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Introduction

Although a flat diode is a simple structure, analytical
expressions for the dependence of transparency D(E, Uy)
on energy and anode voltage during electron tunneling
are not known for it. The current-voltage curves (CVC)
and J(U,, Tg, Ta) are also not analytically known —the
dependences of current density on the anode voltage U,
(electrostatic potential of the anode) and the temperatures
of the cathode T¢ and anode T,. Although these values can
be calculated in the [1-6] tunneling models used, they are
important for vacuum electronics (including nanoelectron-
ics), as well as for solid-state and semiconductor electronics.
In a number of modeling tasks, the specified parameters
are repeatedly changed and calculated. The analytical
CVCs are critical in considering the diode interaction with
the connection circuit. Modeling of tunnel devices has
been continuously improved since the beginning of this
concept (1928) (see [7-9] and the literature cited there).
First, tunneling from a flat, remote metal cathode with
an electric field set on it was considered. After that, the
investigation of influence of the cathode surface structure
and its material on tunneling was started [7-9]. The
effect of field penetration into semiconductor and carbon
structures, including nanoporous structures, was discovered.
The shapes of the potential barrier and the effect of
electrodes on it in nanoscale structures are obtained [1-4].
The classification of emission as auto-electronic (field) and
thermoelectronic [8] was limited to a single thermal field
emission [3].

We consider the simplest model of a metal-dielectric-
metal diode (or metal-insulator-metal MIM) without field
penetration into metal electrodes. Metals are considered
to be highly conductive, ie., the Debye penetration depth
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Lp = v/€0ekg T(€2Ne) in them has an atomic layer size with
the concentration of free electrons Ne ~ 102 m—3, and the
low-frequency permittivity (DP) of lattices € ~ 10.

The purpose of this work is to obtain analytical relations
for a diode. The structure of the work is as follows:
First, we obtain accurate profiles of the quantum potential,
then we obtain their parabolic approximations, on the basis
of which we solve the Schrodinger equation (SE) and
find transparency at a given energy. Then we calculate
the integral current density as a function of voltage on
the anode and approximately analytically calculate the
integrals found in order to obtain explicit dependencies.
Let’s denote the cathode-related values by the indices
L or ,+“ and the anode-related values we denote
as ,,a“ or ,,—“, respectively. Next, the corresponding
cathode indexes will sometimes be omitted. Tunneling,
especially in resonant tunneling structures (RTS) at high
current, is accompanied by heating of electrodes [1], so
knowledge of the temperature dependences of CVC is
also important. The theory of Fowler—Nordheim (FN)
(or WKB approximation) is applicable for cold emission
at a very remote anode and at energies at which the
potential barrier is wide enough, which is not true for
the nanostructures. In addition, the resulting transparency
contains an unknown pre-exponential factor [10]. Therefore,
for the diode it is necessary to solve a one-dimensional SE
equation (—hdZ,/(2me) +V(X) — E)¥(x) = 0 with quan-
tum potential V (x) given in Fig. 1 and allowing for the elec-
trodes effect [1-4]. Thus, V(0) = Eg¢, V(d) = Egc — €U,,
where U, — anode voltage. If the work func-
tions (WF) of W, cathode and anode differ then
V(d) = Epc — €Uy + W, —W,. A vacuum diode may be
considered as a source of electrons and as an element of an
electron gun for electronic devices [2-4]. Solid-state diodes
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Figure 1. Potential barrier shape V [eV] and energy diagrams
in vacuum diode d = 10nm depending on coordinate X [nm| at
different anode voltages (V): 3 (curve 1), 7 (curve 2), 9 (curve 3).
The electrodes are made of copper: Er =7, W =4.36¢eV. The
lines 4 and 5 show the tunneling through the barrier 2 and 1,
respectively. The levels 6 and 7 correspond to the curves 2 and 3
at Wa < W, (6) and Wa > W, (7). The dashed line § — is a
triangular approximation of barrier 3.

are commonly used in generators of various frequency
ranges. The transition to a vacuum diode in the obtained
ratios occurs when substituting DP ¢ = 1. The model
does not take into account semiconductor electrodes with
a field penetration depth from fractions of nanometers to
tens and hundreds of nanometers. It also does not apply to
tunnel diodes, which consider tunnel and diffusion currents,
i.e. there shall be a dielectric between the electrodes, which
is assumed to be ideal. In the considered diode, at low
temperatures, the current is mainly tunneling in nature, and
taking temperature into account leads to the appearance
of a usually small temperature component. However, at
high voltages and currents, strong heating is possible, and
the model takes into account thermal field emission with
different electrode temperatures. We consider surfaces to
be atomically smooth.

1. Parabolic approximation of potential

The exact potential for the diode included in SE is
determined by the method of multiple images [1-4] and
is given in appendix (P1) along with the legends. The
calculations as per (P1) are shown in Fig. 1 together with
energy diagrams. Next, the formula (P1) is approximated by
a parabola of the second and fourth orders. The energy is
counted from the bottom of the cathode conduction band.
At large size d, the barrier relative to Fermi energy (FE)

has a height of W;/e, and when the potential is applied,
it decreases due to the Schottky effect. At small d,
a stronger decrease occurs due to the mutual influence
of the electrodes. This decrease is very strong at high
anode voltage and low d, while the maximum of the
barrier is shifted to the cathode. At a critical potential,
the barrier relative to Fermi level (FL) of the cathode
disappears when the maximum point hits the cathode. This
critical potential is found from the condition V/(0) = 0 or
U, = W.d/(eed;). For the considered case of a vacuum
diode, this corresponds to the anode voltage Uy = 44.4V at
a critical field 4.4-10°V/m. At such fields, the barrier
turns into an almost linear bevel to the anode, and for
energies below FL, it becomes almost triangular on a small
rectangular pedestal.

The potential (P1) is inconvenient for an analytical
solution of SE. It is usually solved numerically using a
piecewise constant approximation [2-4]. The barrier is
also constructed using parabolic approximation [3,4], s = 2
in (1), as well as a more accurate approximation by a fourth-
order parabola [4], s = 4:

V(X) = Er + e (1- 3) [1 - (2—X - 1)1 _ X gy

& d d d

An even more accurate approximation, differing
from (P1) by no more than 1%, can also be constructed
by [1-4], but it is inconvenient for an analytical solution.
In jcite3, the exact formula (P1) is compared with the
parabolic approximation according to formula (1) at s =2
and 4 at U, =0, as well as with the more accurate
approximation given there. Calculations show that approx-
imation (1) with s =2 describes a narrow barrier well
enough and gives an error of about a few percent for a wide
one. The formula with s =4 has an error of about 1%.
It accurately takes into account the height of the barrier
in the center and its values on the electrodes. Taking
into account the anode potential in the form of adding an
exact linear term —eU,X/d does not change the accuracy.
The SE solution with a barrier (1) has the same margin
of error as its shape itself An approximate description
of the barrier as a rectangular shape, triangular shape,
triangular shape on a pedestal (trapezoid), often used in
the literature, gives a significant error in the current. So, a
triangular barrier greatly underestimates, and a rectangular
barrier of the same width — overestimates the current
by times. In formula(1), the materials of the electrodes are
considered the same, the value W =W (1 — /d) means
WF reduced due to the influence of electrodes, and the
parameter a = §(2.7716 — 1656/(3d)) ~ 2.77166 that takes
this into account is small. Next, we take WF and FE
for the electrodes as having equal values, since the effect
of different materials is simply limited to adding the term
(W, —W,)x/(ed) to the potential V. We also introduce
the value W = W/ ¢, which determines the decrease in the
barrier due to the dielectric. To get the analytical solution
of SE we use approximation (1) at S=2 and 4. In this
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case, when s =2 and we make substitution of variables
7 =2x/d — 1in (1) we have a quantum potential

V(r) =

as well as SE ¢"(r) = (ar? + br +c)¢(1).
dimensionless constants are denoted

Er +W(1 —7%) —eUa(1+17)/2,

Here the

a = d’mW/(2h?),

b = d’meU,/ (4h%),
¢ = d’me(E — Er — W 4 €U, /2)/(2h%). (2)
Also .
¢ = —d’me(Er — E)/(2R*) —a +b.

