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Introduction

Although a flat diode is a simple structure, analytical

expressions for the dependence of transparency D(E,Ua)
on energy and anode voltage during electron tunneling

are not known for it. The current-voltage curves (CVC)
and J(Ua , Tc, Ta) are also not analytically known —the

dependences of current density on the anode voltage Ua

(electrostatic potential of the anode) and the temperatures

of the cathode Tc and anode Ta . Although these values can

be calculated in the [1–6] tunneling models used, they are

important for vacuum electronics (including nanoelectron-

ics), as well as for solid-state and semiconductor electronics.

In a number of modeling tasks, the specified parameters

are repeatedly changed and calculated. The analytical

CVCs are critical in considering the diode interaction with

the connection circuit. Modeling of tunnel devices has

been continuously improved since the beginning of this

concept (1928) (see [7–9] and the literature cited there).
First, tunneling from a flat, remote metal cathode with

an electric field set on it was considered. After that, the

investigation of influence of the cathode surface structure

and its material on tunneling was started [7–9]. The

effect of field penetration into semiconductor and carbon

structures, including nanoporous structures, was discovered.

The shapes of the potential barrier and the effect of

electrodes on it in nanoscale structures are obtained [1–4].
The classification of emission as auto-electronic (field) and

thermoelectronic [8] was limited to a single thermal field

emission [3].

We consider the simplest model of a metal-dielectric-

metal diode (or metal-insulator-metal MIM) without field

penetration into metal electrodes. Metals are considered

to be highly conductive, i.e., the Debye penetration depth

LD =
√
ε0εkBT (e2Ne) in them has an atomic layer size with

the concentration of free electrons Ne ∼ 1029 m−3, and the

low-frequency permittivity (DP) of lattices ε ∼ 10.

The purpose of this work is to obtain analytical relations

for a diode. The structure of the work is as follows:

First, we obtain accurate profiles of the quantum potential,

then we obtain their parabolic approximations, on the basis

of which we solve the Schrodinger equation (SE) and

find transparency at a given energy. Then we calculate

the integral current density as a function of voltage on

the anode and approximately analytically calculate the

integrals found in order to obtain explicit dependencies.

Let’s denote the cathode-related values by the indices

”
c“ or

”
+“, and the anode-related values we denote

as
”
a“ or

”
−“, respectively. Next, the corresponding

cathode indexes will sometimes be omitted. Tunneling,

especially in resonant tunneling structures (RTS) at high

current, is accompanied by heating of electrodes [1], so

knowledge of the temperature dependences of CVC is

also important. The theory of Fowler−Nordheim (FN)
(or WKB approximation) is applicable for cold emission

at a very remote anode and at energies at which the

potential barrier is wide enough, which is not true for

the nanostructures. In addition, the resulting transparency

contains an unknown pre-exponential factor [10]. Therefore,
for the diode it is necessary to solve a one-dimensional SE

equation (−~∂2xx/(2me) + V (x) − E)ψ(x) = 0 with quan-

tum potential V (x) given in Fig. 1 and allowing for the elec-

trodes effect [1–4]. Thus, V (0) = EFc , V (d) = EFc − eUa ,

where Ua — anode voltage. If the work func-

tions (WF) of Wc,a cathode and anode differ then

V (d) = EFc − eUa + Wc −Wa . A vacuum diode may be

considered as a source of electrons and as an element of an

electron gun for electronic devices [2–4]. Solid-state diodes
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Figure 1. Potential barrier shape V [eV] and energy diagrams

in vacuum diode d = 10 nm depending on coordinate x [nm] at

different anode voltages (V): 3 (curve 1), 7 (curve 2), 9 (curve 3).
The electrodes are made of copper: EF = 7, W = 4.36 eV. The

lines 4 and 5 show the tunneling through the barrier 2 and 1,

respectively. The levels 6 and 7 correspond to the curves 2 and 3

at Wa < Wc (6) and Wa > Wc (7). The dashed line 8 — is a

triangular approximation of barrier 3.

are commonly used in generators of various frequency

ranges. The transition to a vacuum diode in the obtained

ratios occurs when substituting DP ε = 1. The model

does not take into account semiconductor electrodes with

a field penetration depth from fractions of nanometers to

tens and hundreds of nanometers. It also does not apply to

tunnel diodes, which consider tunnel and diffusion currents,

i.e. there shall be a dielectric between the electrodes, which

is assumed to be ideal. In the considered diode, at low

temperatures, the current is mainly tunneling in nature, and

taking temperature into account leads to the appearance

of a usually small temperature component. However, at

high voltages and currents, strong heating is possible, and

the model takes into account thermal field emission with

different electrode temperatures. We consider surfaces to

be atomically smooth.

1. Parabolic approximation of potential

The exact potential for the diode included in SE is

determined by the method of multiple images [1–4] and

is given in appendix (P1) along with the legends. The

calculations as per (P1) are shown in Fig. 1 together with

energy diagrams. Next, the formula (P1) is approximated by

a parabola of the second and fourth orders. The energy is

counted from the bottom of the cathode conduction band.

At large size d, the barrier relative to Fermi energy (FE)

has a height of Wc/ε, and when the potential is applied,

it decreases due to the Schottky effect. At small d,
a stronger decrease occurs due to the mutual influence

of the electrodes. This decrease is very strong at high

anode voltage and low d, while the maximum of the

barrier is shifted to the cathode. At a critical potential,

the barrier relative to Fermi level (FL) of the cathode

disappears when the maximum point hits the cathode. This

critical potential is found from the condition V ′(0) = 0 or

Ua = Wcd/(eεδc). For the considered case of a vacuum

diode, this corresponds to the anode voltage Ua = 44.4V at

a critical field 4.4 · 109 V/m. At such fields, the barrier

turns into an almost linear bevel to the anode, and for

energies below FL, it becomes almost triangular on a small

rectangular pedestal.

The potential (P1) is inconvenient for an analytical

solution of SE. It is usually solved numerically using a

piecewise constant approximation [2–4]. The barrier is

also constructed using parabolic approximation [3,4], s = 2

in (1), as well as a more accurate approximation by a fourth-

order parabola [4], s = 4:

V (x) = EF +
Wc

ε

(
1− a

d

)[
1−

(2x
d

− 1
)s

]
− eUa x

d
. (1)

An even more accurate approximation, differing

from (P1) by no more than 1%, can also be constructed

by [1–4], but it is inconvenient for an analytical solution.

In jcite3, the exact formula (P1) is compared with the

parabolic approximation according to formula (1) at s = 2

and 4 at Ua = 0, as well as with the more accurate

approximation given there. Calculations show that approx-

imation (1) with s = 2 describes a narrow barrier well

enough and gives an error of about a few percent for a wide

one. The formula with s = 4 has an error of about 1%.

It accurately takes into account the height of the barrier

in the center and its values on the electrodes. Taking

into account the anode potential in the form of adding an

exact linear term −eUax/d does not change the accuracy.

The SE solution with a barrier (1) has the same margin

of error as its shape itself. An approximate description

of the barrier as a rectangular shape, triangular shape,

triangular shape on a pedestal (trapezoid), often used in

the literature, gives a significant error in the current. So, a

triangular barrier greatly underestimates, and a rectangular

barrier of the same width — overestimates the current

by times. In formula(1), the materials of the electrodes are

considered the same, the value W̃ = Wc(1− α/d) means

WF reduced due to the influence of electrodes, and the

parameter α = δ(2.7716 − 16δ/(3d)) ≈ 2.7716δ that takes

this into account is small. Next, we take WF and FE

for the electrodes as having equal values, since the effect

of different materials is simply limited to adding the term

(Wc −Wa)x/(εd) to the potential V . We also introduce

the value W = W̃/ε, which determines the decrease in the

barrier due to the dielectric. To get the analytical solution

of SE we use approximation (1) at s = 2 and 4. In this
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case, when s = 2 and we make substitution of variables

τ = 2x/d − 1 in (1) we have a quantum potential

V (τ ) = EF + W (1− τ 2) − eUa(1 + τ )/2,

as well as SE φ′′(τ ) = (aτ 2 + bτ + c)φ(τ ). Here the

dimensionless constants are denoted

a = d2meW/(2~
2),

b̃ = d2meUa/(4~
2),

c̃ = d2me(E − EF −W + eUa/2)/(2~
2). (2)

Also

c̃ = −d2me(EF − E)/(2~
2) − a + b̃.

