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Основываясь на параметрах парного потенциала межатомного взаимодействия Ми−Леннард-Джонса для

Pt и используя RP-модель нанокристалла получены размерные, температурные и барические зависимости

для различных свойств: модуля упругости, коэффициента теплового расширения, поверхностной энергии,

производной поверхностной энергии по температуре и коэффициента Пуассона. Расчеты размерных

зависимостей указанных свойств выполнены вдоль двух изобар: 0 и 50GPa. Впервые были получены

следующие зависимости для макро- и нано-кристаллов: барические зависимости поверхностной энергии,

барические и температурные зависимости производных поверхностной энергии по температуре и давлению;

барические и температурные зависимости для произведения BTαp; температурная зависимость коэффициент

Пуассона для нано-кристалла.
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1. Введение

Платина широко используется в научных и промыш-

ленных устройствах благодаря своим уникальным ме-

ханическим, теплофизическим и химическим свойствам.

В частности, платина термостойка и способна выдержи-

вать механические нагрузки в агрессивных средах при

очень высоких температурах в течение многих тысяч

часов. Платина часто используется в качестве высоко-

температурного маркера давления в экспериментах по

лазерному нагреву из-за ее способности хорошо по-

глощать лазерное излучение и отсутствию структурных

переходов при больших сжатиях, а также химической

инертности. Платина широко применяется в возобнов-

ляемой энергетике, нефтехимической промышленности,

автомобилестроении и фармацевтической инженерии [1].
Платина находится под постоянным вниманием иссле-

дователей в области экстремально высоких давлений.

Так в работе [2] проводилось исследование уравнения со-
стояния платины при давлениях до 430GPa. Настолько

высокие давления интересны не только в аспекте физики

твердого тела, но и при изучении свойств веществ

внутри планет, имеющих значительно больший размер,

чем Земля, например, газовых и ледяных гигантов.

Авторы работы [3] изучали свойства платины, являю-

щейся одним из важнейших стандартных материалов в

статических и динамических экспериментах с высоким

давлением, в условиях экстремальных давлений метода-

ми ударной компрессии в диапазоне до 1.1 TPa. Несмот-

ря на то, что платина является широко изучаемым

металлом, некоторые зависимости для макрокристалла

ГЦК-Pt остаются не изученными, как эксперименталь-

но, так даже и теоретически. К примеру, барические

зависимости модуля упругости BT представлены только

в работе ДорогокупцаП.И. [4], барические зависимо-

сти коэффициента теплового расширения представлены

только двумя работами [4,5]. Для удельной (на единицу

площади) поверхностной энергии барические зависимо-

сти в литературе не представлены, соответственно не

изучены и производные поверхностной энергии по тем-

пературе и давлению. Также отсутствуют температурные

и барические зависимости для произведения BTαp(P),
зачастую данное произведение считают константой.

Изучение нанокристаллов платины на данный момент

является активно развивающейся темой в исследова-

ниях многих авторов [6–10]. Отметим, что в основ-

ном работы, связанные с нанокристаллами, посвящены

получению самих нанокристаллов и реже посвящены

изучению их термодинамических свойств. Например,

платиновые НК необычной тетрагексаэдрической (ТГЭ)
формы, размером порядка ∼ 100 nm, были получены с

высоким выходом путем электрохимической обработки

Pt наносфер, нанесенных на стеклоуглерод [6]. Каталити-
ческая активность ТГЭ Pt нанокристаллов превосходит

каталитическую активность сферических Pt наночастиц.

NC были использованы для ускорения электроокисле-

ния муравьиной кислоты и этанола, которые являются

перспективными альтернативными видами топлива для

прямых топливных элементов [6]. В работе [7] изучались
зародышеобразование и рост нанокристаллов, образо-
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Сравнение свойств ГЦК-Pt при P = 0 и T = 300K, полученных в данной работе с литературными данными

V0 (cm3/mol) αp (10−6 K−1) BT (GPa) (∂BT /∂P)T 2 (K) γ

Наши результаты 9.0215 25.36 238.09 6.93 249 2.27

для N = ∞

Наши результаты 8.8699 29.01 208.35 6.93 238 2.27

для N = 306, f = 1

Литературные 9.094 [2] 26.82± 0.15 [15] 274.1 [2] 276.07 [4] 5.128 [2] 230 [5] 2.802 [4]
данные 9.091 [4] 19.4 [17] 273.5 [5] 259.7 [13] 5.30 [4] 230 [19] 2.75 [5]

