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Методом функционала плотности в различных его вариантах с учетом спин-орбитального взаимодей-

ствия исследована зонная структура нанопластин теллурида ртути (HgTe) в пределе двух монослоев

(2ML). Рассмотрены однослойная (1ML) и двуслойная (2ML) нанопластины HgTe в фазе сфалерита,

а также объемный HgTe. Продемонстрировано, что сильное спин-орбитальное взаимодействие в сочетании

с двумерным квантовым ограничением приводит к значительным изменениям в электронной зонной

структуре ультратонких двумерных (2D) нанопластин HgTe и упорядоченности их пограничных зон по

сравнению с трехмерным материалом. Расчеты зонной структуры 2D-нанопластин в ультратонком пределе

выявили целый ряд особенностей: (i) характер зонной структуры 1ML-HgTe (инверсный/неинверсный
порядок зон) зависит от вида используемого функционала плотности; (ii) правильная зонная структура

1ML-HgTe имеет неинверсный (нормальный) порядок зон, а сама нанопластина является прямозонным

в точке Ŵ полупроводником; (iii) в зонной структуре 2ML-HgTe отсутствует запрещенная зона и имеет

место инверсный порядок зон; (iv) зонная структура 2ML-HgTe вблизи уровня Ферми обладает поведением,

характерным для вейлевского полуметалла типа II.
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1. Введение

Двумерные (2D) материалы представляют большой

интерес как с фундаментальной точки зрения, так и

для рационального проектирования микроэлектронных

устройств с новыми функциональными возможностями

в атомарно тонком пределе. Уменьшение толщины ма-

териала приводит, как правило, к изменению различных

свойств и появлению новых интересных особенностей

в электронной структуре. Открытие графена [1] вызва-

ло взрывной интерес к поиску других 2D-материалов,

важных для различных приложений в оптоэлектронике,

спинтронике, солнечной энергетике [2,3] и т. д.

Большинство 2D-материалов, таких как гексагональ-

ный нитрид бора (h-BN), халькогениды металлов, ди-

халькогениды переходных металлов, получают из трех-

мерных (3D) слоистых структур посредством механи-

ческого или химического расслоения отдельных слоев.

Процесс расслоения облегчается тем, что отдельные

слои, для которых характерна сильная ковалентная связь

внутри слоя, удерживаются вместе слабыми ван-дер-

ваальсовыми силами. Кроме того, помимо слоистых

3D-материалов, существует ряд таких, как, например,

силицен и германен, которые имеют стабильные 2D-

структуры и обладают широким спектром интересных

свойств. Силицен был теоретически предсказан [4–9]
как гофрированная (buckled) сотовая структура из ато-

мов кремния (Si), имеющая электронную дисперсию,

характерную для конуса Дирака. Силицен был успешно

выращен на подложках Ag [10–13], Ir [14] и ZrB2 [15]
и многими рассматривается как один из самых перспек-

тивных материалов для электронных устройств следую-

щего поколения [7,9,12].

Халькогениды ртути HgX (X = S, Se, Te) выделяются

среди материалов группы AII-BVI своими необычными

физическими свойствами, обусловленными бесщелевой

зонной структурой и, как следствие, отсутствием энер-

гетического порога рождения электрон-дырочных пар.

Бесщелевой теллурид ртути (HgTe) можно рассматри-

вать [16] одновременно и как полупроводник без запре-

щенной зоны, и как металл без свободных электронов

при T = 0K. С другой стороны, можно считать HgTe

или полупроводником с пустой зоной проводимости

и примыкающей к ней целиком заполненной валентной

зоной, или же металлом с наполовину заполненной

зоной, но с нулевой плотностью состояний на уровне

Ферми [16].