Here at 0 ≤ x ≤ d the new variable changes within

−1 ≤ τ ≤ 1. It is convenient to make another substitution:

t = (τ + 1)/2, ϕ(t) = φ(2t − 1), ϕ′′(t) = 4φ′′(τ ). Then,

variable t changes within 0 ≤ t ≤ 1, and SE becomes

ϕ′′(t) =
(
a(2t − 1)2 + b̃(2t − 1) + c̃

)
ϕ(t)/4. Let’s rewrite

it as

ϕ′′(t) = (at2 + bt + c)ϕ(t),

where

b = b̃/2− a = d2me(eUa/4−W )/(2~
2),

c = (c̃ − b̃ + a)/4 = d2me(E − EF)/(8~
2).

It should stressed that a > 0, b̃ > 0, while c̃ > 0, if

E > EF + W − eUa/2 (over-barrier passing at low voltages).
At low voltages, E < EF + W − eUa/2 corresponds to

c̃ < 0, with tunneling taking place mainly. At E = EF

c = 0. Conditions c < 0 is consistent with tunneling,

and c > 0 — corresponds to the over-barrier passing. If

0 < E < EF − eUa , then tunneling to E level of the anode

is possible if the electron from this level preliminary goes to

FL EF − eUa of the anode with absorption of the energy

quantum EF − eUa − E . At the same time, due to the

Nottingham effect, a quantum of energy is released at

the cathode EF − E , i.e., the total energy released during

junction of one electron from the cathode to the anode is

equal to eUa . It is evolved due to the operation of the

power supply source. If eUa > 2(EF + W ) (large anode

voltages), then c̃ > 0 for all energies. If W = 0, then a = 0,

and the potential becomes linear. In this case SE has the

most simple form at E = EF or c = 0: ϕ′′(t) = btϕ(t). Its
solution satisfies the integral equation (IE)

ϕ(t) = ϕ(0) + ϕ′(0)t + b

t∫

0

τ∫

0

t′ϕ(t′)dt′dτ .

By substituting ξ = b1/3t, ϕ(t) = u(ξ) SE is nor-

malized to u′′(ξ) = ξu(ξ) and has its solutions in

Bessel functions [4]: u(z ) =
√
ξZ1/3(2iξ3/2/3) or

u(b1/2x/d) =
√

(b1/3x/d)Z1/3

(
2i(b1/3x/d)3/2/3

)
. Here

Zν(z ) = C1Jν(z ) + C2Yν(z ) — general solution of Bessel

equation of index ν = ±1/3, C1 — arbitrary coefficients

(integration constants). Using these functions or Airy

functions, it is easy to solve a problem with a linear

potential. Solutions in special functions for a 6= 0 are

possible only in special cases, and in the general case are

not known.

2. Solution of SE. Parabolic
approximation

We are looking for a solution at a given energy E and

a wavenumber (WN) k0 =
√
2meE/~ at the cathode in

the form of ψ(x) = exp(ik0x) + R exp(−ik0x). On the

cathode at x < 0 we have V (x) = 0 (Fig. 1), i.e. the

potential changes in a stepwise manner from 0 to EFc . From

boundary conditions at x = 0 it follows that

1 + R = ϕ(0) = α0, 1− R = ϕ′(0) = α1/(ik0d),

Y =(1− R)/(1 + R)=α1/(ik0dα0), 2R = α0 − α1/(ik0d),

2 = α0 + α1/(ik0d).

WN in the barrier region k(x) =
√
2me(E −V (x))/~ may

be imaginary (Fig. 1, area k2 < 0 for the curve 2 up to its

intersection with line E) or real (Fig. 1, region k2 > 0 after

intersection of curve 2 with the line E). The intersection

points correspond to the turning points. Usually, regions

k2 > 0 are not taken into account during tunneling, i.e.

movements up to the turning point x pt are considered.

However, the region x pt < x < d changes the phase of the

wave function and shall be taken into account. In it the

particle moves in a quasi-classical way. Let’s denote a series

of used wave numbers. On the cathode for energy E we

have the wave number k0. If the particle is moving to the

FL of the cathode, then kc =
√
2meEc/~. If it is moving to

the FL of the anode, then (Fig. 1)

ka =
√
2me(EFc + Wc −Wa − eUa)/~.

In the barrier region upstream the anode

k(d) =
√
2me(E − EFc + Wa −Wc + eUa)/~.

These ratios are simplified with identical electrodes. Elec-

tron with energy E moves from the cathode in a wave-

like manner before scattering onto FL of the anode, i.e.

until reaching the anode. Therefore, the FL on the

anode shall be taken as ψ(x) = T̄ exp(ik0(x − d)). After

scattering, the electron goes into the power supply with WF

ψ(x) = T̄ exp(ika(x − d − λe)).

Here λe — the mean free path (MFP) of the electron on

the anode. For copper λe = 42 nm, i.e. this region that

doesn’t obey SE may be significantly larger d . Junction

from E level to µa = EFc + Wc −Wa − eUa level of the

anode may be accompanied by the release (if E > µa) or

absorption (if E < µa) of a quantum of energy (Fig. 1),
i.e., the anode either heats up or cools down due to
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the junction. Similarly, reverse tunneling to the cathode

either cools it or heats it by |E − µc |. On average, the

electrodes heat up, and at high voltage, the anode heats up

more. During reverse tunneling at the anode, the incident

WF has the form ψ(x) = R− exp
(
−ik0(x − d)

)
, and the

wave going to the source at the cathode has the form

ψ(x) = T− exp(−ik0x). If we need to solve the problem up

to the turning point, then the coefficients of reflectance and

transmission in both directions will coincide: R+ = R− = R,
T + = T− = T̃ , whereas |R±|2 + |T±|2 = 1. The turning

point x pt is found from the condition E = V (x pt). If

eUa ∼ EF , then x pt ≈ d (Fig. 1). If eUa = EF , then x pt = d
equality is true, while reverse tunneling from the cold anode

(at T = 0) is impossible: all energy levels on it become

negative. From the level E > 0 of the anode, the electron

tunnels to the level E of the cathode, and then moves to

FL EFc (Fig. 1, lines 4 and 5). Upon transition from the

level E of any of the electrodes, the electron moves to its FL,

giving or absorbing a quantum of energy, after which it goes

to the power source. This is no longer a wave or ballistic

process (like tunneling), but a diffusion process. It occurs

on MFP and doesn’t obey the law of conservation of energy

|R|2 + |T̃ |2 = 1. In any case, when one electron jumps from

the cathode to the anode, the source performs work eUa .

At eUa < EFc , reverse tunneling for positive levels at the

anode is also possible. Moving to the same cathode level,

such an electron on MFP is replaced by an electron from

the cathode’s FL, moving to its level. Next, the hot electron

moves from the cathode to the power source. During

such a junction, a quantum of energy is absorbed at the

cathode and carried away to the source, i.e., the cathode is

cooled down. This is the opposite of the Nottingham effect

that occurs for reverse tunnel current. Since the number

of reverse tunneling electrons is significantly less than the

number of direct tunnel junctions, the overall density of

the total anode current J is positive, and the power supply

as a whole heats both the cathode and the anode. When

high-energy thermal electrons are tunneled, they cool the

electrode from which they tunnel, and when they get to

another electrode, they heat it, switching to its lower FL.

These contributions are generally lower than the tunnel

ones. In any case, the power of the source JUa is spent

on heating the electrodes. If there is an energy level on

the anode E , then the transmission ratios in both directions

also coincide, i.e. the transparency of the barrier is the

same and can be calculated as D(E) = 1− |R(E)|2. If there
is no such level (at zero temperature), then D−(E) = 0,

D+(E) = |T̃ |2 = 1− |R|2 > 0. At non-zero temperature

T > 0, there are always such levels, so it is convenient to

consider the same transparencies D+ = D− = D. In this

case, there are jumps in wave resistances (WR) at both

the cathode and the anode. Let’s determine the normalized

WRs as

ρ = k0/k = k0/
√
2me(E −V )/~.