Here at 0 <x <d the new variable changes within
—1 <7 <1. It is convenient to make another substitution:
t=(r +1)/2, pt) =2t — 1), ¢"(t) =4¢"(r). Then,
variable t changes within 0 <t <1, and SE becomes

@"(t) = (a2t — 1)2+b(2t — 1) + €)@(t)/4. Let’s rewrite
it as

@"(t) = (at®> + bt 4 ¢)p(t),
where

b=b/2—a=d’me(eUa/4 — W)/(2R?),

c=(6—b+a)/4=d’m(E —Er)/(8h%).

It should stressed that a > O, b> 0, while € > 0, if
E > Er + W — eU,/2 (over-barrier passing at low voltages).
At low voltages, E < Ef +W —eU,/2 corresponds to
€ < 0, with tunneling taking place mainly. At E =Ef
c=0. Conditions ¢ < 0 is consistent with tunneling,
and ¢ > 0 — corresponds to the over-barrier passing. If
0 < E < Eg — €U, then tunneling to E level of the anode
is possible if the electron from this level preliminary goes to
FL Eg — eU, of the anode with absorption of the energy
quantum Ef —eU; — E. At the same time, due to the
Nottingham effect, a quantum of energy is released at
the cathode Er — E, ie, the total energy released during
junction of one electron from the cathode to the anode is
equal to eU,. It is evolved due to the operation of the
power supply source. If eUy > 2(Er +W) (large anode
voltages), then € > 0 for all energies. IfW = 0, then a = 0,
and the potential becomes linear. In this case SE has the
most simple form at E = Eg or ¢ = 0: ¢’ (t) = bte(t). Its
solution satisfies the integral equation (IE)

o(t) =9(0) + @' (0)t + b//t’(p(t’)dt’dr.
0 0

By substituting & = b'/3t,
malized to U”(§) =£&u(é) and has its solutions in
Bessel functions [4]: u(z) = V&zZ,5(2i€%?/3)  or

u(b'2x/d) = /(b'3x/d)Zy 3 (2i (b'/x/d)*?/3). Here
Z,(z) = C13,(z) + C,Y,(z) — general solution of Bessel
equation of index v = £1/3, C; — arbitrary coefficients

@(t)=u(é) SE is nor-
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(integration constants). Using these functions or Airy
functions, it is easy to solve a problem with a linear
potential.  Solutions in special functions for a # 0 are
possible only in special cases, and in the general case are
not known.

2. Solution of SE. Parabolic
approximation

We are looking for a solution at a given energy E and
a wavenumber (WN) ko =+/2mcE/% at the cathode in
the form of ¥(x) = exp(ikox) + Rexp(—ikox). On the
cathode at x <0 we have V(x) =0 (Fig. 1), ie. the
potential changes in a stepwise manner from 0 to Eg¢c. From
boundary conditions at X = 0 it follows that

1-R= (p/(O) = al/(ikod),
Y:(l — R)/(l + R):al/(ikodao), 2R = do — al/(ikod),

2:a0+a1/(ik0 )

WN in the barrier region K(x) = /2me(E — V(x))/% may

be imaginary (Fig. 1, area k2 < 0 for the curve 2 up to its
intersection with line E) or real (Fig. 1, region k? > 0 after
intersection of curve 2 with the line E). The intersection
points correspond to the turning points. Usually, regions
k? > 0 are not taken into account during tunneling, i.e.
movements up to the turning point Xy are considered.
However, the region X < X < d changes the phase of the
wave function and shall be taken into account. In it the
particle moves in a quasi-classical way. Let’s denote a series
of used wave numbers. On the cathode for energy E we
have the wave number Ko. If the particle is moving to the
FL of the cathode, then ke = v/2meE¢/h. If it is moving to
the FL of the anode, then (Fig. 1)

1+ R=¢(0) = a,

Ka = v/2Me(Erc +We — Wy — eU,) /.

In the barrier region upstream the anode

d) = /2me(E — Erc +Wa — W, + €Uy) /A

These ratios are simplified with identical electrodes. Elec-
tron with energy E moves from the cathode in a wave-
like manner before scattering onto FL of the anode, i.e.
until reaching the anode. Therefore, the FL on the
anode shall be taken as 1(x) = T exp(iko(x —d)). After
scattering, the electron goes into the power supply with WF

»(x)

Here ¢ — the mean free path (MFP) of the electron on
the anode. For copper Ae =42nm, ie. this region that
doesn’t obey SE may be significantly larger d. Junction
from E level to ps = Epc +We —W; — €U, level of the
anode may be accompanied by the release (if E > u5) or
absorption (if E < ua) of a quantum of energy (Fig. 1),
ie, the anode either heats up or cools down due to

= Texp(ika(x — d — Ze)).
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the junction. Similarly, reverse tunneling to the cathode
either cools it or heats it by |E — uc|. On average, the
electrodes heat up, and at high voltage, the anode heats up
more. During reverse tunneling at the anode, the incident
WF has the form (x) = R~ exp(—iko(x —d)), and the
wave going to the source at the cathode has the form
P(x) = T~ exp(—ikox). If we need to solve the problem up
to the turning point, then the coefficients of reflectance and
transmission in both directions will coincide: Rt = R~ =R,
T+ =T~ =T, whereas |[R¥|>+|T*|>=1. The turning
point Xp is found from the condition E =V (Xp). If
€U, ~ Ef, then Xy ~ d (Fig. 1). If eU; = Ef, then Xy =d
equality is true, while reverse tunneling from the cold anode
(at T =0) is impossible: all energy levels on it become
negative. From the level E > 0 of the anode, the electron
tunnels to the level E of the cathode, and then moves to
FL Erc (Fig. 1, lines 4 and 5). Upon transition from the
level E of any of the electrodes, the electron moves to its FL,
giving or absorbing a quantum of energy, after which it goes
to the power source. This is no longer a wave or ballistic
process (like tunneling), but a diffusion process. It occurs
on MFP and doesn’t obey the law of conservation of energy
IR + |T|> = 1. In any case, when one electron jumps from
the cathode to the anode, the source performs work eU,.
At eU, < Egg, reverse tunneling for positive levels at the
anode is also possible. Moving to the same cathode level,
such an electron on MFP is replaced by an electron from
the cathode’s FL, moving to its level. Next, the hot electron
moves from the cathode to the power source. During
such a junction, a quantum of energy is absorbed at the
cathode and carried away to the source, i.e., the cathode is
cooled down. This is the opposite of the Nottingham effect
that occurs for reverse tunnel current. Since the number
of reverse tunneling electrons is significantly less than the
number of direct tunnel junctions, the overall density of
the total anode current J is positive, and the power supply
as a whole heats both the cathode and the anode. When
high-energy thermal electrons are tunneled, they cool the
electrode from which they tunnel, and when they get to
another electrode, they heat it, switching to its lower FL.
These contributions are generally lower than the tunnel
ones. In any case, the power of the source JU; is spent
on heating the electrodes. If there is an energy level on
the anode E, then the transmission ratios in both directions
also coincide, i.e. the transparency of the barrier is the
same and can be calculated as D(E) = 1 — |R(E)|?. If there
is no such level (at zero temperature), then D~ (E) =0,
D*(E) = |TP=1-|R?*>0. At non-zero temperature
T > 0, there are always such levels, so it is convenient to
consider the same transparencies D* =D~ = D. In this
case, there are jumps in wave resistances (WR) at both
the cathode and the anode. Let’s determine the normalized