В объемном HgTe состояния валентной 6-кратно вы-

рожденной (с учетом спина) p-зоны, соответствующие

неприводимому представлению (НП) Ŵ15, при учете
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спин-орбитального взаимодействия расщепляются на

4-кратно вырожденные зоны Ŵ8 тяжелых и легких дырок

и 2-кратно вырожденную спин-орбитально отщепленную

зону Ŵ7. При этом зона проводимости Ŵ6, характер-

ная для объемного теллурида кадмия (CdTe), имеющая

симметрию s-типа, в кристалле HgTe оказывается ниже

по энергии валентной зоны Ŵ8, как показывают рас-

четы k·p-методом [17]. Как следствие, ширина запре-

щенной зоны объемного HgTe при T = 0K, определяе-

мая как Eg = E(Ŵ6) − E(Ŵ8), оказывается отрицательной

(−0.28 eV) [17]. Эксперименты по фотоэмиссии с уг-

ловым разрешением показали, что Eg для HgTe имеет

отрицательные значения, а именно, −0.29± 0.02 eV при

температуре 40K и −0.32± 0.03 eV при 300K [18].
При этом величина спин-орбитального расщепления

оказывается равной 0.91 eV, что существенно превышает

соответствующую величину для CdTe [18]. Сильное

спин-орбитальное взаимодействие в кристалле HgTe

обуславливает инверсный порядок зонной структуры

(Ŵ7−Ŵ6−Ŵ8), по сравнению с зонной структурой CdTe

(Ŵ7−Ŵ8−Ŵ6). Инверсная зонная структура объемного

HgTe является уникальным свойством, важным для реа-

лизации квантового спинового эффекта Холла в кванто-

вых 2D-ямах HgTe/CdTe, в которых слой HgTe находится

между двумя слоями CdTe [19–21].

Важной особенностью HgTe и других материалов

группы AII-BVI также является возможность синтеза

2D-структур, которые представляют собой нанопласти-

ны толщиной от одного до нескольких монослоев

(monolayers, ML). При этом под монослоем понимается

квазидвумерная пластина, состоящая из двух плоско-

стей, одна из которых образована атомами металла

(Me =Zn, Cd, Hg), а другая — атомами халькогена

(X = S, Se, Te). Синтез 2D-структур открывает возмож-

ности для управления физическими свойствами матери-

ала посредством изменения толщины [22–24]. В частно-

сти, известно, что уменьшение числа монослоев приво-

дит к увеличению ширины запрещенной в полупровод-

никах вследствие квантово-размерных эффектов [25].

Целью настоящей работы является теоретическое

исследование особенностей зонной структуры нанопла-

стин HgTe в фазе сфалерита в пределе двух ML. Эти осо-

бенности обусловлены сильным спин-орбитальным взаи-

модействием в сочетании с двумерным квантовым огра-

ничением, которое приводит к значительным изменени-

ям в зонной структуре ультратонких 2D-нанопластин

HgTe и упорядоченности их пограничных зон по срав-

нению с 3D-материалом, обладающим инверсной зонной

структурой.

2. Методика расчетов

Расчеты проводились с учетом спин-орбитального

взаимодействия методом функционала плотности (DFT)
в приближениях GGA и GGA+U с GGA-функционалом

в форме PBEsol [26] с помощью плосковолнового кода

Quantum Espresso (QE) [27,28]. Хаббардовское отталки-

вание учитывалось двумя разными способами: (i) в фор-

мулировке Лихтенштейна U−J, которая включает не

только поправку Хаббарда U , но и поправку Хун-

да J [29]; (ii) в упрощенной (вращательно-инвариантной)
формулировке Дударева, в которой вместо U и J по

отдельности рассматривается только один эффектив-

ный параметр: Ueff = U − J (нижний индекс eff часто

опускается) [30]. Для описания электрон-ионных взаи-

модействий использовались полностью релятивистские

(j-зависимые) потенциалы PAW (Projector Augmented-

Wave) [31] из библиотеки псевдопотенциалов кода QE

(psl 1.0.0) [32]. В качестве валентных рассматривались

6s25d10-электроны атомов Hg и 5s25p4-электроны ато-

мов Te.