Then at the cathode ρ = k0/k0 = 1, in the near-

cathode region ρ = 1/
√
1− EFc/E imaginary (with

energy less than FE), in the near-anode region

ρa = 1/
√
1− EFc/E + eUa/E (with the same WF), and at

the anode ρa = ρ0 = 1.

We will integrate SE using the series method, taking

the expansion ϕ(t) = α0
(
1 + ϕ0(t)

)
+ α1ϕ1(t) as a power

series with coefficients tnαn/n!:

ϕ′′(t) =

∞∑

n=2

tn−2 αn

(n − 2)!
= (at2 + bt + c)

∞∑

n=0

tn αn

n!
. (3)

We obtain the solution by equating the coefficients at the

same degrees. We have α2 = cα0, α3 = cα1 + bα0, and for

n ≥ 4 we have recurrent relation

αn = (n − 2)!(cαn−2 + bαn−3 + aαn−4).

With its use we obtain the following ratios:

α4 = 2!(cα2 + bα1 + aα0) = 2!
(
(c2 + a)α0 + bα1

)
,

α5 = 3!(cα3 + bα2 + aα1) = 3!
(
2bcα0 + (a + c2)α1

)
, . . . .

Thus, the general solution is expressed as

ϕ(t) = α0 + α0ϕ0(t) + α1ϕ1(t),

where

ϕ0(t) = ct2/2 + bt3/6 + (c2 + a)t4/12 + . . . ,

ϕ1(t) = t + ct3/6 + bt4/12 + . . . ,

besides

ϕ0(0) = ϕ1(0) = 0, ϕ′
0(0) = 0, ϕ′

1(0) = 1.

If we use previous substitution and expansion in τ nα̃n/n!,
then the recurrence relations and the type of solution will

take the same form:

ãn = (n − 2)!(c̃α̃n−2 + b̃α̃n−3 + aαn−4),

φ(τ ) = α̃0
(
1 + φ0(τ )

)
+ α1φ1(τ )

and

φ(τ ) = α̃0 + α̃0φ0(τ ) + α̃1φ1(τ ),

where

φ0(τ ) = c̃τ 2/2 + b̃τ 3/6 + (c̃2 + a)τ 4/12 + . . . ,

φ1(τ ) = τ + c̃τ 3/6 + b̃τ 4/12 + . . . .

The reflectance and transmission coefficients are de-

termined by imposing boundary conditions on WF and

its derivative. The results are given in the Appendix

(formulae (P2)−(P5)). Using a finite number of

terms in the series, we may approximate the functions

and their derivatives ϕ′
0(1) = c + b/2 + (c2 + a)/3 + . . .,

ϕ′
1(t) = 1 + c/2 + b/3 + . . .. Next, from (P4) and (P5) we

determine the approximate value of G, linking α1 and α0, as

well as the coefficient α0, with α1 = ik0d(2− α0). More-

over, α1 = 2ik0d/(1 + ik0dG). Then, using the recurrent
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formula, we calculate all the coefficients αn, n + 2, 3, . . . up

to those numbers when the terms αn/n! become negligible.

Using these coefficients we calculate ϕ(1) and ϕ′(1). We

have the following formulae:

T̃ = ϕ(1) = α0ϕ0(1) + α1ϕ1(1),

T̃ = ϕ′(1)/(ik0d) = [α0ϕ
′
0(1) + α1ϕ

′
1(1)]/(ik0d),

R = α0 − 1.

The following discrepancies can be determined from them:

(errors):
1 = ϕ(1) − ϕ′(1)/(ikod),

11 = ϕ(1) − α0ϕ0(1) − α1ϕ1(1),

12 = ϕ′(1) − [α0ϕ
′
0(1) + α1ϕ

′
0(1)].

Now we may refine the coefficients from the conditions

11 = 12 = 0, which gives

α1 =
(
ϕ(1) − α0ϕ0(1)

)
/ϕ1(1),

α0 =[ϕ′(1)ϕ1(1)−ϕ(1)ϕ′
0(1)]/(ϕ

′
0(1)ϕ1(1) − ϕ′

0(1)ϕ0(1)).

Continuing the calculations with these coefficients, we

determine the errors again, and so on until convergence.

The accuracy is determined by the relative error of the

solution δϕ = |1− ϕ′(1)/(ik0dϕ(1))|. Since tunneling

is a process without energy losses, the residual error

1̃ = 1− |R|2 − |T̃ |2 = 0 shall also turn to zero to provide

accurate solution. Accordingly, we have the transparency of

the barrier D = 1− |R|2 or D = |T̃ |2.
There is an analogy between SE and Helmholtz equation

in optics when photons pass (tunnel) through a layer of

an ideal dielectric [8]. k2 < 0 stands for the electron

tunneling, and negative DP ε < 0 (plasma) stands for the

photon tunneling. We have the following consistency of the

problems: ε = 1−V/E . For the photon passing through

the final non-absorbing layer, |R|2 + |T̃ |2 = 1 is also fulfilled.

Both a photon in the layer and an electron in the potential

are quasi-particles. Upon entering a dielectric, the velocity

of a quasi-photon changes over a short length (on the order

of) several atomic layers (offset theorem) due to collective

interaction, and upon exiting the layer, it is restored. At

ε < 0, the velocity becomes imaginary, as does the velocity

of the electron inside the barrier. When passing through

the barrier, the electron also retains its momentum and

energy. The structure of the diode at large Ua corresponds to

the movement of a photon through the junction of regions

with ε = 1, ε(x) < 0 and ε(d) > 1. For d = 0 we have

1 + R = T̄ , R = (k0 − k(d))/(k0 + k(d)) and for ε ≫ 1 for

the photon R ≈ −1, i.e. it is completely reflected from the

dielectric half-space. This is not true for an electron, i.e., the

analogy is incomplete: the transition to FL with scattering

disrupts the wave process.

The exact solution of the equations may be obtained by

direct iteration by taking α
(0)
0 = α0, 10 = 1 and calculating

α
(k+1)
0 = α

(k)
0 − τk1(k) until convergence (k = 0, 1, 2, . . .).

Table 1.

n Coefficients in expansion ϕ0(t)

1 0

2 c
3 b
4 2!(c2 + a)
5 3!2bc
6 4!(ac + 2!(ac + b2 + c3))

7 5!⌊ab + 2!b(c2 + a) + 2 · 3!bc2⌋

8 6!⌊2!a(c2 + a) + 3!2b2c + 4!c(ac + 2!(ac + b2 + c3))⌋

At each iteration, α1 = ik0d
(
2− α

(
k+1

)

0

)
should be recalcu-

lated to find the residual errors. Here τk — iteration param-

eter (for method of simple iteration all τk ≡ 1). One may

use the minimum residual error method by selecting τk from

the minimum residual error condition at each step [11]. To

calculate 1(k+1) let’s determine α
(k+1)
1 = ik0d

(
2− α

(
k+1

)

0

)

and calculate all functions ϕ0(1), ϕ1(1), ϕ′
0(1), ϕ′

1(1).
Another solution is to take into account a sufficient number

of terms in the series when convergence of functions

already takes place. Table 1 and 2 provides the first

corresponding coefficients. Let’s consider a method for

numerically calculating coefficients from tables up to any

values of n. For this, let’s determine the functions

f 1(α1, α0) = α1, f 2(α0, α1) = α0c,

f 3(α0, α1) = α0b + α1c, . . . ,

f n(α0, α1) = (n − 2)!
(
c f n−2(α0, α1)

+ b f n−3(α0, α1) + a f n−4(α0, α1)
)
.

Let us calculate all coefficients αn = α
(0)
n + α

(1)
n up to the

number n, where α
(0)
n — coefficients in ϕ0, and α

(1)
n —

coefficients in ϕ1. Then, α
(0)
n = f n(1, 0), α

(1)
n = f n(0, 1).