WRs as
p = Ko/ = Ko/ /2Me(E — V) /.

Then at the cathode p =Kko/ko =1,
cathode region p =1/y/1 —Egc/E imaginary

in the near-
(with

energy less than FE), in the near-anode region
pa = 1/y/1 —Erc/E + eUs/E (with the same WF), and at
the anode p; = pg = 1.

We will integrate SE using the series method, taking
the expansion @(t) = ao(1 + @o(t)) + 191 (t) as a power
series with coefficients t"an/nk:

Ztn 2 O‘n

We obtain the solution by equating the coefficients at the
same degrees. We have @, = Cay, a3 = ca; + bay, and for
n > 4 we have recurrent relation

oo
2 an
(at” + bt +c) E o
n=0

With its use we obtain the following ratios:

as = 2l(cay + bay + aay) = 2!((C2 +a)ay + bal),

as = 3!(caz + bay + aay) = 3!(2bcay + (a + i), . . ..

Thus, the general solution is expressed as

@(t) = ao + aopo(t) + a1 (t),
where

@o(t) = ct?/2+bt?/6 + (c* +aj*/12 + .. .,

p1(t) =t4ct}/6 +bt*/12 + .. .,

besides

®0(0) =@1(0) =0, ¢,(0) =0, ¢@i(0)=1.

If we use previous substitution and expansion in 7"an/n!,
then the recurrence relations and the type of solution will
take the same form:

an = (N—2)/(Can_2 + ban_3 +aan_4),

$(t) = ao(1+ ¢o(r)) + a1¢1(r)
and
(1) = ap + aopo(t) + a1 (1),

where
do(t) =C€t%/2+brd/6 + (€ +a)r/124 ...,

¢1(t) =1 +CEr3/6+br/12+. ...

The reflectance and transmission coefficients are de-
termined by imposing boundary conditions on WF and
its derivative. The results are given in the Appendix
(formulae (P2)—(P5)). Using a finite number of
terms in the series, we may approximate the functions
and their derivatives @{(1) =c+b/2+ (c>+a)/3+...,
@it)=14¢/2+b/3+.... Next, from (P4) and (P5) we
determine the approximate value of G, linking «; and ay, as
well as the coefficient @, with a; = ikod(2 — ap). More-
over, a; = 2ikod/(1 +ikodG). Then, using the recurrent
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formula, we calculate all the coefficients o, N+ 2, 3, ... up
to those numbers when the terms an/Nn! become negligible.
Using these coefficients we calculate ¢(1) and ¢’(1). We
have the following formulae:

T =¢(1) = apo(l) + a1¢1(1),

T = ¢/(1)/(ikod) = [aog((1) + 1 i (1)]/(ikod),
R= ayg — 1.

The following discrepancies can be determined from them:
(errors):
A=o(1) —¢'(1)/(ikod),

A = @(1) — appo(l) — a1g1(1),
Ay = ' (1) — [aopp(1) + engp(1)].

Now we may refine the coefficients from the conditions
Ay = Ay = 0, which gives

a1 = (@(1) — aopo(1)) /i1 (1),

ao=[¢" (1)1 (1) =@ (1)@ (1)]/ (9o (D1 (1) = @p(1)eo(1)).

Continuing the calculations with these coefficients, we
determine the errors again, and so on until convergence.
The accuracy is determined by the relative error of the
solution &, = |1 — ¢’(1)/(ikodep(1))|.  Since tunneling
is a process without energy losses, the residual error
A=1—|R]>—|T|>=0 shall also turn to zero to provide
accurate solution. Accordingly, we have the transparency of
the barrier D =1 —|R]? or D = |T|2.

There is an analogy between SE and Helmholtz equation
in optics when photons pass (tunnel) through a layer of
an ideal dielectric [8]. k?> < 0 stands for the electron
tunneling, and negative DP ¢ < 0 (plasma) stands for the
photon tunneling. We have the following consistency of the
problems: ¢ =1 —V/E. For the photon passing through
the final non-absorbing layer, |R|? + |T|> = 1 is also fulfilled.
Both a photon in the layer and an electron in the potential
are quasi-particles. Upon entering a dielectric, the velocity
of a quasi-photon changes over a short length (on the order
of) several atomic layers (offset theorem) due to collective
interaction, and upon exiting the layer, it is restored. At
e < 0, the velocity becomes imaginary, as does the velocity
of the electron inside the barrier. When passing through
the barrier, the electron also retains its momentum and
energy. The structure of the diode at large U, corresponds to
the movement of a photon through the junction of regions
with e =1, &(X) <0 and &(d) > 1. For d =0 we have
1+R=T,R= (ko — k(d))/(ko + k(d)) and for £ > 1 for
the photon R~ —1, ie. it is completely reflected from the
dielectric half-space. This is not true for an electron, i.e., the
analogy is incomplete: the transition to FL with scattering
disrupts the wave process.

The exact solution of the equations may be obtained by

direct iteration by taking aéo) = ap, Ap = A and calculating
aékﬂ) = aék) — kA until convergence (k=0,1,2,...).
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Table 1.

]

Coefficients in expansion @o(t)

0
c
b
2(c* +a)
312bc
4(ac + 2!(ac + b? +c?))
5!lab + 2!b(c* + a) + 2 - 3!hc? |
6![2!a(c? + a) + 312b’c + 4lc(ac + 2!(ac + b* + ¢?))|

0L A WN =

At each iteration, a; = ikod (2 — ao(kﬂ) ) should be recalcu-
lated to find the residual errors. Here 7w — iteration param-
eter (for method of simple iteration all 7x = 1). One may
use the minimum residual error method by selecting 7 from
the minimum residual error condition at each step [11]. To

calculate Ay, let’s determine aikﬂ) =ikod(2 — ao(kﬂ)
and calculate all functions @o(1), @i(1), @4(1), @i(1).
Another solution is to take into account a sufficient number
of terms in the series when convergence of functions
already takes place. Table 1 and 2 provides the first
corresponding coefficients. Let’s consider a method for
numerically calculating coefficients from tables up to any
values of n. For this, let’s determine the functions

fi(a, ap) = a1,  falap, 1) = aoC,

f3(a0,a1) =ab+ac, ...,
fn(ao, al) = (n — 2)!(Cfn_2(a0, al)

+bfns3(a, a1) + afna(a, a1)).