9.090 [5] 26.79 [20] 260.10−279.10 [14] 4.70 [5] 230 [21] 2.64 [15]
9.0946 [13] 274.4 [15] 5.839 [13] 2.18 [17]
9.1075 [14] 274 [16] 5.10−5.8 [14] 2.63 [19]

9.0888−9.1254 [15] 251.21−310.24 [17] 5.66 [15] 2.69 [21]
9.0783 [16] 275.3 [18] 5.5 [16]

8.9657−9.5173 [17] 276.4 [19] 273 [21] 5.207 [17]
9.0904 [18] 4.78 [18]
9.1161 [19] 5.12 [19]
9.041 [20] 4.8 [21]
9.090 [21]

ванных лиганд-платиновыми соединениями. Понимание

этих процессов необходимо для рационального проекти-

рования функциональных нанокристаллов с четко опре-

деленным составом, формой и размером для применения

в катализе, медицине и нанотехнологии. Механизмы ро-

ста платиновых нанокристаллов от отдельных атомов до

конечных кристаллов в атомном масштабе изучены с по-

мощью in situ жидкофазной сканирующей просвечиваю-

щей электронной микроскопии в статье [8]. В работе [9]
утверждается, что контролируемый рост наночастиц Pt,

форма которых далека от равновесной, с возможностью

выбора размера имеет важное значение для исследова-

ния их уникальных физических и химических свойств.

Используя когерентную дифракционную визуализацию

Брэгга, в работе [10] наблюдалась аномальная плоскость

скольжения {110} в двух субмикронных кристаллах Pt,

выращенных совершенно разными методами и имеющих

совершенно разную морфологию. Используя указанный

метод, авторы работы [10] исследовали пластичность

и необычное поведение дефектов в нано масштабе.

Однако зависимость термоупругих свойств от размера

и формы нанокристалла Pt в литературе практически не

изучена. Имеются только статьи по изучению размерной

зависимости температуры плавления нанокристалла Pt

при нулевом давлении.

Исходя из отсутствия вышеуказанных зависимостей

для макрокристаллов, в нашей работе с единых позиций,

на основе формализма [11] и RP-модели нанокристалла

из [12] впервые для макро- и нано-кристалла ГЦК-Pt рас-

считаны барические зависимости поверхностной энер-

гии, также получены графики для барических и тем-

пературных зависимостей производных поверхностной

энергии по температуре и давлению. Показана эволюция

барических зависимостей BT и αp при переходе от

макро к нано-кристаллу. Впервые получены бариче-

ские и температурные зависимости для произведения

BTαp, как для макро, так и для нано-кристалла ГЦК-Pt.

Показано, что BTαp не является константой и может

быть принята таковой только при определенных P−T

условиях. Представлены размерные зависимости вдоль

трех различных изотерм для модуля упругости BT ,

коэффициента объемного теплового расширения αp, а

также для удельной поверхностной энергии σ . Впервые

рассчитан коэффициент Пуассона для нано-кристалла Pt.

2. Метод расчета

Для расчета свойств гранецентрированного кристал-

ла (ГЦК) кристалла Pt представим парное межатом-

ное взаимодействие в виде потенциала Ми−Леннард-

Джонса [11]:

ϕ(r) =
D

(b − a)

[

s
( r0

r

)b

− b
( r0

r

)a
]

, (1)

где D и ro — глубина и координата минимума потенци-

ала, b > a > 1 — параметры.

Расчеты термодинамических свойств производились

на основе формализма из [11]. Для расчетов свойств

ГЦК-платины были использованы следующие парамет-

ры: масса атома m(Pt) = 195.08Da; kn(∞) = 12 —

первое координационное число в макрокристалле и

k p = 0.7405 — коэффициент упаковки ГЦК-структуры.

