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Основной целью данного исследования является демонстрация возможности активного влияния на

положение головной ударной волны в сверхзвуковом потоке, а также на параметры аэродинамического

тела при помощи газового разряда, организованного вблизи лобовой поверхности между телом и ударной

волной. Экспериментально и численно исследована зависимость отхода стационарной головной ударной

волны от мощности и тока разряда в ксеноне и воздухе. Сравнение численных и экспериментальных

данных показало хорошее согласие. Установлено, что положение стационарной ударной волны определяется

удельной мощностью разряда и значением показателя адиабаты (на которое влияют степень ионизации

и степень неравновесности) в зоне плазмы, создаваемой разрядом. Получено, что на начальном этапе

зависимость относительного отхода от мощности разряда близка к линейной, при этом показатель адиабаты

близок к постоянному. С ростом тока и мощности разряда показатель адиабаты имеет тенденцию к росту в

ксеноне и к уменьшению в воздухе. Вместе с тем в ксеноне получено колебание в зависимости положения

стационарной головной ударной волны от мощности разряда, которое связано с возможностью показателя

адиабаты как возрастать, так и убывать в зависимости от соотношения плазменных характеристик. Таким

образом показано, что показатель адиабаты газоразрядной плазмы играет существенную роль в динамике

структуры течения и в величине отхода стационарной головной ударной волны от тела. Полученные

результаты могут найти применение для разработки систем управления высокоскоростными потоками с

учетом не только тепловых эффектов, но и влияния параметров плазмы.
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Введение

Задача управления головной ударной волной (ГУВ)
перед телом представляет собой важный аспект иссле-

дований по управлению высокоскоростным обтеканием,

поскольку расстояние до ГУВ непосредственно влияет

на аэродинамические характеристики обтекаемого тела.

Обзоры исследований, касающихся использования вло-

жения энергии для управления потоком/полетом, были

опубликованы [1–3]. В обзорной статье [4] описывает-

ся получение сложных пространственных плазменных

структур и их воздействие на высокоскоростной поток.

В [5] представлен обзор работ, посвященных взаимодей-

ствию потока воздуха с различными поверхностными

газовыми разрядами, и обсуждение экспериментов по

управлению структурами сверхзвукового потока с помо-

щью поверхностных разрядов.

Теоретические аспекты влияния выделения энергии

в потоке на ударную волну перед телом и параметры

аэродинамического тела обсуждались в [6,7]. Экспери-
ментальные исследования показали возможность значи-

тельного влияния на сверхзвуковой поток с использо-

ванием различных методов, включая воздействие мик-

роволновой энергии (см. [4]), лазерных импульсов [8],
электрических разрядов [9], магнитогидродинамического
воздействия [10].
Влияние дугового газового разряда на положение

наклонной ударной волны было исследовано в [11] и

объяснено тепловыми эффектами. В [12] авторы изучали

возможность управления цилиндрической ударной вол-

ной перед телом и изменением угла наклона волны при

воздействии поверхностной дуговой плазмы. Эти явле-

ния были объяснены нагревом газа, который вызывает

деформацию ударной волны перед телом.

Следует отметить, что среди исследований по управ-

лению ГУВ с помощью энергоподвода в поток влияние

степени ионизации и степени неравновесности изуче-

но относительно слабо. Однако введение заряженных

частиц, таких как электроны и ионы, в газовый поток

около аэродинамического тела вместе с термодинами-

ческой неравновесностью, характеризующейся превыше-

нием температуры электронов над температурой газа,

приводит к дополнительному смещению ГУВ по срав-

нению с чисто тепловым воздействием. В [13] прово-
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дилось сравнение экспериментальных данных исследо-

вания термодинамически неравновесных потоков около

аэродинамического тела с результатами моделирова-

ния, предполагающими тепловой механизм воздействия

разряда. Эксперименты показали, что влияние плазмы

на динамику ударной волны связано с неравновесной

ионизацией в потоке. Зависимость показателя адиабаты

и удельных теплоемкостей от степени ионизации и сте-

пени неравновесности для одноатомной и двухатомной

плазмы получена в [14].
В [15] исследовано влияние газового разряда вбли-

зи поверхности обтекаемого тела на положение ГУВ

перед телом. Исследование включало использование

электродинамических методов для воздействия на поло-

жение ГУВ. Экспериментальные результаты для потока

с числом Маха 2 показали, что увеличение мощности

газового разряда вблизи поверхности тела приводит к

увеличению расстояния до ударной волны. В численных

расчетах показано, что это смещение связано как с теп-

ловыми эффектами, так и с характеристиками плазмы,

такими как термодинамическая неравновесность и иони-

зация. Управление сверхзвуковым потоком воздуха при

числе Маха 4 около аэродинамического тела с исполь-

зованием вложения энергии на поверхности описано

в [16]. Показано, что вложение энергии в приповерх-

ностную область потока позволяет влиять на положение

стационарной ГУВ перед телом и на аэродинамиче-

ские характеристики тела. Эти выводы подтвердились

исследованиями влияния на высокоскоростной поток

приповерхностной плазменной области в ксеноне [17].
Настоящая работа является продолжением ра-