Let us calculate all coefficients an = ar(f)) + a#)

up to the
number n, where a,ﬁo) — coefficients in ¢, and a,(f)
coefficients in 1. Then, al” = fn(1,0), ai’) = f,(0, 1).
Thus, fs(1,0) =3R2bc. The disadvantage for vacuum
diodes is the need to define a large number of functions,
or to use recursive calculations. However, for solid-state
diodes with a low effective carrier mass and small d, the
introduced coefficients become small, and the use of several
coefficients leads to good accuracy, so analytical expressions
for their parameters can be obtained.

Let us consider the examples. Let d = 3nm, Ef =7,
eU, =7, W,=2, W=1.823, E=5(eV), §=0.18,
a =0.43(nm). This is a vacuum diode with copper
electrodes. In this case a = 108.2, b =208, ¢ = —38.4,
b=—-42, ¢c=18,5 Here ¢>>a. We see that major
contribution to the even coefficients aé(‘o), aé()), aé()) is
provided by the terms 2!c2, 412!c3, 6!412!c*, respectively.
The odd coefficients are proportional to the powers of b

and significantly less. The major contribution to agl), agl) ,

agl) has the values of ¢, 3!c?, 5!3Ic?, respectively, and the
even coeflicients are significantly smaller. For large numbers
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Table 2. matrix a(dy, E) in the form

n Coefficients in expansion ¢ (t) 1+R  Ta(de, E) ap(do, E) T
1 1 ikodo(1 —=R)/ ~ |a2i(do, E) an(do, E)| \ikadoT /"
2 0 ~ )
3 c Since at d=0 (or t=0) 1+R=T and Y =Ka/ko
4 ' 2b 5 is true, then, it is necessary aji(dy, E) = ¢(1),
2 4?&?IBQC a0, E) = ¢(0) = ap = 2ko/(Ka + ko). The other two
7 Sijca + 216° + 3c(a + )| parameters we find from the conditions
8 6![2'ab + 3!b(a + ¢*) + 41(2! + 1)bc? | G = (a1 + ikadoan)/(an + ikadoarn)

at t =1, the terms of the series for even n are approx-
imately equal to (n—2)!'c"2/nl, and for odd n, respec-
tively, (n—2)tc™1V/2/n..  Since (n—2)!=nl/(n— 1),
from the condition (n— 2)!'c™?/n! =1 we obtain n ~ 30,
ie, for convergence it is necessary to take into ac-
count a very large number of terms in the series.
Now let's d=1nm, Er =0.6, eU; =1, W, =4.2¢V,
§=0.086nm, «=0.237nm, W =302 W =0.53,
E=0.5, Ef =0.6(eV), ¢ =5.7 (the diode made of
envelopes of n-InSb with the concentration of electrons
10%* m~3 and effective mass 0.013 me on a film of CVD-
diamond). We have a = 0.0455, b = 0.043, ¢ = —0.0042,
b=-0.024, ¢ =-0.021. In this case, all the terms
are very small, and it is enough to take several (about
3—5) terms. In this case, we get very accurate analytical
solutions. It follows from this that in order to obtain
well-convergent expressions, the value d and the reduced
mass shall be small. All dimensionless constants have the
form of squares of size d multiplied by certain values of
WN type associated with various combinations of energies.
WN corresponds to certain wavelengths such as de Broglie
waves for the corresponding energies. The constants are of
the order of one if the corresponding wavelengths are d.
The conditions when they are all modulo less than one
have the form: |c| < 1, if E < Er and d < h/v/meEr/2,
or d < h//mE/2 at E > Ef; |b|] < 1, if eUy > 8W and
d < h/(4ymeeU,), or d < hi/(vmW/8) at eU, < 8W;
a<1,ifd < h//meW/2. Let us define

do = min(h//MeW/2, i/ (4/Me€Us),

h//MeE/2, h//MeEr/2).

Further, me will stand for the effective mass. If we consider
the size of the diode d = dy, then it is quite possible to
limit ourselves to the eight terms given in the tables. As
can be seen, all of them give decreasing contributions,
each of which is less than one modulo. Moreover, these
contributions can be alternating. Obviously, for such a
diode, it is possible to associate all the dimensionless
amplitudes 1+ R and ikodp(1 — R) on the left with the
amplitudes T and (ikodo)Ton the right with the transfer

and
T =2/[a1; + ikadoar, + (az; + ikadoar;)/ (ikodo)],

comparing them with (P4) and (P2). As a result, we obtain

a, — 1 _ ()
(ikodo)[(1 + ¢o(1)) + (ikodo)Y@1(1)]  ikado ’(5)
ary; = (G — Ikado)gD(l) + ikadoalze. (6)

Dividing the segment (0,d) into n parts with dimen-
sions dy = d/n, we obtain coefficients a,, bp, Ccn for the
parabolic approximation of the potential V(X) on these
segments. The complete diode transfer matrix is the
product of n matrices of the segments. In case of a
triode, ie., the presence of a grid dy in size and grid
voltage Uy instead of the anode, as well as the presence
of a grid —anode area dy in size, the complete triode
matrix (transistor) is the product of three transfer matrices:
cathode—grid matrix, transfer matrix grid and transfer
matrix grid—anode. When constructing the first matrix, it is
required to replace Uy — Ug. When constructing the third
matrix, it is required to replace U — Uy — Uy and d — da.
The second matrix in the grid area is associated with

WE 9(x) = At exp(ikg(x — d)) + A~ exp(—ikg(x — d))
and has the form

a(dy, B) = [_i pc??(son)l(e)

—ipsin(0
ol

3. Solution of SE. Approximation by a
fourth-order parabola

This is the case s = 4 in formula (1). Here it is more con-
venient to replace 7 =2x/d — 1, ¢(7) = Ip(d(r + 1)/2),
since replacing t = x/d leads to a more complex recurrent
formula with five terms. We have SE

9" () = (ar* +br +c)¢(7),
where

a=d’mW/(2%), b= d’meeU,/(41%),

Technical Physics, 2025, Vol. 70, No. 6
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¢ =d’me(E — Er — W + eUy/2)/(2h%).

Now the recurrent formula takes the form
an - (n - 2)!(Can72 + ban73 + aan76)

According to this formula, the first several coefficients are
expressed as:

a) = Cap, a3 = cay + bay,

ay = 2(CCap + bay), as = 6(c*a; + 2cbay),

as = 24((c?

The boundary conditions lead to the relations (P6)—(P8)
of the Appendix. They allow you to determine unknown
coefficients:

+a)ay + bal).

=~ ¢o(1) —ikodgy(1)
G=": , 8
odepi (1) — (1) ®

o — 2ikod

* ™ likodgpo(—1) + g5 (—1)] + Glikodg1 (—1) +¢1<—1g]’)
9
wherein @) = éao. In addition, these relations give
two residual errors Ay =2 —¢(—1) —¢'(—1)/ikod and

Ay =¢(1) —¢’(1)/ikad.  If the task is solved quite
precisely, then A; ~ 0, A, ~ 0. It is convenient to use

relative residual errors. & = |1+ ¢/(—1)/(ikodg(~1)],
821 — ¢ (1)/(ikode(1))|. Further on, we have:
sl 40
ranon(-n - 2, (10
z’f:¢(1)+‘fl;f)2 %ao{(l)o(l)—i-q&l;(g)]—f— l{qs (1)+";’|1(E)L)].

