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Коробчатая линза с низким уровнем аберраций
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Найдены параметры коробчатой линзы с низким уровнем аберраций. Для анализа свойств линзы и создания

алгоритма итерационных процедур использовался метод фазовых диаграмм. Линейность преобразования

траекторий в линзе достигнута варьированием параметров эллиптических зазоров между электродами и

значениями потенциалов на электродах. На выходе линзы линейно сформированный пучок имеет ширину

40mm и фазовую диаграмму в виде прямоугольника 40mm× 0.1mrad.
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Введение

В настоящей работе описаны технология проектиро-

вания и принцип работы коробчатой линзы с низким

уровнем аберраций. Линза предназначена для исполь-

зования в высококачественных масс-спектрометрах и

масс-сепараторах для разделения изотопов. Качество

указанных приборов определяется уровнем аберраций в

электростатической фокусирующей системе и аберраци-

ями дипольных магнитов.

В линейном приближении разрешающая способность

магнитных анализаторов масс определяется отношением

магнитного потока по траекториям частиц к эмиттансу

пучка. По этой причине при постоянном эмиттансе

разрешающая способность увеличивается с ростом ши-

рины пучка, падающего на магнит. Поэтому установ-

ки хорошего качества можно создать, имея линейную

оптику для формирования широких пучков ионов и

компенсированные аберрации второго порядка в маг-

нитах. Эти квадратичные аберрации устраняются при

использовании полюсов магнита с круговыми граница-

ми, где выбирается такой радиус кривизны, при котором

аберрации отсутствуют.

Другой способ заключается в использовании электро-

статических корректоров, описанных в работе [1]. Это
наиболее дешевый и точный способ, так как изготовить

и настроить корректор проще, чем протачивать кромки

полюсных наконечников секторного магнита.

Гораздо сложнее достичь линейной фокусировки пуч-

ков ионов в электростатических линзах. Аберрации

являются фундаментальным ограничением при создании

любой лучевой оптики, на практике они ограничивают

возможности пучковых приборов, особенно оптики с

широкими, ленточными пучками частиц. Этот случай

далек от параксиального приближения, а, согласно тео-

рии аберраций, с отклонением частицы от оси аберрации

растут.

Несмотря на большие успехи, достигнутые в оптике

заряженных частиц, в настоящее время не известны

электростатические оптические элементы, свободные от

аберраций. Описаны линзы, электроды которых пред-

ставляют собой различные криволинейные поверхности,

опробованы устройства с привлечением проводников с

токами, заряженные сетки и т. д., но найти конфигу-

рацию, свободную от аберраций, не удалось. Развиты

мощные методы анализа и расчета ионно-оптических

систем и их аберраций [2]. Но в результате знание

величин аберраций позволяет судить лишь о качестве

фокусировки, не давая ответ на вопрос, как уменьшить

влияние аберраций или сделать оптическую систему

полностью линейной.

При известных уравнениях для аберраций можно бы-

ло бы поставить обратную задачу, найти такое распреде-

ление электростатического поля, которое обеспечивало

бы линейную фокусировку. Такая задача не решена, но,

если бы имелось такое решение, то возникла бы пробле-

ма реализации такого поля с помощью электродов.

1. Линза с низким уровнем аберраций

Можно пытаться компенсировать аберрации, чему

посвящено много усилий [2], но лучше осуществить

поиск таких оптических элементов и систем, которые

сами будут обеспечивать требуемые свойства при мини-

мальных или нулевых аберрациях. Такой поиск, как пра-

вило, проводится методом проб и ошибок при наличии

здравого смысла, больших вычислительных мощностей

и набора параметров системы, которые можно варьиро-

вать с целью получения оптимального результата.

