные твердые растворы) R1−y MyF3−y со структу-

рой тисонита в конденсированных системах MF2−RF3
(M — щелочноземельные элементы Ca, Sr, Ba и Cd,

Pb; R — редкоземельные элементы La−Lu, Y) явля-

ются передовыми суперионными проводниками с уни-

полярной фтор-ионной проводимостью [1–5]. Ионная

проводимость в них возникает вследствие гетерова-

лентных замещений катионов R3+ на M2+, приво-

дящих к образованию подвижных
”
кристаллохимиче-

ских“ вакансий фтора. В Институте кристаллографии

им. А.В. Шубникова (Москва) длительное время выпол-

няется программа по системному исследованию ионного

переноса в многокомпонентных фторидных материа-

лах [6–10].

Тисонитовый твердый раствор La1−ySryF3−y обладает

высокой фтор-ионной проводимостью и относиться к

наиболее активно исследуемым фторидным проводни-

кам. Исследования ионного транспорта в нестехиометри-

ческой фазе La1−ySryF3−y проводили с использованием

монокристаллов [11–20], поликристаллов [21–23], ком-

позитов [24,25], тонких пленок [26,27] и наноразмерных

керамик [28–30]. Структурные исследования кристаллов

La1−ySryF3−y выполнены в [31–34].

Однако, следует заметить, что только на монокристал-

лических образцах можно получить фундаментальные

микроскопические характеристики суперионного транс-

порта во фторидных материалах. Поскольку электропро-

водность поликристаллов, керамик и композитов опре-

деляется, главным образом, границами кристаллических

зерен, а электропроводность тонких пленок связана с

состоянием их поверхности.

Для описания температурной зависимости ионной

электропроводности в кристаллах и стеклах традицион-

но используется математический формализм Аррениуса-

Френкеля [35]. Использование этого формализма позво-

ляет наглядно выявить и проанализировать электрофи-

зические процессы, протекающие в кристаллических и

аморфных средах, дает важную информацию о трансля-

ционном (прыжковом) движении подвижных носителей

заряда в структурах суперионных проводников. Этот

подход также применялся ранее для описания ион-

ного транспорта в монокристаллах твердого раствора

La1−ySryF3−y в [9–12,20,21,28–30].
В [18] отмечено, что при высоких температурах

ионная проводимость твердого раствора La1−ySryF3−y

отклоняется от аррениусовского поведения, поэтому

уравнение Аррениуса-Френкеля применяют раздельно

для низко- и высокотемпературных участков темпера-

турной зависимости электропроводности.

Целью работы является исследование неаррениусов-

ского поведения температурной зависимости ионной

проводимости для монокристалла суперионного провод-

ника La0.95Sr0.05F2.95 в широком диапазоне температур

210−1073K.
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2. Эксперимент

Монокристаллы тисонитового твердого раствора со-

става La0.95Sr0.05F2.95 выращены из расплава методом

вертикальной кристаллизации Бриджмена во фториру-

ющей атмосфере и структурно аттестованы (дифракто-
метр HZG-4, излучение CuKα, внутренний стандарт Si)
в Институте кристаллографии [36–38]. Фторируюшая ат-

мосфера, создаваемая продуктами пиролиза тетрафтор-

этилена необходима для подавления реакции пирогид-

ролиза (взаимодействия фторидов с парами воды), яв-
ляющейся специфической реакцией для неорганических

фторидов [39]. Химический состав выращенных кри-

сталлов твердого раствора La1−ySryF3−y соответствовал

составу исходной шихты (y = 0.05) с относительной

погрешностью 5%. Содержание примеси кислорода в

кристаллах было менее 0.01−0.02mass.%.

Образец представлял собой диск с полированными

основаниями, толщина и диаметр диска равны 1.95

и 11.2mm соответственно. Эксперименты выполнены

на неориентированном монокристалле в предположе-

нии квазиизотропного поведения электропроводности,

поскольку анизотропия ионной проводимости в тисони-

товых кристаллах R1−y MyF3−y незначительна [18,40].

Электрофизические измерения проведены методом

импедансной спектроскопии в диапазонах частот

10−1−107 Hz и сопротивлений 1−1010 � на приборе

Solartron 1260 при напряжении 30mV. Описание экспе-

риментальной установки приведено в [17,41]. Электроды
выполнены в виде Ag-контактов. Импедансные измере-

ния проведены в режиме охлаждении в температурном

интервале 210−1073K в атмосфере защитного газа N2

(высокие температуры) и в вакууме ∼ 10−3 Pa (низкие
температуры). Погрешность импедансных измерений не

превышала 2%. Объемное сопротивление Rb кристал-

ла находили по пересечению годографов импеданса с

осью активных сопротивлений. Построение графиков

проводили нелинейным методом наименьших квадратов,

используя программу FIRDAC [42].