(11)

The reflectance and transmission coefficients are deter-
mined from these equations. Also, when substituting the
coefficients found, these equations give two more residual

€I1o18!
| -0 - 4D,

A3=2—-A1—a [4’70(—1)—

Ik()d IkOd
(12
Ay =2 —a [q’)o(l) + qf?(iﬂ —a {@(1) ";’Il((d)]

(13)
By substituting a; = Gy in them it allows excluding the
coeflicients and get another one residual error.

As— Ay
A=3T Al — A3
 ikodgpo(1) + p(1) + Glikodeps (1) + ¢} (1)]
ikodepo(—1) — @}(—1) + Glikodeps (—1) — ¢;(—1()] ')
14
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On the other hand, by imposing the conditions
Az = Ay = 0, we get two refinements

ikodAy — ag[ikodeho(1) + ¢4(1)]

T Rdam gm0
ikod[(2 — Ay)(ikodei (1) + @1 (1))—
o — —Ay(ikodg1(—1) — ¢1(—1))]
* ™ Tikodgio(—1) — g5 (= D][Tkodepi (1) + 7 (1)]—
—[ikodgo(1) + ¢ (1)][ikodep1(—1) — fl’{(—lz]m)

It should be noted that these refinements are deter-
mined by the residual errors A; and A, obtained by
calculating the functions ¢ and ¢’ with any number
of coefficients determined iteratively. Thus, SE solution
algorithm may include the following. Let’s determine ap by
formula (P5) or (9) and a; = Gay. Iteratively we calculate
the coefficients an = (n— 2)!(can—z + ban—3 + aan—¢) to
the number when |a,/n!| becomes less than the specified
error. Let’s calculate four values ¢(£1), ¢’'(+1). We
find A; and A;. We determine new coefficients (16)
and (15), as well as corresponding solution errors. If
the errors are still significant, we calculate the values
¢(£1), ¢'(+1) again until convergence. Thus, we have
T(E,Ua) = (1) = ap + a1 + az/2! + ... /1. If all coef-
ficients do not exceed modulo one, as above, it is possible
to limit ourselves to several terms, i.c., to obtain an explicit
form of transparency D(E, U,). The explicit form of this
function is the sum of the relations of the polynomials
with respect to E and U,. Also the transfer matrix may
be constructed.

4. Solution of integral equation

SE ¢”(t) = (at? + bt + ¢)@(t) corresponds to IE

"

P(t)=@(0)+iko(2—(0))t+ (at +bt' + Q) (t')dt'dt”,

S—

(17)
provided ¢(0) =1 + R,

1"

1t
T =¢(0) +iko(1 -R +//at +bt’ + c)p(t')dt’dt”,
0 0

f:l—R+iL

% (at? 4+ bt’ + c)p(t')dt’.
0

o _

From this we find
1

T / (at? 4+ bt' +c)o(t')dt’
0

0

1 t//
1
+§//at +bt’ +c)p(t)dt'dt”,
0 0

T =1+iko(l —(0)) +
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1 , 100
ki + J(at? + bt +c)p(t')dt'— 0!
0
1t 1072
—iko [ [(at? + bt’ 4 c)ep(t")dt/ 1073
R= 90 . 10
Ik0(2 —»Iko) 1075
Taking the linear Zero approximation 1070
0)(t) =@(0) +iko(2 —@(0))t, in the first Born o 1077
approximation we have WF in the form 108
107
t ot 10,10
@) =@(0) +iko(2 — @(0)t + //(at/2 +bt' +¢) 10°11
0 0 10712
10713
x [p(0) +iko(2 — (0))t']dt’dt”, 10-14
10715

PV (t) = @(0) + iko(2 — @(0))t + @(0)(at*/12 + bt?/6

+ ct?/2) +iko(2 — @(0))(at> /20 4 bt*/12 + ct3/6),

¢V (1)=¢(0)+iko(2—¢(0)) +¢(0)(a/12+b/6+c/2)
+iko(2 — @(0))(a/20 + b/12 + ¢/6),

1y_ 1+a/4+b/3+c/2—ike(1+a/20+b/12+c/6)
¢ = 1 —iko(1 +a/20 + b/12 + ¢/6)/2
(18)

From here we find that

T =ou(1), ikeT =gf(1), iko=a((1)/en) (1)
and

0) — 1+a/4+b/3+c/2—iko(14+a/20+b/12+c/6)
¢(0) = 1—iKo(1 +a/20 + b/12 + ¢/6)/2

(19)
The ratio (27) allows to determine the reflectance
coefficient

R~ &/2+20/3+c —iko(1 +2/20 + b/12 + ¢/6)
- 2 —iko(14+a/20 +b/12 +¢/6)

(20)
It should be noted that for the function ¢(©(t) we get
R=0. Substituting the function (18) into the IE (17),
we obtain a more accurate approximation of @y)(t), which
allows us to obtain a more accurate value of R Such
solution has good accuracy at small d. Another way to solve
IE (17) may be to use quadrature formulas to calculate the
integrals. This leads to a system of linear algebraic equations
for determining the values of WF at specified points. This
method doesn’t require small d.

5. Current-voltage curves of diodes

The barrier profiles shown in Fig. 1 are obtained using the
formula (P1) and are very close to the parabolic approxima-
tion (1) for s = 4. Let the electrode materials be the same.
The second-order parabola approximation is more suitable
for small d. Figure 2 shows transparency D, calculated

0 025 050 075 100 125 150
E/Ep,

Figure 2. Transparency of vacuum diode barrier d = 2nm ver-
sus E/Erc under various voltages Ua, V: 1 (curve 1), 4 (curve 2),
7 (curve 3), 10 (curve 4), 15 (curve 5).

1015
1014
1013
]012
1011
10°
108
107
10°
~ 105
104
103
102
10
1
10}
1072
103 !
107 SN

Figure 3. Current-voltage curve of the vacuum diode
[Am™%/V] with a length of d = 2nm (curves /—5) and the same
diode with filling by CVD-diamond (curves 7—9) at different
temperatures [K]: Tc = Ta = 300 (curves 7,2, 6), Tc = Ta = 800
(curves 3,7), Tc = 1500, Ta =300 (curve 4), Tc = Ta = 1200
(curves 5,8,9). The dashed curves 2 and 9 show the inverse
current densities for curves / and 8, respectively. Erc = Era =7,
We =W, = 4.36¢eV.

by numerically solving the SE by the wave impedance
transformation method. Next, they are used to calculate the
current density (Fig. 3), determined for thermal field emis-
sion in the form of J(Ua, Te, Ta) = 37 (Ua, Te) — 37 (Ua, Ta)

Technical Physics, 2025, Vol. 70, No. 6
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by integrals
3Er
+ _ eme +
J (Ua,Ti)—m D(E,Ua)f=(E, TL)dE. (21)
0