Известен только один тип линз, позволяющий реа-

лизовать такую программу. Это линза с плоскопарал-

лельными электродами и криволинейными торцевыми

зазорами между соседними электродами. Такая линза
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описана в работе [1]. Положительным качеством такой

линзы является наличие нескольких степеней свободы

при проектировании линзы. Нормаль к криволинейной

границе указывает на направление электростатическо-

го поля. Если поле направлено к оси, то это поле

фокусирует частицы. Это имеет место в ускоряющем

поле, когда зазор между электродами имеет выпуклую

форму, т. е. центр кривизны находится за зазором между

электродами по ходу частицы. Или же это имеет место

в тормозящем поле с вогнутой формой зазора. В этом

случае центр кривизны находится перед криволинейным

зазором. В противоположных случаях частица рассеива-

ется. Это имеет место при ускорении с вогнутой грани-

цей или торможении с выпуклой кривизной. Наиболее

важным является тот факт, что при проектировании

величину кривизны можно изменять в зависимости от

расстояния частицы до оси линзы, тем самым локально

изменять оптическую силу. Параметрами линзы явля-

ются следующие величины: длина электрода, ускоряю-

щий или тормозящий потенциал электрода, если зазор

между электродами является дугой эллипса, два радиуса

эллипса (полуоси эллипса), знак кривизны зазора. Для

получения ленточного пучка частицы в линзе сначала

рассеиваются, а затем фокусируются в параллельный

пучок.

Линза, описанная в работе [1], имеет линейно фокуси-

рующее электростатическое поле. Практически реализо-

вать такое поле сложно, поскольку необходимы техно-

логические детали для сборки и крепления электродов.

Эти детали вносят искажения в распределение поля, да-

лее заряженные электроды создают электрические поля

со стенками вакуумной камеры или другими внешними

предметами, и эти поля через боковые зазоры в электро-

дах также могут влиять на поле внутри электродов.

2. Коробчатая линза и фазовые
диаграммы

В настоящей работе рассмотрена помехозащищенная

линза, представляющая собой линзу работы [1], в кото-

рой имеются боковые стенки. Линза в этом случае стано-

вится коробчатой. Ее вид вместе с ионным источником

и ленточным пучком представлен на рис. 1. Описание

свойств подобных линз в литературе автору не известно.

Параметры линзы находятся с помощью процеду-

ры компьютерного моделирования, описанного в рабо-
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Рис. 1. Ионный источник, коробчатая линза и ленточный

ионный пучок.

тах [1,3]. Процедура заключается в решении уравнения

Лапласа на трехмерной сетке. Затем после вычисления

распределения электростатического потенциала мето-

дом Рунге–Кутта вычисляются параметры траектории

частицы. Число траекторных решений определяется же-

лаемым уровнем статистики. Затем в выбранном се-

чении пучка регистрируется фазовая диаграмма. Эта

диаграмма представляет собой главный инструмент для

анализа свойств пучка, и ее вид задает направление

последующих итерационных действий.

Фазовые диаграммы и их площади, называемые эмит-

тансом, исторически появились в физике ускорите-

лей [4]. Поскольку в ускорителях поперечные импульсы

частиц малы, пучки таких частиц хорошо описываются

параксиальным (т. е. линейным) приближением. Из-за

цикличности движения, действия на частицы высоко-

частотных полей и особенностей ионных источников,

фазовые диаграммы пучков имеют вид эллипсов. Эл-

липсы описываются тремя параметрами Твисса. Это

размеры полуосей и угол ориентации эллипса в фазовом

пространстве.

Но в ионной оптике более удобно представление

фазовой диаграммы в виде параллелограмма [5], потому
что входные пучки, формируемые с помощью щелей и

диафрагм, всегда имеют фазовые диаграммы такого вида.

Далее фазовая диаграмма пучка на выходе из маленького

отверстия ионного источника, как правило, также имеет

вид параллелограмма или ромба.

Согласно теореме Лиувилля, при движении в элек-

тромагнитных полях эмиттанс пучка сохраняется:

ε = x i x
′

i

√
ϕi = const, здесь ϕi — потенциал в сечении

пучка, а площадь фазовой диаграммы выражена через

средние значения.

Вторым важным свойством диаграммы является то,

что фазовые точки на контуре диаграммы при преобразо-

вании траекторий остаются на контуре вне зависимости

от того, линейно преобразование или нет.