Thus, f 5(1, 0) = 3!2bc . The disadvantage for vacuum

diodes is the need to define a large number of functions,

or to use recursive calculations. However, for solid-state

diodes with a low effective carrier mass and small d, the
introduced coefficients become small, and the use of several

coefficients leads to good accuracy, so analytical expressions

for their parameters can be obtained.

Let us consider the examples. Let d = 3 nm, EF = 7,

eUa = 7, Wc = 2, W = 1.823, E = 5 (eV), δ = 0.18,

α = 0.43 (nm). This is a vacuum diode with copper

electrodes. In this case a = 108.2, b̃ = 208, c̃ = −38.4,

b = −4.2, c = 18, 5. Here c2 > a . We see that major

contribution to the even coefficients α
(0)
4 , α

(0)
6 , α

(0)
8 is

provided by the terms 2!c2, 4!2!c3, 6!4!2!c4, respectively.

The odd coefficients are proportional to the powers of b
and significantly less. The major contribution to α

(1)
3 , α

(1)
5 ,

α
(1)
7 has the values of c , 3!c2, 5!3!c3, respectively, and the

even coefficients are significantly smaller. For large numbers
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Table 2.

n Coefficients in expansion ϕ1(t)

1 1

2 0

3 c
4 2b
5 3!(a + c2)
6 4!(2! + 1)bc
7 5!⌊ca + 2!b2 + 3!c(a + c2)⌋

8 6!⌊2!ab + 3!b(a + c2) + 4!(2! + 1)bc2⌋

at t = 1, the terms of the series for even n are approx-

imately equal to (n − 2)!!cn/2/n!, and for odd n, respec-

tively, (n − 2)!!c(n−1)/2/n!. Since (n − 2)!! = n!/(n − 1)!!,

from the condition (n − 2)!!cn/2/n! = 1 we obtain n ∼ 30,

i.e., for convergence it is necessary to take into ac-

count a very large number of terms in the series.

Now let’s d = 1 nm, EF = 0.6, eUa = 1, Wc = 4.2 eV,

δ = 0.086 nm, α = 0.237 nm, W̃ = 3.02, W = 0.53,

E = 0.5, EF = 0.6 (eV), ε = 5.7 (the diode made of

envelopes of n-InSb with the concentration of electrons

1024 m−3 and effective mass 0.013 me on a film of CVD-

diamond). We have a = 0.0455, b̃ = 0.043, c̃ = −0.0042,

b = −0.024, c = −0.021. In this case, all the terms

are very small, and it is enough to take several (about

3−5) terms. In this case, we get very accurate analytical

solutions. It follows from this that in order to obtain

well-convergent expressions, the value d and the reduced

mass shall be small. All dimensionless constants have the

form of squares of size d multiplied by certain values of

WN type associated with various combinations of energies.

WN corresponds to certain wavelengths such as de Broglie

waves for the corresponding energies. The constants are of

the order of one if the corresponding wavelengths are d .
The conditions when they are all modulo less than one

have the form: |c| < 1, if E < EF and d < ~/
√

meEF/2,

or d < ~/
√

meE/2 at E > EF ; |b| < 1, if eUa > 8W and

d < ~/(4
√

meeUa), or d < ~/(
√

meW/8) at eUa < 8W ;

a < 1, if d < ~/
√

meW/2. Let us define

d0 = min
(
~/

√
meW/2, ~/(4

√
meeUa),

~/
√

meE/2, ~/
√

meEF/2
)
.

Further, me will stand for the effective mass. If we consider

the size of the diode d = d0, then it is quite possible to

limit ourselves to the eight terms given in the tables. As

can be seen, all of them give decreasing contributions,

each of which is less than one modulo. Moreover, these

contributions can be alternating. Obviously, for such a

diode, it is possible to associate all the dimensionless

amplitudes 1 + R and ik0d0(1− R) on the left with the

amplitudes T̃ and (ik0d0)T̃on the right with the transfer

matrix â(d0, E) in the form

(
1 + R

ik0d0(1− R)

)
=

[
a11(d0, E) a12(d0, E)
a21(d0, E) a11(d0, E)

] (
T̃

ikad0T̃

)
.

(4)
Since at d = 0 (or t = 0) 1 + R = T̃ and Y = ka/k0

is true, then, it is necessary a11(d0, E) = ϕ(1),
a11(0, E) = ϕ(0) = α0 = 2k0/(ka + k0). The other two

parameters we find from the conditions

G = (a21 + ikad0a11)/(a11 + ikad0a12)

and

T̃ = 2/[a11 + ika d0a12 + (a21 + ikad0a11)/(ik0d0)],

comparing them with (P4) and (P2). As a result, we obtain

a12 =
1

(ik0d0)[(1 + ϕ0(1)) + (ik0d0)Yϕ1(1)]
− ϕ(1)

ikad0

,

(5)
a21 = (G − ika d0)ϕ(1) + ika d0a12G. (6)

Dividing the segment (0, d) into n parts with dimen-

sions d0 = d/n, we obtain coefficients an, bn, cn for the

parabolic approximation of the potential V (x) on these

segments. The complete diode transfer matrix is the

product of n matrices of the segments. In case of a

triode, i.e., the presence of a grid dg in size and grid

voltage Ug instead of the anode, as well as the presence

of a grid −anode area da in size, the complete triode

matrix (transistor) is the product of three transfer matrices:

cathode−grid matrix, transfer matrix grid and transfer

matrix grid−anode. When constructing the first matrix, it is

required to replace Ua → Ug . When constructing the third

matrix, it is required to replace Ua → Ua −Ug and d → da .

The second matrix in the grid area is associated with

WF ψ(x) = A+ exp
(
ikg(x − d)

)
+ A− exp

(
−ikg(x − d)

)

and has the form

â(dg, E) =

[
cos(θ) −iρ sin(θ)

−iρ−1 sin(θ) cos(θ)

]
, (7)

θ = kgdg , kg = dg

√
2me(E − EF + eUg)/~, ρ = 1/(kgdg).

3. Solution of SE. Approximation by a
fourth-order parabola

This is the case s = 4 in formula (1). Here it is more con-

venient to replace τ = 2x/d − 1, φ(τ ) = ψ
(

d(τ + 1)/2
)
,

since replacing t = x/d leads to a more complex recurrent

formula with five terms. We have SE

φ′′(τ ) = (aτ 4 + bτ + c)φ(τ ),

where

a = d2meW/(2~
2), b = d2meeUa/(4~

2),
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c = d2me(E − EF −W + eUa/2)/(2~
2).

Now the recurrent formula takes the form

αn = (n − 2)!(cαn−2 + bαn−3 + aαn−6).

According to this formula, the first several coefficients are

expressed as:

α2 = cα0, α3 = cα1 + bα0,

α4 = 2(c2α0 + bα1), α5 = 6(c2α1 + 2cbα0),

α6 = 24
(
(c2 + a)α0 + bα1

)
.

The boundary conditions lead to the relations (P6)−(P8)
of the Appendix. They allow you to determine unknown

coefficients:

G̃ =
φ′
0(1) − ik0dφ0(1)

ik0dφ1(1) − φ′
1(1)

, (8)

α0 =
2ik0d

[ik0dφ0(−1) + φ′
0(−1)] + G[ik0dφ1(−1) + φ′

1(−1)]
,

(9)

wherein α1 = G̃α0. In addition, these relations give

two residual errors 11 = 2− φ(−1) − φ′(−1)/ik0d and

12 = φ(1) − φ′(1)/ika d . If the task is solved quite

precisely, then 11 ≈ 0, 12 ≈ 0. It is convenient to use

relative residual errors. δ1 = |1 + φ′(−1)/(ik0dφ(−1))|,
δ2|1− φ′(1)/(ik0dφ(1))|. Further on, we have:

2R = φ(−1) − φ′(−1)

ik0d
≈ α0

[
φ0(−1) − φ′

0(−1)

ik0d

]

+ α1

[
φ1(−1) − φ′

1(−1)

ik0d

]
, (10)

2T̃ =φ(1)+
φ′(1)

ik0d
≈ α0

[
φ0(1)+

φ′
0(1)

ik0d

]
+α1

[
φ1(1)+

φ′
1(1)

ik0d

]
.