Here
fH(E, To) = ke Te In(1 + exp((us — E)/ (ke To))),

Uy =He =Ere, p_ =pa=Er — €U,

—electrochemical potentials, and instead of an infinite
limit, the limit 3Er is taken. This is more than suffi-
cient to account for thermionic emission at the cathode
temperature Tc ~ 2000 K. It’s quite sufficient to use upper
limit 2Eg, since at kgTe ~ 0.2¢V the logarithm may be
replaced by a small exponent and at D(E,U,) =~ 1 for
the remainder integral at Er = 7eV we’ll obtain the value
1.26 - 10716, At zero temperatures f*(E, T) = (us+ — E).
The density of current (21) is positive and determines the
anodic current, although the negatively charged electrons
from the cathode (e > 0) are tunneling. At T, =0 we
have D™ (E,Uy) =0 for E > pz. The number of reverse
electrons from the anode is proportionate to f~(E, Ta),
ie. significantly less than on the cathode. At low
temperature this number is proportional to Er —eU, — E
whereas on the cathode it is proportional to Er — E. The
electron density near the bottom of the conduction band is
maximum, therefore the value of Er — eU, — Edetermines
higher energy levels relative to the conduction band bottom
of the anode than Er — E relative to the same bottom of
the cathode. At eU, = Er and T = 0, there are no positive-
energy electrons on the anode that could tunnel to the
cathode (all existing levels are negative), D~ = 0, and there
is no reverse current. When tunneling in a diode at low
anode voltages or with a highly heated anode, the flow of
electrons from it can be significant.

The analytical current-voltage curve of the diode is of
interest. Considering the reverse current (tunneling from
the anode), for it we get

3EF
/D(E, Ua)[FH(E, T) — f~(E, T)|dE.
0

€Me

W 1) = 5221

(22)

For simplicity we suggested that the temperatures of cath-
ode and anode are the same are designated as T. Further
we consider the temperature as high, ie. kgT < 0.1eV.
In this case, all the characteristic potentials and energies
are significantly higher kgT, the thermal current shall be
taken into account, but it is small. At T = 0 the tunneling
from the anode may occur only at U, < Ep/e. At higher
voltage, only a small thermal current is possible. The result
of integration (22) is expressed as

J3(Ua, T) = J1(Ua, T) + 32(Ua, T) + J3(Ua, T),  (23)
where J;(Ua, Te) = J11(Ua) + J12(Ua, T). The integrals are
calculated in the Appendix (formulae (P9)—(P16)). The
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general view of the current-voltage curve (23) is not difficult
to obtain at different temperatures of the cathode and anode.

Let’s consider current-voltage curve (22) at zero temper-
ature. At U, = 0 from this it follows J(O, t) = J(0, 0) = 0.
The current starts to rise with the growth of voltage.
At low voltages, electrons from the levels at the cathode
Er — eU, < E < Er contribute to the current, since these
levels are absent at the anode. At lower levels, there is
mutual tunneling, but the difference in density of states at
the cathode Ef — E and at the anode Er — eU,; — E begins
to have impact. At eU, = Eg, tunneling from the anode is
impossible (all its energy levels are negative), and all elec-
trons from the conduction band of the cathode can tunnel.
At eU, > Efr, the current continues to rise as the barrier
narrows. At eU, > Ef, the barrier turns into a linear bevel
to the anode. At the same time, if d is small, then the prob-
lem can be approximately considered as the scattering of
a wave 1(x) = exp(ikox) + Rexp(—ikox) on a step. If no
WEF 9 (x) = T exp(ikox) is taken for it 1+ R=T, R=0,
ie. the step is not scattering. If WF 9(x) = T exp(ikox)
is taken then Y =Kka/ko, R= (ko —ka)/(ko +ka). In
this case at large voltage ko — large value, and R~ —1.
Obviously, the latter option should be discarded, although
there are analogues of wave diffraction in optics for it. The
use of very strong fields theoretically leads to a value of
D =1 and to saturation of J. Theoretically possible limit is
Jmax = €MeEZ/(47%h3). It means tunneling all incoming
electrons and is not achievable due to quantum proper-
ties, limitations related to spatial charge and temperature
instability. Even at voltages Uy = Er/e and d = 10nm we
obtain the fields of 10° V/m. Further increase may lead
to explosive emissions and is impractical. At an arbitrary
temperature, all electrons with positive energies can tunnel,
but the probability of tunneling is determined not only by
transparency, but also by logarithmic dependencies in (22).

For small d and small coefficients a, b, c integrals
(P11)—(P14) can be calculated using explicit expressions
for D(E, U,) in the diode, while the integral function has
the form of the ratio of polynomials in E and U, or the
ratio of polynomials multiplied by the exponent. To a first
approximation, the ratio of polynomials can be replaced by
a polynomial or even a linear term. For a fourth-order
parabola approximation with small d and small coefficients
in the first order in d?, we have (see Appendix, formulas
(P17)—(P19)):

deme b a k
Jl(Ua, T):W <1+E—E) {91 [f II(EF, T)_k_szT

_ 2
X exp (—M> f1a(Er, T)] _ 4d'meg, (14w 26

ke T 1572
492
—eUa)f13(Er, T) + f14(Er, T)} i #kBT

eLJa - EF
X exp T TkeT

+ f16(Er, T)} }

) [(14W ~2Er — eUq)f1s(Er, T)

(24)
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The integrals (P9) and (P10) are found in a similar
way. Since their calculation is not fundamentally different
from the one carried out above, we do not give it here.
Thus, the current-voltage curve was plotted. It has different
representations depending on the relations between Uy, Ef,
kgT and is described by functions of these values. A slightly
more complex relationship can be constructed at different
electrode temperatures.

Results and conclusions

The results of the current-voltage curve calculation using
formula (22) for a vacuum diode at different electrode
temperatures are shown in Fig. 3. The reverse and full
current densities are also shown there. The current densities
considered are such that the spatial charge can be neglected.
If the current has large density (e.g., in RTS) the density of
the spatial charge shall be taken into account. Within the
framework of the considered approach, it can be found as

3EF
pel) = [ A'(E)D* (Ua. E)(x. B
0

where (X, E) — the WF found above as a solution for SE,
while the amplitude is expressed as

A" (E) = meke TcIn(1 + exp((uc — E)/ (ks Tc)))/ (27°1).

We limited ourselves to the electrons emitted by the
cathode. In the general case, both emission streams should
be considered. The maximum electron density will be near
the cathode. It limits the escape of electrons and the
current, which is equivalent to an increase in the work
function W. This increase and the additional potential
can be determined from the Poisson equation and added
to (1). For a flat diode, it is solved analytically, for
example, using the method of series in jcite4, so one
may immediately adjust the parameters of the quantum
potential and transparency. This is the advantage of an
analytical solution. Fig. 4 shows a comparison of the
results of cold emission from a diode using formula (22)
at T =0 with FN formula (formula (6.23) from [8]). The
work function was taken as 4eV. The results are also
shown there without taking into account the Nordheim
correction factor in the exponent. In this case, the
electric field included in the formula was found as U,/d.
Since the results of FN have been widely compared with
the experiment (see [7-9]), the calculations are consistent
with them in terms of quality. It should be borne
in mind that FN formula is determined up to a pre-
exponential factor in the transparency of the barrier [10],
and that experimental data for nanostructures are not
available.