Параметры потенциала (1) были определены в рабо-

те [11] и соответственно равны:

ro = 2.7675 · 10−10 m, D/kB = 11400.7K,

a = 3.05, b = 11.65. (2)

В таблице представлены результаты расчетов сле-

дующих термодинамических свойств платины при
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P = 0 и T = 300K: V0 (cm3/mol) — молярный объ-

ем; BT = −ν(∂P/∂ν)T (GPa) — модуль упругости,

v — удельный на число частиц объем; αp = Cν/V · BT

(10−6 K−1) — объемный коэффициент теплового рас-

ширения, Cν — изохорная теплоемкость, V — объем;

(∂BT/∂P)T — производная модуля упругости по давле-

нию при T = 300K; 2 (K) — температура Дебая; γ —

первый параметр Грюнейзена. Также в таблице приведе-

но сравнение полученных результатов с литературными

данными из более чем десяти источников. Следует

отметить, что модель [11] в связке с RP-моделью [12]
позволяет вычислять размерные зависимости свойств

нанокристаллов.

Как видно из сравнения, рассчитанные величины хо-

рошо совпадают с литературными данными. Хорошее

совпадение наших данных с литературными позволяет

использовать потенциал (1) и метод расчета из [11] для
изучения барических, температурных, а также размер-

ных зависимостей термоупругих свойств ГЦК-Pt.

3. Результаты

На рис. 1 показаны изотермы уравнения состояния

ГЦК-Pt. Давление дано в ГПа, удельный объем, на
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Рис. 1. Изотермы уравнения состояния для макрокристалла

ГЦК-платиы.
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Рис. 2. Барическая зависимость коэффициента теплового рас-

ширения (слева) и модуля упругости (справа) ГЦК-платины.

рис. 1, a — в cm3/mol = 10−6 m3/mol, а на рис. 1, b —

в относительных единицах. Сплошными линиями по-

казаны наши расчеты изотерм 300, 1300 и 1900K.

Штриховыми линиями показаны результаты расчетов

изотерм 300K из [18]. Квадратами представлена изо-

терма 300K, окружности — 1300K, треугольники —

1900K из работы [5]. Штрих-пунктирными линиями

представлены данные для изотермы 300K из статьи [13].
Как видно из рис. 1, наши данные хорошо согласуются с

литературными.

На рис. 2 показаны барические зависимости модуля

упругости (BT в GPa, справа) и коэффициента теплового

расширения (αp в 10−6 1/K, слева) ГЦК-Pt. Сплошными

линиями слева показаны наши расчеты изотерм 300,

1300, 1900 K, справа сплошными линиями указаны наши

расчеты для изотерм 300 и 1000K. На левом графике

открытыми окружностями, квадратами и треугольника-

ми показаны расчеты изотерм 298, 1000 и 2000K для αp

(на левом графике) из работы [4]. Штриховыми линиями

на левом графике показаны данные для αp изотерм 298,

1300, 1900K из [5]. Штриховыми линиями на правом

графике показаны данные для BT изотерм 298, 1000

из [4].
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Рис. 3. Уравнение состояния для макро- и нано-кристаллов

ГЦК-платины.

Анализ, представленный на рис. 1 и 2, демонстрирует

хорошее соответствие результатов наших вычислений

данным, полученным другими авторами в [4,5,13,18].
В связи с этим, указанный метод с параметрами потен-

циала (2) был применен нами для расчета барических,

температурных и размерных зависимостей макро и на-

нокристалла ГЦК-Pt.

На рис. 3 две нижние линии — изотермы T = 300K,

две верхние линии — изотермы T=1000K. Сплошные

линии — расчеты для макрокристалла Nb, пунктир-

ные — для нанокристалла из N = 306 атомов и f = 1,

здесь и далее f — это параметр формы. Основываясь

на RP-модели положим, что нанокристалл со свобод-

ной поверхностью Гиббса имеет вид прямоугольного

параллелепипеда с квадратным основанием, ограненный

гранями типа (100). Величина f = Nps/Npo — это

параметр формы, который определяется отношением

числа атомов на боковом ребре Nps к числу атомов

на ребре основания Nps . Для стержневидной формы

f > 1, для куба f = 1, для нанокристалла пластинчатой

формы f < 1. Число атомов в нанокристалле, равное:

N = f (Npo)
3/α, изменяется в пределах: 23 ≤ N ≤ ∞,

гдеα = π/(6k p) — параметр структуры. При отклонении

формы от энергетически оптимальной, т. е. от f = 1, все

размерные зависимости для нанокристалла усиливают-

ся [11,22].