В ионной оптики в линейном (параксиальном) случае

частицы, испущенные из точки объекта, собираются в

точку в гауссовой плоскости — плоскости изображе-

ния. Но при наличии аберраций частицы в плоскости

изображения создают размытое пятно. Это означает,

что отрезок прямой в фазовом пространстве объекта,

отражающий выходящие из точки траектории, в фазовом

пространстве изображения, становится искривленной

линией.

Если контур входной фазовой диаграммы представлен

прямыми отрезками, то при линейном преобразовании

выходная диаграмма также имеет линейные границы.

В нелинейном случае диаграмма имеет криволинейную

форму. Измеряя фазовую диаграмму в разных точках

трассы пучка, можно определить место появления абер-

раций, а также установить расстояние траекторий от

оси, где необходима локальная коррекция фокусировки,

поскольку аберрации проявляются как избыток или как

недостаток фокусирующей силы.
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В работе [1] линейно фокусирующая четырехэлектрод-

ная линза имеет фазовую диаграмму пучка ионов в виде

прямоугольника с размерами 40mm× 0.1mrad.

Пучок в этой работе получен с ионным источником,

находящимся под потенциалом 30 kV, а заряженные

ионы вытягиваются электродом с потенциалом 17.5 kV

из отверстия диаметром 1mm.

Добавление стенок в линзе [1] изменяет распределе-

ние электростатического поля во внутреннем простран-

стве электродов, и линза теряет линейные свойства. Ее

фазовая диаграмма представлена на рис. 2.

Согласно этому рисунку, боковые стенки резко усили-

вают фокусировку крайних траекторий частиц, указывая

на то, что при удалении более 10mm фокусирующее

поле следует уменьшать. Такое ослабление достигается

при увеличении поперечной направлению движения по-

луоси эллипса r z . Путем последовательных итераций с

изменением радиусов кривизны в эллиптических зазорах

и подбора потенциалов для каждого из зазоров удает-

ся достичь линейности фазовой диаграммы на выходе

линзы.

Горизонтальные и вертикальные проекции траекторий

пучка представлены на рис. 3, a и b соответственно.

Пучок обрывается в сечении, где измеряются фазовые

диаграммы.

Горизонтальная фазовая диаграмма, имеющая вид

параллелограмма, приведена на рис. 4, а на рис. 5

изображен профиль пучка.

Профиль пучка есть результат свертки по углу x ′

данных рис. 4.

На обоих рисунках число частиц на краях пучка

уменьшается.
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Рис. 2. Фазовая диаграмма пучка коробчатой линзы, получен-

ной из линзы [1] при добавлении боковых стенок.

a

b

Рис. 3. a — горизонтальная проекция пучка, b — вертикаль-

ная проекция.
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Рис. 4. Фазовая диаграмма пучка на выходе из коробчатой

линзы.
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Рис. 5. Профиль пучка.

Параметры коробчатой линзы, которая преобразует

траектории пучка линейно, определены в таблице.

3. Кроссоверы пучка

На рис. 4 более длинная диагональ параллелограмма

ориентирована во втором и четвертом квадранте. Это

указывает на то, что пучок сходится, и точка кроссовера

находится впереди по трассе пучка. При дальнейшем

распространении пучка диаграмма будет изменяться.

Верхняя сторона фазового параллелограмма будет сдви-

гаться вправо, а нижняя — влево так, что через рассто-

яние l = 1z/z ′, примерно равное 60m, параллелограмм

превратится в прямоугольник. Это является отражением

известного факта, что при линейном преобразовании

кроссовер есть точка симметрии пучка.

Согласно таблице, электрические поля во втором и

третьем зазорах (рис. 1) линзы являются фокусирующи-

ми (отклоняют частицы к оси пучка).
Имеется также второе решение, когда первый и вто-

рой зазоры рассеивают частицы, а фокусировка про-

исходит только на третьем зазоре. Пучок при этом

становится шире, и все траектории, удаленные от оси бо-

лее 20mm, становятся нелинейными. Углы траекторий,

направленных к оси пучка, быстро нарастают с ростом

расстояния частицы от оси пучка. Компенсировать эту

нелинейность подбором полуосей эллипса не удается.