бот [16,17] по исследованию возможности управле-

ния ударно-волновыми конфигурациями немеханически-

ми способами. Исследуется возможность управления па-

раметрами сверхзвукового обтекания тела путем вклада

энергии в область между стационарной ГУВ и телом,

а именно созданием газоразрядной плазменной зоны

вблизи поверхности передней кромки тела. Цель на-

стоящей работы — показать возможность локального

воздействия на положение ГУВ и аэродинамическое со-

противление тела путем плазменного воздействия в при-

поверхностной области и сравнить эффективность этого

воздействия при обтекании газами с разным показателем

адиабаты, а именно сверхзвуковым потоком ксенона

и воздушным потоком. Полученные результаты могут

быть полезны для разработки новых энергетических ме-

тодов управления высокоскоростным потоком/полетом,

основанных не только на тепловых эффектах, но и

на влиянии параметров плазмы в локальных областях,

формируемых в потоке.

1. Экспериментальные результаты

1.1. Постановка эксперимента

Эксперименты проводились на установке, созданной

на базе ударной трубы. На рис. 1, а представлена схема

газодинамического тракта. Камера низкого давления 1

соединена с рабочей камерой 2, в которой установлено

плоское отражающее клиновидное сверхзвуковое сопло

с углом наклона стенки 11◦ относительно оси и ши-

риной 36mm. Рабочая камера отделена от камеры низ-

кого давления тонкой лавсановой диафрагмой. Ударно-

сжатый рабочий газ тормозится в торце камеры низкого

давления, ионизируется и после разрыва разделительной

диафрагмы через входную щель высотой 5mm с пара-

метрами торможения поступает в сопло, где происходит

ускорение сверхзвукового потока. Рабочая камера со-

единена с демпферным баком 3, куда происходит сброс

отработанного газа. Установка дополнительно включает

в себя систему генерации газового разряда на основе

LC-цепей, рассчитанных на организацию токовых им-

пульсов прямоугольной формы разной интенсивности и

длительностью до 600µs.

На расстоянии 23 сm от входа в сопло, на его оси рас-

положена затупленная полуцилиндрическая модель 4 с

диаметром закругленной части D = 3 · 10−2 m и длиной

3.8 cm. Модель зажата между двумя смотровыми боковы-

ми стеклами, ширина модели соответствует ширине ка-

нала 36mm. В модели сверху и снизу в области перехода

цилиндрической части в горизонтальную вмонтированы

медные электроды шириной 5mm и длиной 30mm,

как показано на рис. 1, b. Электроды подключены к

внешнему источнику напряжения, формирующего газо-

разрядный ток вблизи передней затупленной кромки мо-

дели. Величину подаваемого в цепь напряжения можно

изменять, тем самым изменяя интенсивность газового

разряда. Замыкание газоразрядного тока происходит в

момент поступления ионизованного рабочего газа в

область между электродами. Фотография модели в сопле

при сверхзвуковом обтекании ксеноном представлена

на рис. 1, c.

Картины обтекания модели визуализируются шлирен-

системой (рис. 1, а), где в качестве точечного источника

света 5 используется импульсный полупроводниковый

лазер с длиной волны 656 nm и длительностью импульса

30 ns, что является временем экспозиции картины. Ис-

точник располагается на фокусном расстоянии от вход-

ной линзы 6, которая создает параллельный пучок света,

просвечивающий рабочую область диаметром 100mm в

области расположения модели. Затем свет фокусируется

выходной линзой 8, создавая изображение входной щели

в области расположения ножа 9, а также изображение

модели на регистрирующей матрице цифрового фотоап-

парата 10. Нож перекрывает половину просвечивающего

света, что создает фон засветки на изображении модели

на матрице фотоаппарата Canon EOS 300D.

В процессе обтекания тела свет от источника пре-

ломляется на градиентах плотности, перекрывается но-

жом или проходит над ним, визуализируя газодина-

мические разрывы, в том числе и ГУВ, возникаю-

щую при сверхзвуковом обтекании исследуемой модели.

Основным препятствием для получения качественных

снимков было сильное собственное свечение плазмы.
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Рис. 1. а — схема экспериментального стенда; b — форма исследуемой модели; c — расположение модели в сопле.