3. Математический формализм
Аррениуса-Френкеля

На рис. 1 показана температурная зависимость ион-

ной проводимости в координатах lg(σdcT ), 103/T для

исследованного монокристалла La0.95Sr0.05F2.95. В интер-

вале 210−1073K ионная проводимость увеличивается

от 8.4 · 10−7 до 3.8 · 10−1 S/cm (на 4.5 · 105 раз). Можно

видеть, что зависимость σdc(T ) удовлетворяет уравне-

нию Френкеля-Аррениуса только на низко- и высокотем-

пературном участках по отдельности:

σdc = (σ0/T ) exp[−1Hσ /kT ], (1)

где σ0 — предэкспоненциальный множитель электро-

проводности и 1Hσ — энтальпия активации ионной
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Рис. 1. Температурная зависимость ионной проводимости

в координатах lg σdcT , 103/T для суперионного проводника

La0.95Sr0.05F2.95 в диапазоне температур 210−1073K: точки —

эксперимент, прямые линии 1 и 2 — расчет по уравнению

Аррениуса-Френкеля на низко- и высокотемпературном участ-

ках соответственно.

проводимости. Значения параметров σ0 и 1Hσ рав-

ны 5.5 · 104 SK/cm, 0.33 ± 0.01 eV и 5.1 · 103 SK/cm,

0.23± 0.01 eV при T < T0 и T > T0 соответственно.

Точка изгиба на температурной зависимости σdc(T )

составляет T0 = 480K.

Как отмечено в [17], в суперионике La0.95Sr0.05F2.95
имеет место прыжковый механизм ионной проводимо-

сти, связанный с носителями заряда —
”
примесны-

ми“ вакансиями фтора V •

F , образующимися вследствие

гетеровалентных замещений катионов La3+ на Sr2+ в

кристаллической решетке тисонита:

La×La → Sr
/
La + V •

F . (2)

Здесь обозначения дефектов приводятся в системе

Крёгера-Винка [43].

В структуре тисонита ионы фтора распределены по

трем кристаллографическим позициям пр. гр. P3̄c1 с

соотношением F1 : F2 : F3 = 12 : 4 : 2 [44–46]. Координа-

ционное число анионов фтора по катионам равно 4

для F1 и 3 для F1, F2. Кристаллохимическое различие

между позициями F2 и F3 невелико, поэтому при ин-

терпретации физических свойств их часто объединяют

в общую группу F2,3. Принято считать [47–50], что

ниже 480K ионный перенос преимущественно связан

с миграцией вакансий фтора V •

F по структурным пози-

циям F1.
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Рис. 2. Температурная зависимость ионной проводимости в

координатах ln σdcT−1/2, 103/(T − T0) для суперионного про-

водника La0.95Sr0.05F2.95 в диапазоне температур 210−1073K:

точки — эксперимент, прямая линия — расчет по уравнению

Фогеля-Таммана-Фулчера.

4. Математический формализм
Фогеля-Таммана-Фулчера

Ранее для описания неаррениусовского поведе-

ния ионной проводимости в катионных проводниках

KTiOPO4 [51] и Li2/3−xLi3xTiO3 [52,53] использовали

уравнение Фогеля-Таммана-Фулчера [54–56]:

σdc T 1/2 = σ0 exp
(

−1HVTF/(T − T0)
)

, (3)

где σ0 — предэкспоненциальный множитель электро-

проводности, 1HVTF — энтальпия активации электро-

переноса и T0 — характеристическая температура, ко-

торая отвечает началу структурного разупорядочения

подрешетки ионов проводимости (Li+, K+). На рис. 2

показана температурная зависимость ионной проводимо-

сти в координатах Фогеля-Таммана-Фулчера ln(σdcT 1/2),
103/(T − T0) для монокристалла La0.95Sr0.05F2.95. Можно

видеть, что зависимость σdc(T ) удовлетворяет этому

уравнению во всем исследованном интервале темпе-

ратур (коэффициент корреляции R2 = 0.998). Значения
параметров σ0, 1HVTF и T0 равны 1.2 · 102 SK1/2/cm,

0.18 eV и 85K соответственно.