(11)
The reflectance and transmission coefficients are deter-

mined from these equations. Also, when substituting the

coefficients found, these equations give two more residual

errors:

13=2−11−α0
[
φ0(−1)−

φ′
0(−1)
ik0d

]
−α1

[
φ1(−1)−

φ′
1(−1)
ik0d

]
,

(12)

14 = 12 − α0

[
φ0(1) +

φ′
0(1)

ik0d

]
− α1

[
φ1(1) +

φ′
1(1)

ik0d

]
.

(13)

By substituting α1 = G̃α0 in them it allows excluding the

coefficients and get another one residual error.

1 =
12 − 14

2− 11 − 13

− ik0dφ0(1) + φ′
0(1) + G̃[ik0dφ1(1) + φ′

1(1)]

ik0dφ0(−1) − φ′
0(−1) + G̃[ik0dφ1(−1) − φ′

1(−1)]
.

(14)

On the other hand, by imposing the conditions

13 = 14 = 0, we get two refinements

α1 =
ik0d12 − α0[ik0dφ0(1) + φ′

0(1)]

ik0dφ1(1) + φ′
1(1)

, (15)

α0 =

ik0d[(2− 11)(ik0dφ1(1) + φ′
1(1))−

−12(ik0dφ1(−1) − φ′
1(−1))]

[ik0dφ0(−1) − φ′
0(−1)][ik0dφ1(1) + φ′

1(1)]−
−[ik0dφ0(1) + φ′

0(1)][ik0dφ1(−1) − φ′
1(−1)]

.

(16)
It should be noted that these refinements are deter-

mined by the residual errors 11 and 12 obtained by

calculating the functions φ and φ′ with any number

of coefficients determined iteratively. Thus, SE solution

algorithm may include the following. Let’s determine α0 by

formula (P5) or (9) and α1 = G̃α0. Iteratively we calculate

the coefficients αn = (n − 2)!(cαn−2 + bαn−3 + aαn−6) to

the number when |αn/n!| becomes less than the specified

error. Let’s calculate four values φ(±1), φ′(±1). We

find 11 and 12. We determine new coefficients (16)
and (15), as well as corresponding solution errors. If

the errors are still significant, we calculate the values

φ(±1), φ′(±1) again until convergence. Thus, we have

T̃ (E,Ua) = φ(1) = α0 + α1 + α2/2! + . . . αn/n!. If all coef-
ficients do not exceed modulo one, as above, it is possible

to limit ourselves to several terms, i.e., to obtain an explicit

form of transparency D(E,Ua). The explicit form of this

function is the sum of the relations of the polynomials

with respect to E and Ua . Also the transfer matrix may

be constructed.

4. Solution of integral equation

SE ϕ′′(t) = (at2 + bt + c)ϕ(t) corresponds to IE

ϕ(t)=ϕ(0)+ik0(2−ϕ(0))t+

t∫

0

t′′∫

0

(at
′2+bt′+c)ϕ(t′)dt′dt′′,

(17)
provided ϕ(0) = 1 + R,

T̃ = ϕ(0) + ik0(1− R) +

1∫

0

t′′∫

0

(at
′2 + bt′ + c)ϕ(t′)dt′dt′′,

T̃ = 1− R +
1

ik0

1∫

9

(at
′2 + bt′ + c)ϕ(t′)dt′.

From this we find

T̃ = 1 + ik0(1− ϕ(0)) +
1

2ik0

1∫

0

(at
′2 + bt′ + c)ϕ(t′)dt′

+
1

2

1∫

0

t′′∫

0

(at
′2 + bt′ + c)ϕ(t′)dt′dt′′,
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R =

k2
0 +

1∫
0

(at
′2 + bt′ + c)ϕ(t′)dt′−

−ik0

1∫
0

t′′∫
0

(at′2 + bt′ + c)ϕ(t′)dt′

ik0(2− ik0)
.

Taking the linear zero approximation

ϕ(0)(t) = ϕ(0) + ik0(2− ϕ(0))t, in the first Born

approximation we have WF in the form

ϕ(t) = ϕ(0) + ik0(2− ϕ(0))t +

t∫

0

t′′∫

0

(at
′2 + bt′ + c)

× [ϕ(0) + ik0(2− ϕ(0))t′]dt′dt′′,

ϕ(1)(t) = ϕ(0) + ik0(2− ϕ(0))t + ϕ(0)(at4/12 + bt3/6

+ ct2/2) + ik0(2− ϕ(0))(at5/20 + bt4/12 + ct3/6),

ϕ(1)(1)=ϕ(0)+ik0(2−ϕ(0))+ϕ(0)(a/12+b/6+c/2)

+ ik0(2− ϕ(0))(a/20 + b/12 + c/6),

ϕ(1) =
1+a/4+b/3+c/2−ik0(1+a/20+b/12+c/6)

1− ik0(1 + a/20 + b/12 + c/6)/2
.

(18)
From here we find that

T̃ = ϕ(1)(1), ik0T̃ = ϕ′
(1)(1), ik0 = ϕ′

(1)(1)/ϕ(1)(1)

and

ϕ(0) =
1+a/4+b/3+c/2−ik0(1+a/20+b/12+c/6)

1− ik0(1 + a/20 + b/12 + c/6)/2
.

(19)
The ratio (27) allows to determine the reflectance

coefficient

R ≈ a/2 + 2b/3 + c − ik0(1 + a/20 + b/12 + c/6)
2− ik0(1 + a/20 + b/12 + c/6)

.

(20)
It should be noted that for the function ϕ(0)(t) we get

R = 0. Substituting the function (18) into the IE (17),
we obtain a more accurate approximation of ϕ(2)(t), which

allows us to obtain a more accurate value of R. Such

solution has good accuracy at small d . Another way to solve

IE (17) may be to use quadrature formulas to calculate the

integrals. This leads to a system of linear algebraic equations

for determining the values of WF at specified points. This

method doesn’t require small d .

5. Current-voltage curves of diodes

The barrier profiles shown in Fig. 1 are obtained using the

formula (P1) and are very close to the parabolic approxima-

tion (1) for s = 4. Let the electrode materials be the same.

The second-order parabola approximation is more suitable

for small d . Figure 2 shows transparency D, calculated
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Figure 2. Transparency of vacuum diode barrier d = 2 nm ver-

sus E/EFc under various voltages Ua , V: 1 (curve 1), 4 (curve 2),
7 (curve 3), 10 (curve 4), 15 (curve 5).
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Figure 3. Current-voltage curve of the vacuum diode

[Am−2/V] with a length of d = 2 nm (curves 1−5) and the same

diode with filling by CVD-diamond (curves 7−9) at different

temperatures [K]: Tc = Ta = 300 (curves 1, 2, 6), Tc = Ta = 800

(curves 3, 7), Tc = 1500, Ta = 300 (curve 4), Tc = Ta = 1200

(curves 5, 8, 9). The dashed curves 2 and 9 show the inverse

current densities for curves 1 and 8, respectively. EFc = EFa = 7,

Wc = Wa = 4.36 eV.

by numerically solving the SE by the wave impedance

transformation method. Next, they are used to calculate the

current density (Fig. 3), determined for thermal field emis-

sion in the form of J(Ua , Tc , Ta) = J+(Ua , Tc) − J−(Ua , Ta)
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by integrals

J±(Ua , T±) =
eme

2π2~3

3EF∫

0

D(E,Ua) f ±(E, T±)dE. (21)

Here

f ±(E, T±) = kBT± ln
(
1 + exp((µ± − E)/(kBT±))

)
,

µ+ = µc = EFc , µ− = µa = EF − eUa

—electrochemical potentials, and instead of an infinite

limit, the limit 3EF is taken. This is more than suffi-

cient to account for thermionic emission at the cathode

temperature Tc ∼ 2000K. It’s quite sufficient to use upper

limit 2EF , since at kBTc ∼ 0.2 eV the logarithm may be

replaced by a small exponent and at D(E,Ua) ≈ 1 for

the remainder integral at EF = 7 eV we’ll obtain the value

1.26 · 10−16. At zero temperatures f ±(E, T±) = (µ± − E).
The density of current (21) is positive and determines the

anodic current, although the negatively charged electrons

from the cathode (e > 0) are tunneling. At Ta = 0 we

have D−(E,Ua) = 0 for E > µa . The number of reverse

electrons from the anode is proportionate to f −(E, Ta),
i.e. significantly less than on the cathode. At low

temperature this number is proportional to EF − eUa − E
whereas on the cathode it is proportional to EF − E . The

electron density near the bottom of the conduction band is

maximum, therefore the value of EF − eUa − Edetermines

higher energy levels relative to the conduction band bottom

of the anode than EF − E relative to the same bottom of

the cathode. At eUa = EF and T = 0, there are no positive-

energy electrons on the anode that could tunnel to the

cathode (all existing levels are negative), D− = 0, and there

is no reverse current. When tunneling in a diode at low

anode voltages or with a highly heated anode, the flow of

electrons from it can be significant.