Уменьшение роста давления при переходе от макро- к

нанокристаллу указывает на уменьшение модуля упру-

гости с уменьшением размера. На графике имеются

точки пересечения изотерм уравнения состояния макро-

и нано-кристаллов с координатами:

PA = 1.87GPa, (ν/νo)A = 1.0003, T = 300K;

PB = 6.16GPa, (ν/νo)B = 1.0005, T = 1000K.

В этих точках давление не зависит от размера (N) при

данной температуре и форме нанокристалла.

Сравнение изоморфно f = 1 изотермических бариче-

ских зависимостей модуля сжатия BT = −ν(∂P/∂ν)T ,

для макро и нанокристалла платины при N = 306 и

f = 1 показано на рис. 4. Линии 1 и 2 — расчеты для

макрокристалла вдоль изотерм 300 и 1000K, линии 3

и 4 — расчеты для нанокристалла при N = 83 и f = 1

вдоль изотерм 300 и 1000K. Видно, что величина BT для

нанокристалла всегда меньше, чем для макрокристалла

при той же температуре. Как ясно следует из полу-

ченных результатов, модуль упругости BT (N) умень-

шается при изотермо-изоморфном уменьшении числа

атомов N.

Барические зависимости производной модуля упруго-

сти (∂BT /∂P)T для макро- и нано-кристалла ГЦК-Pt при

N = 306 и f = 1 приведены на рис. 5. Сплошные линии

расчеты для макрокристалла вдоль изотерм T = 300

и 1000K, штриховые линии — расчеты для нанокри-

сталла при N = 306 и f = 1 вдоль изотерм 300 и 1000K.
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Видно, что на зависимости есть точки с координатами:

PA1 = 0.09GPa; ((∂BT /∂P)T )A1 = 6.93 для T = 300K,

PA2 = 1.76GPa; ((∂BT/∂P)T )A2 = 6.93 для T = 1000K,

где (∂BT/∂P)T не зависит от N и от f для данной

температуры.

Имеются также точки с координатами:

PB1 = 33.46GPa; ((∂BT/∂P)T )B1 = 6.14 для N = 306,

PB2 = 37.89GPa; ((∂BT/∂P)T )B2 = 6.14 для N = ∞,

где (∂BT/∂P)T не зависит от температуры при данном N.

На рис. 6 представлены изоморфно ( f = 1 и f = 20)
изобарические (P = 0) размерные зависимости моду-

ля упругости платины вдоль трех изотерм. Квадраты,

окружности и треугольники — изотермы 100, 300 и

1000K, соответственно. Сплошные линиями указаны

расчеты для параметра формы f = 1, штриховые для

f = 20. Видно, что с уменьшением размера происходит

уменьшение значения BT . Также, данные зависимости

иллюстрируют утверждение о том, что при отдалении

значения фактора формы от энергетически выгодного

( f = 1, соответствующего кубической форме для RP-

модели) — размерные зависимости усиливаются, т. е.

при одном и том же количестве атомов и при одной

температуре, модуль упругости будет меньше для си-

стемы имеющий большее отклонение от f = 1. Видно,

что по мере уменьшения числа атомов, при опреде-

ленном N, зависимости BT = f (lg(N)) обрываются. Это

обусловлено тем, что при меньшем числе атомов не

возможна конфигурация, в которой фактор формы будет

сохраняться постоянным. Стоит отметить, что указанные

особенности характерны и для остальных размерных

зависимостей, представленных в данной работе.
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изотерм.

На рис. 7 приведено сравнение барических зависимо-

стей коэффициента объемного теплового расширения:

αp(P) = (1/ν)(∂ν/∂T )P , для макро- и нано-кристалла

ГЦК-платины при N = 306 и f = 1. Сплошные линии

расчеты для макрокристалла вдоль изотерм 300 и

1000K, штриховые линии — расчеты для нанокристалла

при N = 306 и f = 1 вдоль изотерм 300 и 1000K.