Причиной неаррениусовского поведения зависимости

σdc(T ) является, по-видимому наличие в исследованном

монокристалле энергетического распределения прыж-

ков ионных носителей вследствие структурной мик-

ронеоднородности твердого раствора. Процесс ионно-

го транспорта в кристаллической структуре твердого

раствора La1−ySryF3−y связан с преодолением ионами

фтора энергетических (потенциальных) барьеров. В [48]

обнаружено, что высота потенциальных барьеров для

движения ионов фтора в тисонитовом кристалле LaF3
имеет вероятностное логарифмическое распределение

Гаусса.

Изучение эффекта суперионной проводимости на мик-

роскопическом уровне и определение концентрации и

подвижности носителей заряда являются актуальными

задачами для ионики фторидных материалов. В супери-

онном проводнике La1−ySryF3−y тисонитовой структуры

реализуется механизм проводимости прыжкового типа

и в условиях тепловой активации в переносе заряда

участвуют анионные носители — вакансии фтора V •

F .

Концентрация носителей заряда не зависит от тем-

пературы и определяется структурным механизмом ге-

теровалентных замещений катионов La3+ на Sr2+. Ге-

теровалентные замещения La3+ на Sr2+ приводят к

зарядовой неоднородности катионной подрешетки и

пространственной неоднородности анионной подрешет-

ки (появлению точечных дефектов V •

F ). Структурно-

разупорядоченное состояние анионной подрешетки име-

ет кристаллохимическую природу и сохраняется при

низких температурах.

С учетом схемы (2) концентрация подвижных вакан-

сий фтора V •

F равна:

nmob = 2Zy/(
√
3a2c), (4)

где число формульных единиц в элементарной ячейке

тисонита Z = 6, мольная доля SrF2 в твердом рас-

творе y = 0.05, a и c — параметры элементарной

ячейки. Значение параметров решетки a и c взяты

из [31]. Для кристалла La0.95Sr0.05F2.95 рассчитанная

по формуле (4) концентрация носителей заряда равна

9.1 · 1020 cm−3 [18] и составляет 1.7% от общего числа

анионов.

Ионная проводимость кристаллов La1−ySryF3−y опре-

деляется характеристиками носителей заряда:

σdc = qnmobµmob, (5)

где q, nmob и µmob — заряд, концентрация и подвижность

вакансий V •

F . Взяв полученные значения σdc и nmob,

можно оценить среднее значение подвижности носи-

телей заряда. Значения подвижности µmob при 210,

400 и 1073K, рассчитанные по уравнению (6), равны

5.8 · 10−9, 6.9 · 10−5 и 2.6 · 10−3 cm2/(sV) соответст-

венно.

Подвижность носителей заряда (вакансий фтора V •

F )
в суперионном тисонитовом нестехиометрическом кри-

сталле La0.95Sr0.05F2.95 значительно выше подвижности

носителей заряда (междоузельных ионов F
/

mob) во флюо-

ритовом нестехиометрическом кристалле Ba0.5La0.5F2.5
(1.1 · 10−7 cm2/(sV) при 400K [50]). Высокие кондук-

тометрические характеристики суперионного проводни-

ка La0.95Sr0.05F2.95 позволяют рассматривать его как

перспективный суперионный фторидный проводник для

практических применений в ионике фторидных мате-

риалов.
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5. Заключение

Гетеровалентный твердый раствор La1−ySryF3−y со

структурой тисонита является модельной системой для

нестехиометрических фторидных супериоников. В су-

перионном проводнике La1−ySryF3−y носителями заряда

являются вакансии фтора V •

F , образующиеся при гете-

ровалентных замещениях матричных катионов La3+ на

примесные катионы Sr2+.

В интервале 210−1073K ионная проводимость мо-

нокристалла La0.95Sr0.05F2.95 увеличивается от 8.4 · 10−7

до 3.8 · 10−1 S/cm (на 4.5 · 105 раз) и имеет неаррениу-

совское поведение. Анализ температурной зависимости

ионной проводимости проведен с использованием урав-

нения Фогеля-Таммана-Фулчера. Значения параметров

в уравнении Фогеля-Таммана-Фулчера равны предэкс-

поненциальный множитель σ0 = 1.2 · 102 SK1/2/cm, эн-

тальпия активации 1HVTF = 0.18 eV и температура, ха-

рактеризующая начало структурного разупорядочения

анионной подрешетки T0 = 85K.

Неаррениусовское поведение ионной проводимости

вызвано, по-видимому, энергетическим распределени-

ем прыжков носителей заряда вследствие структурной

микронеоднородности твердого раствора. Обсуждается

механизм ионного транспорта в суперионном проводни-

ке La0.95Sr0.05F2.95. Применение математического форма-

лизма Фогеля-Таммана-Фулчера представляет несомнен-

ный интерес для дальнейших исследований фторидных

супериоников.
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