In conclusion, the following should be stressed. The
above SE integration formulas work well at low d, low
barriers and voltages, when there is good convergence and

Figure 4. Density of tunnel current [A/m?] from cathode by for-
mula (22) at T =0 for d = 3nm (curve ), d = 5nm (curve 2),
d = 10nm (curve 3) and d = 20nm (curve 4) depending on the
density of electrical field [V/nm]. Curve 4 — calculated using
FN formula, curve 5 — calculated by FN formula neglecting the
correction multiplier.

iterative methods do not need to be used. In this case,
the parabolic approximation is significantly more efficient
than the piecewise constant. The use of transfer matrices
in parabolic approximation greatly reduces their number
compared to piecewise constant approximation, where the
required number is up to several hundred. In diode struc-
tures at small anode voltages, tunneling in both directions
must be taken into account. The diode nanostructures
with high current densities should be made using good
dielectrics with high thermal conductivity such as diamond
and BeO. This leads to a significant decrease in barrier and
operating voltages, and an increase in current and higher
stability to heating. In the general case, the formula (22)
and numerical methods of SE integration should be used.
The considered approach can be extended to both triode
structures and RTS with quantum wells. However, for them,
the relations become even more complex, which makes
direct numerical modeling simpler. For modern computers,
the counting time and the volume of the algorithm are
not significant values in comparison with the accuracy of
the model. Therefore, obtaining any approximations for
the integral (22) can only make sense for clarity: how
different parameters (anode voltage, temperature, electrode
and dielectric properties) affect the anode current. If
a sufficiently accurate nonlinear CVC is obtained for a
nanoscale diode (which is possible with small sizes), then
this allows us to simulate its inclusion in the circuit in
the time domain, and then the counting time is reduced
by orders of magnitude.
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Appendix

The potential obtained by the imaging method has the
form [1-4]:

We W { 1 2x2
C

V) =Bret =5 =778 XT3 | d(d—x+3a)(d+x)

2x2 & 1 eUaX
P (n2—(x/d)2)n} d

(A1)

Here d — cathode-anode distance, ¢ — DP of
the cathode-anode space, parameters &c, are asso-
ciated with the WF from the material of cathode
W, = €?/(16me¢;) and with the WF from the material of
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anode W, = €?/(16708,). These parameters are entered
based on experimental data. For W; = 4eV and d = 10nm
we have 6c/d = 0.009. On the cathode V(0) = Egc, on
the anode V(d) = Egc + (W —W,)/e — eUs + A, where
A= 68/(d+6c) + 25:/(3d). The error A of order
8¢/d ~ 1% and occurs because in the high order images
corresponding to the members of series in (1), the following
is true §c = 63 = 0. Of course, it is possible to achieve
the absence of this error. To do this, it is enough to
subtract from (1) the small term & =xA/d. However,
this refinement is redundant. The series in (P1) converges
extremely quickly, but convergence can be further increased
by subtracting the asymptotic term n—3 from the sum and
adding the result of the asymptotic summation £ (3) = 1.202
to the sum. In such a sum it is sufficient to take into account
two terms. However, this will not be necessary, since the
expression (P1) will be approximated by parabolas. If the
materials and, respectively, the WF of the cathode and
anode match, then all energy levels at the anode are reduced
by €U,. Figure 1 also shows an energy diagram.

From the boundary conditions for SE at x = d we have
the equations (P2) and (P3):

T=0(l) =a[(l+90(1) +Gpi(D)].  (A2)

ikodT = /(1) = a0 [9h(1) + G (1)] ., (A3)
as well as the coupling @; = Gay, where G is expressed by
the equation (P4):
G_ @ (1) —ikod(1 + @o(1))
tkoden (1) — @i (1)

From  these  equations, the  residual
A =ikod — ¢@'(1)/@(1) follows and the value is found

= (ikod)Y. (A4)

€rror

_ 2iked 2
T iked+ G 14Y’

Qo (AS)

The solution is based on this value.
The boundary conditions in approximation at S = 4 result
in the equations

1 +R=¢(-1) = aogpo(—1) + a11(—1),
¢'(=1)  apy(=1) + aigi(=1)

ikod ikod ’
T =¢(1) = aoo(1) + 1 (1),

F_ ') _ adp(l) +aigi(1)
~iked ikod ‘

In them the functions are used

1-R=

(A6)

cr? br?® 2c2c* 12cbr®  4(c’+a)rt
» P T s T s
5/(14c*b+a)r’  6!(41c3 + (41+1)ca+312ch?)r8
- o + 8, +...,
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- cr3  2br*  6c’rd  24brS
e T I
51(2b% + 6¢%)r7  6!(4'cb + 312bc?)7?
+ + e
7 8!
The derivatives of these functions are of the following
form

o(r) =c+br?/2+2c2 03 /314 ...,
¢ (r)=1+cr?/20 +2br3 /30 .. ..

Excluding, as above, from the relations (P6) R and :I:, we
obtain

ol ] cafoc v 450) -
o+ L5

(A7)

- o221

(A8)

In the integral (22) let’s break the integration into three
areas: E < Ef — kgT, |Ef — E| < kgT and E > Ef + kgT.
For the second area assuming that eU, > kgT and
D(E,Uy) = 1, the contribution in the current density is
(€ — base of the natural logarithm)

2
3r(Uy, T) ~ EmelkeT)” {21n<2+ 6 é)

27213
—eUa\ /. 1
—exp| —2 ) (e— = A
exp( KoT )(e éﬂ’ (A9)
since the first logarithm varies from In(1+ &)

to In(1+1/8), ie has an average value of
In(2+&+1/€)/2, and the second logarithm is
approximately equalexp((Er — €Uy — E)/(kgTc)). This is a
slightly overestimated value, since actually D(E,U,) < 1.
It can be adjusted by multiplying (P9) by the value
(1 —kgT)/(1 +KkgT). For the third area we also assume
that D(E, Uy) = 1 and replacing x = (Er — E)/(kgT) we
have

eme(kgT)? /1 2E,
- S )

()

Small exponents can be omitted here. This contribution
corresponds to the thermo-emission current. The first area
corresponds to tunneling. If eU; > Er — E, then for it

(A10)

E}:kaT
eme
NWUa T) =555 D(E, Us) [(EF —E)
0
eU, Er — E
—kgT - — dE.
B e""( kBT) e""( KeT )}

If eUs < Ep — E, then the first integration area should be
divided into two:

O<E<E|:—€Ua+kBT

and
EF—eUa+kBT<E<E|:—kBT.

We obtain two integrals:

J1(Ua, Te) = J11(Ua) + J12(Ua, T)

and
5 U Er —eUa+kgT
€ MUy
J11(Ua) = Py D(E, Uy)dE, (A12)
0
Er —kgT
S 11
Ji2(Ua, T) = 3373 D(E, Uy)
ErF —eUa+kgT
Er — eU, —-E
x |EF —E — kgT exP(T) exp(kB—T)]dE.
(A13)

Finally, for very small voltages eU, < kgT, when replac-
ing x = (Er — E)/(kgT), we have

Ee/ks T

/ D(x, Ua,)

1

exp(X) [1 —exp (—E:—_?) ] dx.

To calculate the integrals (P10)—(P14), it is necessary to
know the explicit dependences of transparency on energy.
In case of high voltages, the barrier becomes close to
triangular, and for the latter, an approximation takes
place [10]:

ems(kgT)?2
e ) = TR

(A14)

4d/2me
3helU,

D(E, U,) ~ exp(— (EF +W — E)3/2).