Видно, что при данном P зависимости для нанокри-

сталла лежат выше, чем для макрокристалла, что обу-

словлено вкладом поверхности, где атомы колеблются с

большей амплитудой.

На рис. 8 приведено сравнение барических зависимо-

стей производной (∂αp/∂P)T для макро и нанокристалла

платины при N = 306 и f = 1. Сплошные линии расчеты

для макрокристалла вдоль изотерм T = 300 и 1000K,

пунктирные линии — расчеты для нанокристалла при

N = 306 и f = 1 вдоль изотерм T = 300 и 1000K. Вид-

но, что зависимости (∂αp/∂P)T от P для нанокристалла

лежат ниже, чем для макрокристалла.
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Рис. 10. Барическая зависимость произведения BTαp(P) для

макро- и нано-кристалла ГЦК-Pt.

На рис. 9 показаны изоморфно ( f = 1 и f = 20)
изобарические (P = 0) размерные зависимости коэф-

фициента объемного теплового расширения αp(lg(N))
для трех изотерм. Квадраты, окружности и треугольни-

ки — изотермы T = 100, 300 и 1000K соответственно.

Сплошные линиями указаны расчеты для параметра

формы f = 1, штриховые для f = 20. Видно, что с

уменьшением размера увеличивается значение αp, а

с увеличением температуры усиливается зависимость

функции αp от размера (т. е. от N), показано, что про-

исходит усиление размерных зависимостей для формы,

резко отличающейся от кубической ( f = 20).

На рис. 10 показана зависимость произведения моду-

ля упругости на коэффициент теплового расширения:

BTαp(P) = (∂P/∂T )ν , для макро- и нано-кристалла Pt

при N = 306 и f = 1. Линии 1 и 2 — расчеты для макро-

кристалла вдоль изотерм 300 и 1000K, линии 3 и 4 —

расчеты для нанокристалла при N = 83 и f = 1 вдоль

изотерм T = 300 и 1000K. Видно, что на зависимости

есть точки, где произведение BTαp не зависит от N и от

f для данной температуры:

для T = 300K :

PA1 = −3.75GPa; BTαp(PA1) = 5.94 [10−3 K−1GPa],

для T = 1000K :

PA2 = 5.29GPa; BTαp(PA2) = 6.23 [10−3 K−1 GPa].

Также есть точки, где произведение BTαp не зависит от

температуры при данном N:

PB1 = −7.98GPa; BTαp(PB1) = 5.83 [10−3 K−1 GPa]

для N = ∞,

PB2 = −3.12GPa; BTαp(PB2) = 5.95 [10−3 K−1 GPa]

для N = 306.

Эволюция барической зависимости произведения

BTαp(P) = (∂P/∂T )ν , для макро- и нано-кристалла Pt

при N = 306 и f = 1 показана на рис. 11. Для нано-

кристалла ГЦК платины приведены восемь изотерм в

диапазоне от T=30 до 1000K, обозначены на рисунке

сплошными линиями. Для иллюстрации отличий между

макро и нано- кристаллами для трех изотерм T = 30, 60

и 1000K, штриховыми линиями приведены данные для

макрокристалла. Из рисунка видно, что в диапазоне

температур от T = 120 до 130K барическая зависи-

мость BTαp(P), в исследуемом диапазоне давлений,

почти отсутствует и произведение BTαp можно считать

одинаковым (для макро- и нано-кристаллов ГЦК Pt) и

постоянным, равным BTαp ≈ 5.35 [10−3 K−1GPa].
На рис. 12 представлены барические зависимости для

σ — удельной (на единицу площади) поверхностной
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Рис. 11. Барическая зависимость произведения BTαp(P) для

макро- и нано-кристалла ГЦК-Платины для широкого диапазо-

на температур.
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энергии грани (100) для макро- и нано-кристалла плати-

ны. Линии 1 и 2 — расчеты для макрокристалла вдоль

изотерм T = 300 и 1000K, линии 3 и 4 — расчеты

для нанокристалла при N = 306 и f = 1 вдоль изотерм

T = 300 и 1000K. Видно, что барические зависимости

имеют точки максимума, имеющие следующие коорди-

наты:

для 300K : σ = 2.69 J/m2
, P = 47.60GPa, для N = ∞,

для 1000K: σ = 2.64 J/m2, P = 52.34GPa, для N = ∞,

для 300K : σ = 2.68 J/m2
, P = 41.98GPa, для N = 306,

для 1000K: σ = 2.63 J/m2, P = 46.12GPa, для N = 306.