The analytical current-voltage curve of the diode is of

interest. Considering the reverse current (tunneling from

the anode), for it we get

J(Ua , T ) =
eme

2π2~3

3EF∫

0

D(E,Ua)[ f +(E, T ) − f −(E, T )]dE.

(22)
For simplicity we suggested that the temperatures of cath-

ode and anode are the same are designated as T . Further

we consider the temperature as high, i.e. kBT < 0.1 eV.

In this case, all the characteristic potentials and energies

are significantly higher kBT , the thermal current shall be

taken into account, but it is small. At T = 0 the tunneling

from the anode may occur only at Ua < EF/e. At higher

voltage, only a small thermal current is possible. The result

of integration (22) is expressed as

J3(Ua , T ) = J1(Ua , T ) + J2(Ua , T ) + J3(Ua , T ), (23)

where J1(Ua , Tc) = J11(Ua) + J12(Ua , T ). The integrals are

calculated in the Appendix (formulae (P9)−(P16)). The

general view of the current-voltage curve (23) is not difficult
to obtain at different temperatures of the cathode and anode.

Let’s consider current-voltage curve (22) at zero temper-

ature. At Ua = 0 from this it follows J(O, t) = J(0, 0) = 0.

The current starts to rise with the growth of voltage.

At low voltages, electrons from the levels at the cathode

EF − eUa < E < EF contribute to the current, since these

levels are absent at the anode. At lower levels, there is

mutual tunneling, but the difference in density of states at

the cathode EF − E and at the anode EF − eUa − E begins

to have impact. At eUa = EF , tunneling from the anode is

impossible (all its energy levels are negative), and all elec-

trons from the conduction band of the cathode can tunnel.

At eUa > EF , the current continues to rise as the barrier

narrows. At eUa ≫ EF , the barrier turns into a linear bevel

to the anode. At the same time, if d is small, then the prob-

lem can be approximately considered as the scattering of

a wave ψ(x) = exp(ik0x) + R exp(−ik0x) on a step. If no

WF ψ(x) = T̃ exp(ik0x) is taken for it 1 + R = T̃ , R = 0,

i.e. the step is not scattering. If WF ψ(x) = T̃ exp(ik0x)
is taken then Y = ka/k0, R = (k0 − ka)/(k0 + ka). In

this case at large voltage ka — large value, and R ≈ −1.

Obviously, the latter option should be discarded, although

there are analogues of wave diffraction in optics for it. The

use of very strong fields theoretically leads to a value of

D = 1 and to saturation of J . Theoretically possible limit is

Jmax = emeE2
F/(4π

2
~
3). It means tunneling all incoming

electrons and is not achievable due to quantum proper-

ties, limitations related to spatial charge and temperature

instability. Even at voltages Ua = EF/e and d = 10 nm we

obtain the fields of 109 V/m. Further increase may lead

to explosive emissions and is impractical. At an arbitrary

temperature, all electrons with positive energies can tunnel,

but the probability of tunneling is determined not only by

transparency, but also by logarithmic dependencies in (22).
For small d and small coefficients a , b, c integrals

(P11)−(P14) can be calculated using explicit expressions

for D(E,Ua) in the diode, while the integral function has

the form of the ratio of polynomials in E and Ua or the

ratio of polynomials multiplied by the exponent. To a first

approximation, the ratio of polynomials can be replaced by

a polynomial or even a linear term. For a fourth-order

parabola approximation with small d and small coefficients

in the first order in d2, we have (see Appendix, formulas

(P17)−(P19)):

J1(Ua , T )=
4eme

π2~3

(
1+

b
12

− a
15

){
g1

[
f 11(EF , T )− kc

ka
kBT

× exp

(
−eUa−EF

kBT

)
f 12(EF , T )

]
− 4d2meg2

15~2

[
(14W−2EF

− eUa) f 13(EF , T ) + f 14(EF , T )
]

+
4d2meg2

15~2
kBT

× exp

(
−eUa − EF

kBT

)[
(14W − 2EF − eUa) f 15(EF , T )

+ f 16(EF , T )
]}

.

(24)
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The integrals (P9) and (P10) are found in a similar

way. Since their calculation is not fundamentally different

from the one carried out above, we do not give it here.

Thus, the current-voltage curve was plotted. It has different

representations depending on the relations between Ua , EF ,

kBT and is described by functions of these values. A slightly

more complex relationship can be constructed at different

electrode temperatures.

Results and conclusions

The results of the current-voltage curve calculation using

formula (22) for a vacuum diode at different electrode

temperatures are shown in Fig. 3. The reverse and full

current densities are also shown there. The current densities

considered are such that the spatial charge can be neglected.

If the current has large density (e.g., in RTS) the density of

the spatial charge shall be taken into account. Within the

framework of the considered approach, it can be found as

ρe(x) =

3EF∫

0

A+(E)D+(Ua , E)|ψ(x , E)|2dE

where ψ(x , E) — the WF found above as a solution for SE,

while the amplitude is expressed as

A+(E) = mekBTc ln(1 + exp
(
(µc − E)/(kBTc))

)
/(2π2

~
3).

We limited ourselves to the electrons emitted by the

cathode. In the general case, both emission streams should

be considered. The maximum electron density will be near

the cathode. It limits the escape of electrons and the

current, which is equivalent to an increase in the work

function W . This increase and the additional potential

can be determined from the Poisson equation and added

to (1). For a flat diode, it is solved analytically, for

example, using the method of series in jcite4, so one

may immediately adjust the parameters of the quantum

potential and transparency. This is the advantage of an

analytical solution. Fig. 4 shows a comparison of the

results of cold emission from a diode using formula (22)
at T = 0 with FN formula (formula (6.23) from [8]). The

work function was taken as 4 eV. The results are also

shown there without taking into account the Nordheim

correction factor in the exponent. In this case, the

electric field included in the formula was found as Ua/d .
Since the results of FN have been widely compared with

the experiment (see [7–9]), the calculations are consistent

with them in terms of quality. It should be borne

in mind that FN formula is determined up to a pre-

exponential factor in the transparency of the barrier [10],
and that experimental data for nanostructures are not

available.

In conclusion, the following should be stressed. The

above SE integration formulas work well at low d, low

barriers and voltages, when there is good convergence and
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Figure 4. Density of tunnel current [A/m2] from cathode by for-

mula (22) at T = 0 for d = 3 nm (curve 1), d = 5 nm (curve 2),
d = 10 nm (curve 3) and d = 20 nm (curve 4) depending on the

density of electrical field [V/nm]. Curve 4 — calculated using

FN formula, curve 5 — calculated by FN formula neglecting the

correction multiplier.

iterative methods do not need to be used. In this case,

the parabolic approximation is significantly more efficient

than the piecewise constant. The use of transfer matrices

in parabolic approximation greatly reduces their number

compared to piecewise constant approximation, where the

required number is up to several hundred. In diode struc-

tures at small anode voltages, tunneling in both directions

must be taken into account. The diode nanostructures

with high current densities should be made using good

dielectrics with high thermal conductivity such as diamond

and BeO. This leads to a significant decrease in barrier and

operating voltages, and an increase in current and higher

stability to heating. In the general case, the formula (22)

and numerical methods of SE integration should be used.