Для расстояний от оси, больших ±20mm, требуется

более резкое ослабление кривизны зазора, даже может

быть с изменением знака кривизны.

Программы проектирования типа Autocad или

SolidWorks позволяют реализовать любой тип криволи-
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Параметры коробчатой линзы.

Электрод Потенциал, kV Длина электрода, mm
Радиусы эллипса, Радиусы эллипса,

левый торец электро правый торец электрода

r x , mm r z , mm r x , mm r z , mm

1 17.5 165 85 80

2 10 135 87.5 82.5 150 125

3 12.398 144 152.5 127.5 152.5 152.5

4 0 135 150 150

y, mm

y, mm
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Рис. 6. Фазовая диаграмма пучка в вертикальной плоскости. На правой вкладке представлена диаграмма перед кроссовером, а на

левой — диаграмма в точке кроссовера.

нейной формы зазора. Но другие криволинейные формы,

кроме эллиптической, в настоящей работе не рассматри-

вались.

Ленточное свойство пучка демонстрирует рис. 6 фазо-

вой диаграммы в вертикальной плоскости.

В соответствии с рис. 3, b и рис. 6, в точке наблюдения

пучок имеет размер порядка 6mm. Пучок сходится

(фазовая диаграмма проходит через второй и четвертый

квадранты). Пройдя расстояние L, равное L = y/y ′, где

величина представляет собой среднее значения угла

наклона траектории при отклонении ее на величину y ,

пучок достигает положения кроссовера. Это происходит

через 1150mm. Фазовая диаграмма в этом случае изоб-

ражена в левой нижней вставке рис. 6. Ширина линейно

сфокусированного пучка составляет 0.6mm с размером

по основанию 2mm. В то же время наиболее узкий

пучок по основанию в 0.9mm находится перед кроссо-

вером, как это демонстрирует правая верхняя вкладка

на рис. 6. Напомним, что для безаберрационных пучков

самое узкое место пучка совпадает с кроссовером. Для

сравнения укажем, что горизонтальная ширина пучка

равна 40mm.

Таким образом, в настоящей работе показано, что

коробчатые линзы способны формировать широкие лен-

точные линейно сфокусированные пучки ионов. Малая

угловая расходимость указывает на возможность транс-

портировки таких пучков на значительные расстояния.

Аберрации наблюдаются в случаях, когда аберра-

ционные углы значительно превышают углы наклона

линейных траекторий и быстро растут при отклонении
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от оси пучка. По форме в соответствии с рис. 2 и нижней

вкладкой рис. 6 средние линии фазовых диаграмм в этих

случаях напоминает кривые третьего порядка.

Заключение

В теории аберраций известны восемь аберрационных

коэффициентов [2], комбинации которых определяют

типы аберраций, например, сферическую, астигматизм,

дисторсию и т. д. В нашем случае аберрации проявля-

ются интегрально, и способ их устранения сводится к

локальному ослаблению (или усилению) фокусировки.

Поскольку плотность частиц в пучке постоянна, с ро-

стом горизонтальной ширины пучка он становится более

узким в вертикальной плоскости, и вклад аберраций

для вертикального движения уменьшается. В кроссо-

верах соотношения размеров следующие: z = 40mm и

y = 0.7mm.

Отметим, что линейный ленточный пучок получен в

достаточно компактной линзе. Ее размеры составляют

587 на 150mm с высотой внутреннего пространства

40mm.

Для коробчатой линзы получена такая же линейная

фазовая диаграмма пучка, как и в линзе [1]. Как показано

в работе [6], с такой линзой разрешающая способность

масс-сепаратора увеличивается в несколько раз по срав-

нению с действующими установками.

Для увеличения ширины пучка, сверх полученного

значения в 40mm, необходимо дугу эллипса сшить с

кривой, имеющей уменьшающуюся кривизну. Поиск та-

кой комбинированной формы зазора пока не проводился.

Другой способ заключается в увеличении горизонталь-

ного размера линзы.
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