На изотерме T = 300K присутствуют две характер-

ные P-точки, на существование которых было указано

в [23,24] на примере железа и ниобия. В P-точках

значение σ (P) не зависит от N и формы при заданном

значении T . Для ГЦК-платины координаты P-точек сле-

дующие:

PA = 5.18GPa; σ (PA) = 2.59 [J/m2],

PB = 39.13GPa; σ (PB) = 2.68 [J/m2].

Для изотермы T = 1000K P-точки отсутствуют.

На рис. 13 показаны температурные зависимости

удельной поверхностной энергии σ макрокристалла

ГЦК-платины. Сплошные линии — наши расчеты (кри-
вые 1 и 2 изобары P = 0 и P = 50GPa соответственно),
символами представлены экспериментальные данные:

окружности [25], треугольник [26], квадрат [27].
Штриховые линии (кривые 3 — модель Тайсона и

4 — модель Zhang et. al.) — результаты расчетов из

работы [28]. Как видно из рис. 13 наши расчеты согла-

суются с имеющимися экспериментальными и расчетны-

ми данными. С увеличением температуры наблюдается

уменьшение значения поверхностной энергии во всем

диапазоне изученных давлений.
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Рис. 13. Температурные зависимости для σ — удельной

поверхностной энергии макро-кристалла Pt.

В дальнейшем, по мере увеличения давления, зна-

чения σ становятся отрицательными, что показано на

рис. 14, a. Линии 1 и 2 — расчеты для макрокристалла

вдоль изотерм T = 300 и 1000K, линии 3 и 4 — расчеты

для нанокристалла при N = 306 и f = 1 вдоль изотерм

T = 300 и 1000K. При σ < 0 веществу, при таких

значениях давления, энергетически выгодным становит-

ся увеличить свою удельную (на атом) поверхность,

т. е. находиться в фрагментированном состоянии. Ниже

описаны характерные точки фрагментации рис. 14, b, в

которых происходит изменение знака σ :

P f 1 : P = 627.36GPa, T = 300K, N = ∞,

P f 2 : P = 625.4GPa, T = 1000K, N = ∞,

P f 3 : P = 553.33GPa, T = 300K, N = 306,

P f 4 : P = 551.35GPa, T = 1000K, N = 306.

Барические зависимости производной модуля упруго-

сти (∂σ/∂P)T для макро- и нано-кристалла ГЦК-Pt при

N = 306 и f = 1 приведены на рис. 15. Сплошные линии

расчеты для макрокристалла вдоль изотерм T = 300 и

1000K, штриховые линии — расчеты для нанокристалла

при N = 306 и f = 1 вдоль изотерм 300 и 1000K.

Видно, что, как и в случае с производной модуля

упругости (∂BT/∂P)T рис. 5, на зависимости есть точки

с координатами:

PA1 = 18.71GPa; (∂σ/∂P)T A1 = 3.02 · 10−3 Jm2GPa−1

для T = 300K,

PA2 = 22.61GPa; (∂σ/∂P)T A2 = 3.04 · 10−3 Jm2GPa−1

для T = 1000K,

где (∂σ/∂P)T не зависит от N и от f для данной

температуры.

Имеются также точки с координатами:

PB1 = −11.28GPa; (∂σ/∂P)T B1 = 1.77 · 10−2 Jm2GPa−1
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Рис. 15. Барические зависимости производной удельной

поверхностной энергии (∂σ/∂P)T для макро- и нано-

кристаллов Pt.

для N = 306,

PB2 = −40.12GPa; (∂σ/∂P)T B2 = 5.54 · 10−4 Jm2GPa−1

для N = ∞,

где (∂σ/∂P)T не зависит от температуры при данном N.