The considered approach can be extended to both triode

structures and RTS with quantum wells. However, for them,

the relations become even more complex, which makes

direct numerical modeling simpler. For modern computers,

the counting time and the volume of the algorithm are

not significant values in comparison with the accuracy of

the model. Therefore, obtaining any approximations for

the integral (22) can only make sense for clarity: how

different parameters (anode voltage, temperature, electrode

and dielectric properties) affect the anode current. If

a sufficiently accurate nonlinear CVC is obtained for a

nanoscale diode (which is possible with small sizes), then

this allows us to simulate its inclusion in the circuit in

the time domain, and then the counting time is reduced

by orders of magnitude.
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Appendix

The potential obtained by the imaging method has the

form [1–4]:

V (x)=EFc +
Wc

ε
− Wc

ε
δc

{
1

x + δc
+

2x2

d(d − x + δa)(d + x)

+
2x2

d3

∞∑

n=2

1

(n2 − (x/d)2)n

}
− eUax

d
.

(A1)
Here d — cathode–anode distance, ε — DP of

the cathode–anode space, parameters δc,a are asso-

ciated with the WF from the material of cathode

Wc = e2/(16πε0δc) and with the WF from the material of

anode Wa = e2/(16πε0δa). These parameters are entered

based on experimental data. For Wc = 4 eV and d = 10 nm

we have δc/d = 0.009. On the cathode V (0) = EFc , on

the anode V (d) = EFc + (Wc −Wa)/ε − eUa + 1, where

1 = δc/(d + δc) + 2δc/(3d). The error 1 of order

δc/d ∼ 1% and occurs because in the high order images

corresponding to the members of series in (1), the following

is true δc = δa = 0. Of course, it is possible to achieve

the absence of this error. To do this, it is enough to

subtract from (1) the small term δ̃ = x1/d . However,

this refinement is redundant. The series in (P1) converges

extremely quickly, but convergence can be further increased

by subtracting the asymptotic term n−3 from the sum and

adding the result of the asymptotic summation ζ (3) = 1.202

to the sum. In such a sum it is sufficient to take into account

two terms. However, this will not be necessary, since the

expression (P1) will be approximated by parabolas. If the

materials and, respectively, the WF of the cathode and

anode match, then all energy levels at the anode are reduced

by eUa . Figure 1 also shows an energy diagram.

From the boundary conditions for SE at x = d we have

the equations (P2) and (P3):

T̃ = ϕ(1) = α0

[
(1 + ϕ0(1)) + Gϕ1(1)

]
, (A2)

ik0dT̃ = ϕ′(1) = α0

[
ϕ′
0(1) + Gϕ′

1(1)
]
, (A3)

as well as the coupling α1 = Gα0, where G is expressed by

the equation (P4):

G =
ϕ′
0(1) − ik0d(1 + ϕ0(1))

ik0dϕ1(1) − ϕ′
1(1)

= (ik0d)Y. (A4)

From these equations, the residual error

1 = ik0d − ϕ′(1)/ϕ(1) follows and the value is found

α0 =
2ik0d

ik0d + G
=

2

1 + Y
. (A5)

The solution is based on this value.

The boundary conditions in approximation at s = 4 result

in the equations

1 + R = φ(−1) = α0φ0(−1) + α1φ1(−1),

1− R =
φ′(−1)

ik0d
=
α0φ

′
0(−1) + α1φ

′
1(−1)

ik0d
,

T̃ = φ(1) = α0φ0(1) + α1φ1(1),

T̃ =
φ′(1)

ik0d
=
α0φ

′
0(1) + α1φ

′
1(1)

ik0d
. (A6)

In them the functions are used

φ0(τ )=1+
cτ 2

2!
+

bτ 3

3!
+
2c2τ 4

4!
+
12cbτ 5

5!
+
4!(c2+a)τ 6

6!

+
5!(14c2b+a)τ 7

7!
+
6!(4!c3+(4!+1)ca +3!2cb2)τ 8

8!
+. . . ,
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φ1(τ ) = τ +
cτ 3

3!
+

2bτ 4

4!
+

6c2τ 5

5!
+

24bτ 6

6!

+
5!(2b2 + 6c3)τ 7

7!
+

6!(4!cb + 3!2bc2)τ 8

8!
. . . .

The derivatives of these functions are of the following

form

φ′
0(τ ) = c + bτ 2/2! + 2c2τ 3/3! + . . . ,

φ′
1(τ ) = 1 + cτ 2/2! + 2bτ 3/3! + . . . .

Excluding, as above, from the relations (P6) R and T̃ , we
obtain

α0

[
φ0(−1) +

φ′
0(−1)

ik0d

]
+ α1

[
φ1(−1) +

φ′
1(−1)

ik0d

]
= 2

= φ(−1) +
φ′(−1)

ik0d
,

(A7)

α0

[
φ0(1)−

φ′
0(1)

ik0d

]
+α1

[
φ1(1)−

α1φ
′
1(1)

ikad

]
=φ(1)− φ′(1)

ikad
=0.

(A8)
In the integral (22) let’s break the integration into three

areas: E < EF − kBT , |EF − E| < kBT and E > EF + kBT .
For the second area assuming that eUa ≫ kBT and

D(E,Ua) ≈ 1, the contribution in the current density is

(ẽ — base of the natural logarithm)

J2(Ua , T ) ≈ eme(kBT )2

2π2~3

[
2 ln

(
2 + ẽ − 1

ẽ

)

− exp

(−eUa

kBT

)(
ẽ − 1

ẽ

)]
, (A9)

since the first logarithm varies from ln(1 + ẽ)
to ln(1 + 1/ẽ), i.e. has an average value of

ln(2 + ẽ + 1/ẽ)/2, and the second logarithm is

approximately equalexp
(
(EF − eUa − E)/(kBTc)

)
. This is a

slightly overestimated value, since actually D(E,Ua) < 1.

It can be adjusted by multiplying (P9) by the value

(1− kBT )/(1 + kBT ). For the third area we also assume

that D(E,Ua) = 1 and replacing x = (EF − E)/(kBT ) we

have

J3(Ua , T ) =
eme(kBT )2

2π2~3

(
1

ẽ
− exp

(
− 2EF

kBT

))

×
[
1− exp

(
eUa

kBT

)]
. (A10)

Small exponents can be omitted here. This contribution

corresponds to the thermo-emission current. The first area

corresponds to tunneling. If eUa > EF − E , then for it

J1(Ua , T ) =
eme

2π2~3

EF−kB T∫

0

D(E,Ua)

[
(EF − E)

− kBT exp

(
− eUa

kBT

)
exp

(
−EF − E

kBT

)]
dE.

(A11)

If eUa < EF − E , then the first integration area should be

divided into two:

0 < E < EF − eUa + kBT

and

EF − eUa + kBT < E < EF − kBT.

We obtain two integrals:

J1(Ua , Tc) = J11(Ua) + J12(Ua , T )

and

J11(Ua) ≈
e2meUa

2π2~3

EF−eUa+kB T∫

0

D(E,Ua)dE, (A12)

J12(Ua , T ) =
eme

2π2~3

EF−kB T∫

EF−eUa+kB T

D(E,Ua)

×
[

EF − E − kBT exp

(
EF − eUa

kBT

)
exp

( −E
kBT

)]
dE.

(A13)

Finally, for very small voltages eUa < kBT , when replac-

ing x = (EF − E)/(kBT ), we have

J1(Ua , T ) =
eme(kBT )2

2π2~3

EF/kB T∫

1

D(x ,Ua)

exp(x)

[
1− exp

(
− eUa

kBT

)]
dx . (A14)

To calculate the integrals (P10)−(P14), it is necessary to

know the explicit dependences of transparency on energy.

In case of high voltages, the barrier becomes close to

triangular, and for the latter, an approximation takes

place [10]:

D(E,Ua) ≈ exp

(
−4d

√
2me

3~eUa
(EF + W − E)3/2

)
.