Полная релаксация всех структур проводилась с ис-

пользованием т. н. алгоритма BFGS (Broyden–Fletcher–
Goldfarb–Shanno) [33–36]. Атомные позиции и парамет-

ры ячейки оптимизировались до тех пор, пока разно-

сти энергий, гельман-фейнмановские силы на атомах

и давление не уменьшались до значений 1 · 10−10 Ry,

1 · 10−6 Ry · r−1
B (где rB — радиус Бора), 1 · 10−2 kbar

соответственно. Процесс самосогласования при каждой

фиксированной геометрии прекращался, когда невязка

по энергии принимала значение 1 · 10−12 Ry. В разло-

жении по базису плоских волн использовалось значение

энергии обрезания кинетической энергии Ecutoff = 80Ry.

При интегрировании по зоне Бриллюэна для объемно-

го HgTe использовалась k-сетка Монкхорста–Пака [37]
9×9×9 (35 k-точек в неприводимой части зоны Бриллю-

эна (IBZ)). Для нанопластин 1ML- и 2ML-HgTe в фазе

сфалерита были выбраны k-сетки 8×8×3 (25 k-точек
в IBZ). Используемые сетки k-точек для объемного

HgTe и нанопластин HgTe были выбраны согласованным

образом, чтобы соответствующие расстояния между

k-точками были примерно одинаковыми и не превыша-

ющими значения 0.03�A−1, что соответствует примерно

одинаковой точности расчетов.

Столь жесткие значения толерансов и Ecutoff были

выбраны с учетом того, что последующие расчеты

дисперсии фононов требуют нахождения равновесной

геометрии с очень высокой точностью. Расчеты колеба-

тельных состояний и дисперсии фононов ультратонких

2D-нанопластин c учетом спин-орбитального взаимодей-

ствия были выполнены нами для полностью оптимизи-

рованной геометрии двумя разными методами, обычно

используемыми для расчетов фононов из первых прин-

ципов: приближения линейного отклика в рамках теории

возмущений для функционала плотности DFPT (density
functional perturbation theory) [38–46] и суперъячееч-

ного подхода с конечными смещениями ионов (finite-
displacement supercell approach, FDSA) [47]. При этом

в расчетах фононов методом DFPT нами была использо-

вана реализация теории возмущений функционала плот-

ности, адаптированная для 2D-структур, предложенная

в работе [48] и имплементированная в плосковолновый

код Quantum Espresso [27,28]. Данная реализация метода
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DFPT для 2D-структур учитывает то обстоятельство,

что традиционно используемые подходы с трехмерными

периодическими граничными условиями не вполне под-

ходят для моделирования двумерных материалов. Это

обусловлено главным образом тем [48], что в ответ

на длинноволновые возмущения возникает паразитное

взаимодействие между системой и внеплоскостными

периодическими образами, обусловленными поведением

∝ 1/q2 Фурье-образа трехмерного кулоновского потен-

циала. Для устранения данного артефакта предлагает-

ся [48] включение усеченного кулоновского взаимодей-

ствия в направлении, перпендикулярном пластине, что,

как правило, позволяет избежать появления мнимых

акустических частот вблизи точки Ŵ.

Верифицирующие расчеты дисперсии фононов в рам-

ках подхода FDSA [47] были выполнены нами с помо-

щью кода Phono3py [49,50].

3. Результаты и обсуждение

Исследованию электронной структуры нанопластины

2ML-HgTe предшествовало рассмотрение нанопластины

1ML-HgTe с зигзагообразной структурой (low-buckled),
представляющей собой монослой из двух атомных плос-

костей Hg и Te, смещенных относительно друг друга на

величину 1 (рис. 1). В результате полной структурной

релаксации методом DFT зигзагообразной нанопласти-

ны 1ML-HgTe постоянная решетки оказалась равной

4.649�A, а величина изгиба 1 — 0.465�A, что хорошо

согласуется со значениями 4.616 и 0.470�A из рабо-

ты [51] с учетом различий в используемых функционалах

и псевдопотенциалах.

В настоящей работе, кроме нанопластины 1ML-HgTe,

была также рассмотрена нанопластина 2ML-HgTe со

структурой сфалерита. Обе нанопластины были по-

строены сколом объемного HgTe (рис. 2, a) вдоль по-

верхности (111). Нанопластина 2ML-HgTe, состоящая

из двух монослоев, имеет последовательность атомных

плоскостей Te−Hg−Te−Hg, как показано на рис. 2, b.