На рис. 16 представлены изохорические (кри-
вые (1−4) на рис. 16, a) и изобарические (кривые (5−8)
на рис. 16, b) температурные зависимости производной

удельной поверхностной энергии (∂σ/∂T )V,P для макро-

(кривые 1, 2, 5, 6) и нано-кристаллов (кривые 3, 4, 7, 8) Pt

вдоль двух изобар P = 0 (кривые 1, 3, 5, 7) и P = 50GPa

(кривые 2, 4, 6, 8). Видно, что для макрокристалла на-

блюдается большое отличие в величине изохорической

и изобарической производных, в то время как для нано-

кристалла это отличие становится незначительным. Так-

же нужно отметить, что для изобарической производной

(∂σ/∂T )P наблюдается значительно большая разница

между значениями для макро- и нано-кристаллов в

области температур T > 50K. Для всех зависимостей

можно отметить, что происходит уменьшение абсолют-

ных значений (∂σ/∂T )V,P при увеличении T .

В случае изохорической зависимости с уменьшением

размера наблюдается увеличение абсолютных значений

(∂σ/∂T )V а для изобарической зависимости наблюда-

ется значительное уменьшение абсолютных значений

(∂σ/∂T )P с уменьшением размера нано-кристалла.

На рис. 17 показаны изоморфно ( f = 1 и f = 20)
изобарические (P = 0) размерные зависимости σ (lg(N))
платины вдоль трех изотерм. Квадраты, окружности и

треугольники — изотермы T = 100, 300 и 1000K со-

ответственно. Сплошные линиями указаны расчеты для

параметра формы f = 1, штриховые для f = 20. Видно,

что с уменьшением размера происходит уменьшение

значения σ . Также видно, что с увеличением темпера-

туры зависимость σ от размера (т. е. от N) усиливается.

Как и для функций B t(lg(N)) и αp(lg(N)) (рис. 6 и 9), для
зависимости σ (lg(N)) наблюдается усиление размерной

зависимости с увеличением отклонения фактора формы

от единицы.

На рис. 18 показаны изобарические температурные

зависимости коэффициента Пуассона, рассчитанного по

формуле [29]:

µ(N, T ) =
1

2
−

1

48 · Xsc(N, T ) · [γ(N, T )]2
,

Xsc(N, T ) =
σ (N, T )

c · MT (N, T )
,

где γ — первый параметр Грюнайзена, σ — удель-

ная поверхностная энергия грани (100), BT — модуль

упругости. Зависимости рассчитаны для макро- (кривые
с окружностями) и нано-кристалла N = 306 атомов и

f = 1 (кривые с треугольниками) ГЦК-Pt для двух

давлений P = 0 (две средние кривые с символами) и

P = 50GPa (две нижние кривые с символами).
Две сплошные кривые без символов — литературные

данные, полученные двумя различными способами в

работе [30]. Как видно из рисунка, наша зависимость
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Рис. 16. Изохорические и изобарические температурные зависимости производной удельной поверхностной энергии (∂σ/∂T)V,P

для макро- и нано-кристаллов Pt вдоль двух изобар P = 0 и P = 50GPa.
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стиц в нано-кристалле ГЦК-Pt для трех изотерм T = 100, 300

и 1000K.

0 100 200 300 400 500 600 700 800 900

0.28

0.32

0.36

0.40

0.44

0.48

0.52

 

T, K

µ

 Jurgen Merker et. al.

 Jurgen Merker et. al.

 Macro f = 1, P = 0

 Macro f = 1, P = 50 GPa

 N = 306, f = 1, P = 0

 N = 306, f = 1, P = 50 GPa
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хорошо совпадает с экспериментальными данными, а ис-

пользуемый в данной работе формализм из [11,12,23,29]
позволяет произвести расчеты коэффициента Пуассона

как при изменении давления, так и при уменьшении

размера нано-кристалла.

4. Заключение

Впервые изучена размерная зависимость как уравне-

ния состояния, так и барических зависимостей следую-

щих свойств платины: изотермический модуль упруго-

сти, коэффициент теплового расширения, произведение

КТР на модуль упругости, удельная поверхностная энер-

гия и коэффициента Пуассона. Также изучены производ-

ные этих функций по давлению и температуре.