This is a very rough formula obtained in WKB approxi-
mation with an accuracy of an unknown pre-exponential
factor and not for too narrow barriers. At E ~ Ef +W it
gives D(E,U,s) ~ 1, and at E > Eg +W it stops working.
Yet, it may be used to calculate the integral (P11).
At high voltages W ~ 0, and in this case, when replacing
x = (Er — E)/(kgT), it is needed to calculate the integral

Er/keT
eme(kgT)? / 4(kgT)*2dV2me 5,
3 (U, )= Emelka 1) _ v /
1V, T)=—7 373 exp 3hel,

kc eUa
X [x Tk exp <_kB—T) exp(x)} dx.
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Denoting g = 4(kgT)¥2dy/2me/(3heUs), we divide it
into two, and for the first integral, replacing y = x¥? and

assuming a large upper limit equal to infinity, we obtain
Er/ke T
[1(Ua, T) = exp(—gx¥?)xdx

1

= (2/3)/exp(—gy)y”3dy-
1

This integral is calculated by integration in parts, obtaining
the expansion

2 — 1 1 2
T = 2L L2

g 3g> 9¢3

+3 i ((g 1)): (n+ 1)!!!} .
n=4

Here we denote the triple factorial: n!!! = n(n— 3)M,
om=1, 1M =1, 2M = 2. The second integral after replacing
y = x*? is represented as

(L7 B

kgT kgT

Er/(ksT)  exp(-y)

VKT e ke T) 3K/2 -1

,(EF, T) =

~ —/Er/(eUa) + \/2Epj ”'f’eTUa exp(—(Er/(ksT))*?).
(A15)

Here we applied partial integration once, removing the
remaining integral, since this integral is preceded by a small
exponential. The second term with an exponent of (P15) is
small and may be removed. For the large upper limit we
take y ~ x¥2 = (Eg/kgT)*2. Then, we get

2
‘]l(Uéh T) = %{l 1(Ua’ T)_eXp<_|iJ—_T_)I2(EF, T):|
(A16)

When approximating by a fourth-order parabola with
small d and small coefficients in the first order with respect

to d?, we have

¢o(t) ~ 1+cr?/2+br3/6 +arb/30,

¢1(t) =1 +cr’/6+br*/12 4+ br®/30.

Let all the coefficients be small: a < 1, b < 1, |c] < 1 and
kad < 1, kod < 1. This is possible for the semiconductor
diodes GaAs-AlyGa; xAS-GaAs at 77K and doping of elec-
trodes. For such a diode the low-frequency DP ¢ = 12.9, FE
values, e, and W below 1 ¢V, and for the effective masses
less than 0.1me and d < 1nm we obtain right the needed
small coefficients. Next, we consider all values in the first
order by coefficients, neglecting the powers d above 2. We
have

G~ ikod(1 +c/2+b/6+a/30) — (c+b/2+a/5)
~ (14c¢/2+8b/15) —ikod(1 +c¢c/6 +2b/15) °
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or, in a more rough approximation,
G =~ 2ikod — (c+b/2 + a/5) = 2ilyd.
Further on, we have:

—Cc+b/2—a/5+
+G(1+4+c¢/2—Db/3 —Db/5)
14+c/2—b/6+a/30+
+G(—1—-c/6+b/12 +b/30)

ikodY =~

Having taken G = 2ikod, we transform this expression
into
Y —c+b/2—a/5+ 2ikyd
"~ ikod(1 +c/2 — b/6 + a/30) + 2k3d?’

From where we find

d?k3(—1+c/2 —b/6 +a/30)*+
+[2k3d> + ¢ — b/2 + a/5)?
d?k3(3 +c/2 — b/6 + a/30)*+
+[2k3d? — ¢ + b/2 — a/5)?

R? ~

All coefficients are proportional to d?, therefore, omitting

the terms from d*, we find
8(1+b/12 —a/15) 2ko(c/2 —b/6 +a/30)
D~ 1- .
9 3ko

(A17)

Here, the round bracket in the numerator does not

depend on energy, and the square bracket in our ap-

proximation can be replaced by unit. If we replace the

parenthesis with one, we get approximate transparency

D ~ 8/9. Using (P17), we need to integrate with the
function

8y/E(E + eUs — Ef)

VE +2,/(E+eU, — Ep))?’

The fraction in brackets in (P17) is represented as

D(E,Us) ~ :

d’me o 14W - 2E; —eUy +E
302 " T VE+2\/(E+eU, - Er)

It is required to substitute these values in the integrals
(P11)—(P14). For an approximate calculation of integrals,
consider the second mean value theorem using sub-
integral functions @i ,(E)f(E), where f(E)=+E,
f(E) =E, f(E) = E?, f(E) = Eexp(—E/kgTe),
f(E) = E?exp(—E/kgT;), and weight functions have
the form

VETeU. &
(VE+2y/(E+ela - EF))2
VE+eU, — Er
(VE+2/(ETela- EF))3

g1(E) =

9:(E) =
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The change
92(0) =1/(8(Ua —

veUa — ke Te/(VEF +2v/€Us — ks Te)?

from g;(0) =1/(4y/eU, —Eg) and

Er)) to respectively

and
VeUs — keTe/(VEF +2v/eU; — kg Te)?

with the upper limit. We’ll take the values in the middle
point Eg/2:

Er/2)%

Er/2)%.

g1 = v/eUa — Er/2/(\/Er/2 +2/28Ua —

02 = V/€Us — Er/2/(\/Er/2 + 2¢/eU, —

Now transparency will take the form
b 4d’°meg>
~8(1+ —
8< 12 ) [\/_ 9= 5

x ((14W — 2Er — eU,)E + Ez)].

(A18)

To calculate integrals with a square root, we replace
x = VE. In case of (P11) we have integrals

vErF—kgTc

~ KkeT.)? -
2 (Er - xydx — 2(EF ~ keTo)(6keTe — Er)

15
0
= f1(Er, Te),
VEr—ksTc 5
2% exp (— kXT dx> — —KkgTe\/Er —keTo
5 Blc
‘\/_

X exp(l kBTc) 5 ¥ (ksTe)? erf(\/Er/(ksTc) — 1)
= f12(Er, To).

(A19)
The last integral is taken from table and is represented
by the formula 1.3.3.8 from [12] through the Gauss error
function. If we replace the upper limit with infinity, then for
the second integral we get a simple result /7 (kgTp)*/?/2.
Now we only need to calculate the integrals with linear and
quadratic dependencies in D. For the linear term we have
two integrals
EpkaTC
(Br —

E)EdE = (Ef — kgTc)*(Er/6 4 kgTe/3)

= f13(Er, To),
Er—kgTc £
Eexp( — dE = (kgTe)? — ks Te(Er — kg Te)
kBTc

0

E
X exp(l - kB—fl') = f14(EF, To).
(o3

For the quadratic we have, respectively

EpkaTC
(Er — E)E2dE = EFE®*/3 —E*/4 = (Er —kgT,)?

0
x (Ep/12 + kgTe/4) = f15(Er, Te),

ErkgTc £
EZexp( — dE=—2(kgT.)*+kgT.Er
kBTc

0
E
xexp(l—kB—FT) (E2—2keTeEr +3(keTe)?) = f 16(Er, Te).
C

By reconstructing the integral (P11), we have for-

mula (24).
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