∆

Рис. 1. Вид сверху и сбоку зигзагообразного монослоя

1ML-HgTe, где 1 — величина изгиба монослоя (расстояние
между плоскостями атомов Te и Hg). Атомы Hg показаны

синим цветом, атомы Te — оранжевым.

Bulk

2ML

a

b

Рис. 2. a) объемный HgTe, b) 2ML-HgTe. Атомы Hg показаны

синим цветом, атомы Te — оранжевым.
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Рис. 3. Дисперсия фононных ветвей для нанопластины

1ML-HgTe.

Для постоянной решетки полностью отрелаксированной

методом DFT нанопластины 2ML-HgTe было получено

значение 4.636�A.

Для обеих отрелаксированных ультратонких нанопла-

стин HgTe с помощью кода QE [27,28] нами были

проведены DFPT-расчеты c учетом спин-орбитального

взаимодействия дисперсии фононов вдоль трех высоко-

симметричных направлений (рис. 3). Для гофрирован-

ной нанопластины 1ML-HgTe дисперсия фононов ранее

была также рассчитана в работе [51]. Однако деталей

расчета авторы работы [51] не приводят. Для вери-

фикации результатов наших DFPT-расчетов фононных

дисперсионных кривых нами были также выполнены

соответствующие расчеты в рамках суперъячеечного

метода конечных смещений [47], реализованного в коде

Phono3py [49,50]. При этом нами была исследована
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Рис. 4. Дисперсия фононных ветвей для нанопластины

2ML-HgTe.

сходимость результатов в зависимости от расширения

суперъячейки для различных смещений ионов и числа

k-точек в неприводимой части зоны Бриллюэна. Ока-

залось, что результаты очень чувствительны к выбору

этих параметров расчета, а мнимые частоты в дисперсии

фононов исчезают лишь при достижении суперъяче-

ечного расширения 5×5×1 и использовании k-сетки

2×2×2. Выполненные нами 2-мя разными методами рас-

четы дисперсии фононов зигзагообразной нанопластины

1ML-HgTe подтвердили картину дисперсии фононов,

полученную в работе [51]. Что касается рассчитанной

в настоящей работе картины дисперсионных фононных

ветвей для нанопластины 2ML-HgTe, то она также

не содержит мнимых частот (рис. 4). Таким образом,

наши расчеты дисперсии фононов как методом DFPT,

так и суперъячеечным методом конечных смещений

продемонстрировали термодинамическую стабильность

нанопластин 1ML- и 2ML-HgTe. Важно отметить, что

проведенные нами расчеты фононных спектров нанопла-

стин 1ML- и 2ML-HgTe, но без учета спин-орбитального

взаимодействия, демонстрируют наличие мнимых ча-

стот. Это означает, что учет спин-орбитального взаи-

модействия в расчетах HgTe необходим не только для

получения правильного порядка зон, но также и для

термодинамической стабильности нанопластин HgTe.

Убедившись в термодинамической стабильности нано-

пластин 1ML- и 2ML-HgTe, затем мы выполнили DFT-

расчеты с учетом спин-орбитального взаимодействия

зонных структур обеих нанопластин, а также объем-

ного HgTe. Классификация состояний проводилась по

неприводимым представлениям двойной точечной груп-

пы C3v (3m) для обеих нанопластин и двойной точечной

группы Td (-43m) для объемного HgTe со структурой

цинковой обманки. Для объемного HgTe и зигзагообраз-

ного монослоя 1ML-HgTe расчеты методом DFT зонной

структуры также были проведены в работе [51]. Однако
при этом авторами цитируемой работы использовался

обменно-корреляционный функционал в приближении

локальной плотности (local density approximation, LDA),

а также модифицированный потенциал Бекке–Джонсона
(modified Becke–Johnson, mBJ) [52]. Оказалось, что