This is a very rough formula obtained in WKB approxi-

mation with an accuracy of an unknown pre-exponential

factor and not for too narrow barriers. At E ≈ EF + W it

gives D(E,Ua) ≈ 1, and at E > EF + W it stops working.

Yet, it may be used to calculate the integral (P11).
At high voltages W ≈ 0, and in this case, when replacing

x = (EF − E)/(kBT ), it is needed to calculate the integral

J1(Ua , T )=
eme(kBT )2

2π2~3

EF/kB T∫

1

exp

(
−4(kB T )3/2d

√
2me

3~eUa
x3/2

)

×
[

x − kc

ka
exp

(
− eUa

kBT

)
exp(x)

]
dx .
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Denoting g = 4(kB T )3/2d
√
2me/(3~eUa), we divide it

into two, and for the first integral, replacing y = x3/2 and

assuming a large upper limit equal to infinity, we obtain

I1(Ua , T ) =

EF/kB T∫

1

exp(−gx3/2)xdx

= (2/3)

∞∫

1

exp(−gy)y1/3dy.

This integral is calculated by integration in parts, obtaining

the expansion

I1(Ua , T ) =
2 exp(−g)

3

[
1

g
+

1

3g2
− 2

9g3

+ 3

∞∑

n=4

(−1)n

(3g)n
(n + 1)!!!

]
.

Here we denote the triple factorial: n!!! = n(n − 3)!!!,
0!!! = 1, 1!!! = 1, 2!!! = 2. The second integral after replacing

y = x3/2 is represented as

I2(EF , T ) =

(
EF

kB T

3/2− EF
kB T )∫

0

√
EF/(kBT )√

x + eUa/(kBT )

exp(−y)

3
√

x/2− 1
dy

≈ −
√

EF/(eUa) +
2
√

kBT√
EF + eUa

exp
(
−(EF/(kBT ))3/2

)
.

(A15)
Here we applied partial integration once, removing the

remaining integral, since this integral is preceded by a small

exponential. The second term with an exponent of (P15) is

small and may be removed. For the large upper limit we

take y ≈ x3/2 = (EF/kBT )3/2. Then, we get

J1(Ua , T )=
eme(kBT )2

2π2~3

[
I1(Ua , T )−exp

(
− eUa

kBT

)
I2(EF , T )

]
.

(A16)
When approximating by a fourth-order parabola with

small d and small coefficients in the first order with respect

to d2, we have

φ0(τ ) ≈ 1 + cτ 2/2 + bτ 3/6 + aτ 6/30,

φ1(τ ) = τ + cτ 3/6 + bτ 4/12 + bτ 6/30.

Let all the coefficients be small: a ≪ 1, b ≪ 1, |c| ≪ 1 and

ka d ≪ 1, k0d ≪ 1. This is possible for the semiconductor

diodes GaAs-AlxGa1-xAS-GaAs at 77K and doping of elec-

trodes. For such a diode the low-frequency DP ε = 12.9, FE

values, eUa and W below 1 eV, and for the effective masses

less than 0.1me and d < 1 nm we obtain right the needed

small coefficients. Next, we consider all values in the first

order by coefficients, neglecting the powers d above 2. We

have

G ≈ ik0d(1 + c/2 + b/6 + a/30) − (c + b/2 + a/5)
(1 + c/2 + 8b/15) − ik0d(1 + c/6 + 2b/15)

,

or, in a more rough approximation,

G ≈ 2ik0d − (c + b/2 + a/5) ≈ 2il0d.

Further on, we have:

ik0dY ≈

−c + b/2− a/5+
+G(1 + c/2− b/3− b/5)

1 + c/2− b/6 + a/30+
+G(−1− c/6 + b/12 + b/30)

.

Having taken G ≈ 2ik0d, we transform this expression

into

Y ≈ −c + b/2− a/5 + 2ik0d

ik0d(1 + c/2− b/6 + a/30) + 2k2
0d2

,

From where we find

|R|2 ≈

d2k2
0(−1 + c/2− b/6 + a/30)2+

+[2k2
0d2 + c − b/2 + a/5]2

d2k2
0(3 + c/2− b/6 + a/30)2+

+[2k2
0d2 − c + b/2− a/5]2

.

All coefficients are proportional to d2, therefore, omitting

the terms from d4, we find

D ≈ 8(1 + b/12 − a/15)
9

[
1− 2k0(c/2− b/6 + a/30)

3k0

]
.

(A17)
Here, the round bracket in the numerator does not

depend on energy, and the square bracket in our ap-

proximation can be replaced by unit. If we replace the

parenthesis with one, we get approximate transparency

D ≈ 8/9. Using (P17), we need to integrate with the

function

D(E,Ua) ≈
8
√

E(E + eUa − EF)

(
√

E + 2
√

(E + eUa − EF))2
.

The fraction in brackets in (P17) is represented as

d2me

30~2

√
E

14W − 2EF − eUa + E√
E + 2

√
(E + eUa − EF)

.

It is required to substitute these values in the integrals

(P11)−(P14). For an approximate calculation of integrals,

consider the second mean value theorem using sub-

integral functions g1.2(E) f (E), where f (E) =
√

E,
f (E) = E , f (E) = E2, f (E) = E exp(−E/kBTc),
f (E) = E2 exp(−E/kBTc), and weight functions have

the form

g1(E) =

√
E + eUa − EF(√

E + 2
√

(E + eUa − EF)
)2
,

g2(E) =

√
E + eUa − EF(√

E + 2
√

(E + eUa − EF)
)3
.
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The change from g1(0) = 1/(4
√

eUa − EF) and

g2(0) = 1/(8(Ua − EF)) to respectively

√
eUa − kBTc/(

√
EF + 2

√
eUa − kBTc)

2

and √
eUa − kBTc/(

√
EF + 2

√
eUa − kBTc)

3

with the upper limit. We’ll take the values in the middle

point EF/2:

g1 =
√

eUa − EF/2/(
√

EF/2 + 2
√
2eUa − EF/2)

2,

g2 =
√

eUa − EF/2/(
√

EF/2 + 2
√

eUa − EF/2)
3.

Now transparency will take the form

D ≈ 8

(
1 +

b
12

− a
15

)[√
Eg1 −

4d2meg2

15~2

×
(
(14W − 2EF − eUa)E + E2

)]
. (A18)

To calculate integrals with a square root, we replace

x =
√

E . In case of (P11) we have integrals

√
EF−kB Tc∫

0

2x2(EF − x2)dx =
2(EF − kBTc)

3/2(6kBTc − EF)

15

= f 11(EF , Tc),

√
EF−kB Tc∫

0

2x2 exp

(
− x2

kBTc
dx

)
= −kBTc

√
EF − kBTc

× exp

(
1− EF

kBTc

)
+

√
π

2
(kBTc)

3erf
(√

EF/(kBTc) − 1
)

= f 12(EF , Tc).
(A19)

The last integral is taken from table and is represented

by the formula 1.3.3.8 from [12] through the Gauss error

function. If we replace the upper limit with infinity, then for

the second integral we get a simple result
√
π(kB Tb)

3/2/2.

Now we only need to calculate the integrals with linear and

quadratic dependencies in D. For the linear term we have

two integrals

EF−kB Tc∫

0

(EF − E)EdE = (EF − kBTc)
2(EF/6 + kBTc/3)

= f 13(EF , Tc),

EF−kB Tc∫

0

E exp

(
− E

kBTc

)
dE = (kBTc)

2 − kBTc(EF − kBTc)

× exp

(
1− EF

kBTc

)
= f 14(EF , Tc).

For the quadratic we have, respectively

EF−kB Tc∫

0

(EF − E)E2dE = EFE3/3− E4/4 = (EF − kBTc)
3

× (EF/12 + kBTc/4) = f 15(EF , Tc),

EF−kB Tc∫

0

E2 exp

(
− E

kBTc

)
dE =−2(kBTc)

3+kBTcEF

×exp

(
1− EF

kBTc

)(
E2

F−2kBTcEF +3(kBTc)
2
)
= f 16(EF , Tc).

By reconstructing the integral (P11), we have for-

mula (24).
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