На рис. 3 найдены характерные точки пересечения

изотерм уравнения состояния макро- и нано-кристаллов

с координатами:

PA = 1.87GPa, (ν/νo)A = 1.0003, T = 300K;

PB = 6.16GPa, (ν/νo)B = 1.0005, T = 1000K.

В этих точках давление не зависит от размера (N) при

данной температуре и форме нано-кристалла.

При изучении барической зависимости BTαp(P)
(рис. 11) обнаружено, что в диапазоне температур от

T = 120 до 130K барическая зависимость BTαp(P),
в исследуемом диапазоне давлений, почти отсутству-

ет и произведение BTαp можно считать одинаковым

(для макро- и нано-кристаллов ГЦК Pt) и постоянным,

равным BTαp ≈ 5.35 [10−3 K−1GPa], данное утверждение
совпадает с допущением Берча [31] о постоянстве про-

изведения BTαp, однако это утверждение справедливо

в узком диапазоне температур, что хорошо видно из

рис. 11.

Показано, что при уменьшении размера значения αp

увеличиваются, а BT уменьшаются вдоль изобары. Для

σ наблюдается более сложный ход зависимости, но

при давлениях P > 39.13GPa тенденция к уменьше-

нию значения σ с уменьшением размера сохраняется

для изотермы 300K. Для изотермы 1000K значения

σ уменьшаются с изоморфным уменьшением размера

вдоль изобары. При отклонении формы от энергетически

оптимальной т. е. от куба ( f = 1) размерные зависимо-

сти изученных функций усиливаются. Данное утвержде-

ние проиллюстрировано на примере размерных зависи-

мостей функций B t(N), αp(N) и σ (N) для трех изотерм

на рис. 6, 9 и 17 соответственно. Указанное поведение

размерных зависимостей термоупругих свойств было

изучено для нанокристаллов вольфрама в работе [22].
Также показано, что барическая зависимость σ (P)

имеет точки, в которых наблюдается максимум поверх-

ностной энергии:

для 300K σ = 2.69 J/m2
, P = 47.60GPa, для N = ∞,

для 1000K σ = 2.64 J/m2
, P = 52.34GPa, для N = ∞,

для 300K σ = 2.68 J/m2
, P = 41.98GPa, для N = 306,

для 1000K σ = 2.63 J/m2
, P = 46.12GPa, для N = 306,

также на данной зависимости наблюдаются P-точки.

В P-точках значение σ (P) не зависит от N и формы при

заданном значении T . Для изотермы T = 1000K P-точки

отсутствуют. Нами получены следующие координаты P-

точек (изотерма T = 300K):

PA = 5.18GPa; σ (PA) = 2.59 [J/m2],

PB = 39.13GPa; σ (PB) = 2.68 [J/m2].

При дальнейшем увеличении давления, значения σ (P)
продолжают уменьшаться и затем обретают отрицатель-

ные значения, что проиллюстрировано на рис. 14. При

σ < 0 веществу энергетически выгодным становится

увеличить свою удельную (на атом) поверхность, т. е.

перейти во фрагментированное состояние. Получены

следующие значения точек фрагментации для макро- и

нано-кристалла ГЦК-Pt, в которых происходит измене-

ние знака σ :

P f 1 : P = 627.36GPa, T = 300K, N = ∞,

P f 2 : P = 625.4GPa, T = 1000K, N = ∞,

P f 3 : P = 553.33GPa, T = 300K, N = 306,

P f 4 : P = 551.35GPa, T = 1000K, N = 306.

При изучении температурных зависимостей (∂σ/∂T )
обнаружено, что в случае изохорической зависимости

с уменьшением размера наблюдается увеличение аб-

солютных значений (∂σ/∂T )V , а для изобарической

зависимости наблюдается значительное уменьшение аб-

солютных значений (∂σ/∂T )P с уменьшением размера

нано-кристалла.

Впервые изучена эволюция температурной зависимо-

сти коэффициента Пуассона с уменьшением размера

вдоль двух изобар P = 0 и P = 50GPa. Показано, что

с уменьшением размера нано-кристалла происходит уве-

личение µ на всем диапазоне температур и давлений.

Увеличение давления приводит к значительному умень-

шению µ, так увеличение давления до 50GPa приводит

к уменьшению µ в µP=0/µP=50GPa ≈ 1.42 раза.
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