функционал LDA приводит к неправильному порядку

зон Ŵ6 и Ŵ7 в объемном HgTe, который исправляется при

использовании потенциала mBJ. Авторы утверждают,

ссылаясь на работу [53], что основной причиной непра-

вильного порядка зон Ŵ6 и Ŵ7 объемного HgTe в LDA-

расчетах является плохое описание p−d-гибридизации

между полуостовными 5d-состояниями Hg и валентными

p-состояниями Te, что приводит к сдвигу 5p-состояний

Te в сторону более высоких энергий. За рамками

статьи [51] остался вопрос, может ли полулокальный

функционал более простого вида, чем mBJ, приводить

к правильному порядку зон. Для ответа на этот во-

прос мы предприняли DFT-расчеты зонной структуры

объемного HgTe с полулокальным GGA-функционалом

в форме PBEsol [26]. Оказалось, что они, как и рас-

четы с локальным LDA-функционалом, также не вос-

производят правильный порядок зон в объемном HgTe

(см. рис. 5, a). Представляет интерес поиск таких мето-

дов расчета, которые позволили бы воспроизвести поря-

док зон, полученный в DFT-расчетах зонной структуры

объемного HgTe с функционалом mBJ, но более про-

стых. Наше внимание привлекла работа [54], в которой

показано, что правильный порядок зон объемного HgTe

можно получить, учитывая одноузельное отталкивание

5d-электронов Hg в рамках метода GGA+U .

При этом в нашей работе для верификации резуль-

татов расчетов с учетом хаббардовского отталкивания

в обеих формулировках было выбрано не минималь-

ное значение параметра U , при котором появляется

правильный порядок зон, а то, при котором двугорбая

зона Ŵ6 становится одногорбой, как в реперных расчетах

с функционалом mBJ [30].
В нашей работе расчеты зонной структуры методом

GGA+U были проведены не только для объемного HgTe,

как в работе [54], но также и для нанопластин 1ML-

и 2ML-HgTe.

На рис. 5, a−c представлены зонные структуры объем-

ного HgTe, рассчитанные методом DFT с GGA обменно-

корреляционным функционалом PBEsol и с учетом

спин-орбитального взаимодействия. На зонной картинке

объемного HgTe (рис. 5, a) s-зона Ŵ6 находится ниже

p-зоны Ŵ7, что соответствует неправильному порядку,

получаемому в DFT-расчетах в приближениях LDA

и GGA. При включении в расчет хаббардовского од-

ноузельного взаимодействия характер зонной картинки

объемного HgTe меняется: с ростом U расстояние между

зонами Ŵ7 и Ŵ6 в точке Ŵ уменьшается, что происходит

вплоть до значений U = 6.0 eV в модели Лихтенштейна

(с J = 1.0 eV) и U = 5.0 eV в модели Дударева. По до-

стижении указанных
”
переломных“ значений U происхо-

дит
”
слипание“ и

”
переворот“ в точке Ŵ двух зон Ŵ7 и Ŵ6:

зоны Ŵ7 и Ŵ6 меняются местами, воспроизводя, таким

образом, характерный для инверсной зонной структуры

объемного HgTe порядок зон (Ŵ7−Ŵ6−Ŵ8), что показано

на рис. 5, b. При дальнейшем увеличении U расстояние
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между зонами Ŵ7 и Ŵ6 начинает увеличиваться, при этом

порядок зон остается правильным (рис. 5, c). Различие
в

”
переломных“ значениях хаббардовского параметра

U в формулировке Лихтенштейна в настоящей работе

и работе [54] обусловлено, на наш взгляд, тем, что ис-

пользуются разные GGA-функционалы (PBEsol — в на-

шей работе и предположительно PBE — в работе [54]).
На рис. 5, d для сравнения приведена зонная структура

объемного CdTe, рассчитанная в тех же приближениях,

что и кристалл HgTe, но без включения хаббардовского

взаимодействия. Из рис. 5, d видно, что зонная структура

объемного CdTe имеет порядок зон Ŵ7−Ŵ8−Ŵ6. При этом

p-зона Ŵ7 занимает на зонной картинке то же положение,

что и на зонной картинке объемного HgTe с правильным

инверсным порядком (рис. 5, b и c). Различие зонных

структур кристаллов CdTe и HgTe состоит в инверсии

зон Ŵ6 и Ŵ8 и в отсутствии энергетической щели

у объемного HgTe.

Зонные структуры объемного HgTe, представленные

на рис. 5, b и c, отвечают полуметаллу с инверсным

порядком зон (p-зона Ŵ8 оказывается выше s-зоны Ŵ6).

При этом p-зоны Ŵ8 тяжелых и легких дырок вырождены

в центре зоны Бриллюэна.

Помимо зонных структур объемного HgTe, нами были

рассчитаны также зонные структуры нанопластин 1ML

и 2ML. Классификация зонных состояний обеих нано-

пластин проводилась по неприводимым представлениям

двойной точечной группы C3v (3m) [55,56], которая

имеет 3 НП, два одномерных Ŵ5, Ŵ6 и одно двумерное Ŵ4.

Дополнительное вырождение
(

E(Ŵ5) = E(Ŵ6)
)

на рис. 6

и 7 обусловлено симметрией относительно обращения

времени. Для монослоя 1ML-HgTe результаты расчетов

оказались сходными с таковыми для объемного. Так,

приближение GGA не воспроизводит правильный по-

рядок зон в точке Ŵ: s-зона Ŵ4 оказывается ниже по

энергии p-зон Ŵ5,6 (см. рис. 6, a). (Такой же порядок

зон получается и в работе [51] для зигзагообразного

1ML-HgTe, рассчитанного в LDA-приближении). При

этом в GGA-приближении валентная зона монослоя

1ML-HgTe имеет двугорбую структуру в окрестности

точки Ŵ, и 1ML-HgTe является непрямозонным полу-

проводником. При включении хаббардовского взаимо-
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действия характер зонной картинки 1ML-HgTe меняет-

ся: с ростом U расстояние между зонами Ŵ4 и Ŵ5,6

уменьшается вплоть до значений U = 9.1 eV в модели

Лихтенштейна (J = 1.0 eV). При
”
переломном“ значе-

нии U = 9.1 eV происходит
”
слипание“ и

”
переворот“

зон в точке Ŵ, как показано на рис. 6, b. При этом,

порядок зон Ŵ4 и Ŵ5,6 становится правильным, характер-

ным для зонной структуры, полученной в работе [51]
в расчетах с функционалом mBJ. При дальнейшем

росте U энергетическая щель между зонами Ŵ4 и Ŵ5,6

”
раскрывается“ — 1ML-HgTe становится прямозонным

полупроводником — медленно растет и достигает значе-

ния 0.1 eV при U = 15.0 eV (см. рис. 6, c).

Резюмируя, можно сказать, что в зависимости от ме-

тода расчета зонная структура нанопластины 1ML-HgTe

имеет либо инверсный, либо нормальный порядок зон.

Инверсный порядок зон получается в расчетах в LDA

и GGA приближениях, а нормальный — в расчетах с

функционалом mBJ, а также в приближении GGA+U ,

как показано в данной работе.

Зонные структуры нанопластины 2ML-HgTe в фа-

зе сфалерита, рассчитанные с функционалами GGA

и GGA+U , представлены на рис. 7. Видно, что оба

приближения дают один и тот же порядок зон для

2ML-HgTe в точке Ŵ — s-зона Ŵ4 оказывается ниже по

энергии p-зон Ŵ5,6. При включении хаббардовского вза-

имодействия GGA зонная структура 2ML-HgTe заметно

не меняется (см. рис. 7, b, на котором приведена зонная

картинка для U = 15.0 eV, J = 1.0 eV). Обращают на

себя внимание существенные различия в GGA+U зон-

ных структурах 1ML-HgTe и 2ML-HgTe (см. рис. 6, b, c
и 7, b). В то время как 1ML-HgTe является прямо-

зонным в точке Ŵ полупроводником, валентная зона

2ML-HgTe имеет в окрестности точки Ŵ два максимума,

несимметричных относительно Ŵ: левый пик немного

выше правого. Причем такой характер зонной структуры

2ML-HgTe имеет место как в GGA-приближении, так

и в GGA+U . При этом, в отличие от зонной структуры

1ML-HgTe, имеющей порядок зон Ŵ4−Ŵ5,6, который в ра-

боте [51] был ассоциирован с тривиальным изолятором,

зонная структура 2ML-HgTe имеет инверсный порядок

зон Ŵ5,6−Ŵ4. Т. е. при увеличении толщины нанопластины

HgTe от одного до двух монослоев порядок зон стано-

вится инверсным.

Вблизи уровня Ферми зонная структура пластины

2ML-HgTe, не обладающей центром инверсии, обнару-
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живает сходство с зонной структурой, характерной для

вейлевского полуметалла типа II [57]. В этом можно

убедиться, обратившись к эскизу закона дисперсии E(k)

полуметалла Вейля типа II, представляющего собой две

разнонаправленные параболы с осями симметрии, сме-

щенными друг относительно друга [58]. На пересечении

этих парабол (зоны проводимости и валентной зоны)

образуются наклонные конусы, характерные для вей-

левского полуметалла типа II, который можно рассмат-

ривать как полупроводник с отрицательной непрямой

запрещенной зоной. Точки пересечения парабол принято

называть вейлевскими узлами. Однако на рассчитанной

нами зонной диаграмме пластины 2ML-HgTe (рис. 7)

не наблюдается точек пересечения зоны проводимости

и валентной зоны. Качественно это можно объяснить, ес-

ли принять во внимание теорему Вигнера–Неймана [59],

согласно которой пересечение термов одинаковой сим-

метрии невозможно [60]. В нашем расчете состояния

зоны проводимости и валентной зоны в точках общего

положения соответствуют одному и тому же непри-

водимому представлению, а следовательно, валентная

зона и зона проводимости расталкиваются в окрестности

этих точек, что приводит к диаграмме, показанной

на рис. 7.

4. Заключение

В настоящей работе плосковолновым методом DFT

с учетом спин-орбитального взаимодействия в прибли-

жениях GGA и GGA+U с обменно-корреляционным

функционалом в форме PBEsol исследована электрон-

ная структура теллурида ртути в фазе сфалерита, как

объемного, так и ультратонких 2D пластин, а именно,

1ML-HgTe и 2ML-HgTe. Посредством расчетов диспер-

сии фононов установлена термодинамическая стабиль-

ность нанопластин HgTe толщиной 1ML и 2ML.

Продемонстрировано, что для халькогенида ртути,

состоящего из тяжелых элементов, сильное спин-

орбитальное взаимодействие в сочетании с двумер-

ным квантовым ограничением приводит к значитель-

ным изменениям в электронной зонной структуре 2D-

нанопластин в ультратонком пределе и упорядоченности

их пограничных зон по сравнению с исходным 3D-

материалом.
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Показано, что объемный HgTe, как и следовало ожи-

дать, является бесщелевым полупроводником, тогда как

зигзагообразная нанопластина 1ML-HgTe — прямозон-

ным в точке Ŵ полупроводником.

Обнаружен целый ряд интересных особенностей зон-

ной структуры 2D-нанопластины 2ML-HgTe. При уве-

личении толщины нанопластины от одного до двух

монослоев порядок зон становится инверсным, а энер-

гетическая щель
”
схлопывается“. В окрестности уров-

ня Ферми валентная зона имеет вблизи точки Ŵ два

максимума, несимметричных относительно Ŵ, а зона

проводимости, соответственно, два минимума. Выявлено

сходство зонной структуры пластины 2ML-HgTe вбли-

зи уровня Ферми с зонной структурой, характерной

для вейлевского полуметалла типа II. Дано качествен-

ное объяснение данного эффекта, который связывается

с расталкиванием состояний валентной зоны и зоны

проводимости, обладающих одной и той же симметрией,

в соответствии с теоремой Вигнера–Неймана.
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