Для его уменьшения ставился фильтр, имеющий полосу

пропускания в области длины волны излучения лазера

656 nm, а перед ножом помещался узкий коллиматор.

По картинам течения в разных экспериментах опре-

делялось расстояние d вдоль оси сопла от передней

поверхности тела до отошедшей ударной волны и ис-

следовалось изменение положения ГУВ в зависимости

от организованных условий обтекания.

Отметим, что влияние боковых стенок на течение и

плазменные эффекты не учитывалось, так как предвари-

тельные исследования показали, что при плотностях вы-

бранных режимов нарастание пограничного слоя слабое,

смотровые стекла сделаны из оптического стекла, хо-

рошо отполированы, места стыков со стенками камеры

специально выравнивались. Вмонтированные в модель

электроды не контактируют с боковыми стеклами, за-

мыкание газоразрядного тока происходит по плазменной

среде перед телом, что проверялось по свечению в

боковом ракурсе.

1.2. Выбор режимов и параметры

натекающего на тело потока

Для исследований с рабочим газом ксеноном был вы-

бран режим работы ударной трубы, характеризующийся

следующими параметрами: давление толкающего газа

водорода p4 = 2.1 · 106 Pa, давление в камере низкого

давления p1 = 4000 Pa и температура газа T1 = 300K,

число Маха ударной волны в ударной трубе M2 = 8.

Режим позволяет получать в сопле однородный по-
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ток ионизованного ксенона длительностью до 600µs.

Особенность организуемых в работе газовых разрядов

состоит в том, что разряд зажигается уже при наличии

проводимости в потоке. Созданная в ударной трубе проб-

ка ударно сжатого газа тормозится в торце трубы, на-

гревается за счет перехода кинетической энергии потока

в тепло, при этом создается равновесная ксеноновая

плазма со следующими параметрами: температура ато-

мов T5h = 7700K и электронов T5e = 8700K, проводи-

мость σ5 = 2500 S/m, степень ионизации α5 = 1.5 · 10−2,

концентрация атомов n5h = 0.9 · 1025 m−3. При движении

по соплу газ расширяется, при этом за счет отно-

сительно большого времени релаксации ксенона [18]
газовая температура спадает быстрее, чем температура

электронов. В результате до включения газового разряда

на тело уже набегает поток неравновесной плазмы со

следующими параметрами: число Маха потока M = 6.8,

температура газа Th = 1200K, температура электро-

нов Te = 3926K, проводимость σ = 700 S/m, степень

ионизации α = 0.0018, скорость потока u = 2 · 103m/s,

плотность газа ρ = 0.04 kg/m3, давление p = 3.1 · 103 Pa,
концентрация nh = 1.87 · 1023 m−3 и ne = 3.37 · 1020 m−3.

Рабочий режим ударной трубы с рабочим газом возду-

хом выбирался из следующих соображений: достаточная

для формирования стационарного обтекания длитель-

ность течения воздуха, концентрация частиц в рабочей

части n = 1023−1024 m−3, при расширении в сопле тем-

пература газа Th должна оставаться выше температуры

конденсации компонентов воздуха и возможных моле-

кулярных примесей, температура термически нагретого

за отраженной ударной волной в торце ударной трубы

воздуха не должна превышать температуры, при которой

происходит заметное изменение молекулярного состава

воздуха. В воздухе релаксация газа при расширении в

сопле происходит очень быстро, поэтому на тело натека-

ет слабоионизованный газ, основная ионизация газа про-

исходит при торможении у тела и в разряде. Экспери-

мент проводился при следующих условиях работы удар-

ной трубы: начальное давление и температура рабочего

газа p1 = 4000 Pa, T1 = 300K, число Маха ударной вол-

ны в ударной трубе M2 = 6.6. Параметры торможения

перед входом в сопло: p5 = 1.91 · 106 Pa, T5 = 4710K.

В районе расположения тела: M = 4.15, Th = 1300K,

u = 3 · 103 m/s, ρ = 0.018 kg/m3, p = 8 · 103 Pa.
Оценки показателя адиабаты в натекающем потоке и

в области перед моделью проводились в соответствии

с теорией [14], которая предполагает, что в ионизован-

ной среде показатель адиабаты имеет сильную зависи-

мость от степени ионизации и степени неравновесности

среды, что может приводить как к его уменьшению, так

и увеличению в зависимости от соотношения плазмен-

ных параметров. Для приведенных выше параметров в

набегающем на модель потоке в ксеноне γ = 1.217, в

воздухе γ = 1.323. При торможении вблизи передней

кромки модели поток дополнительно ионизируется, его

параметры приближаются к термодинамически равно-

весным, что приводит к увеличению показателя адиаба-

ты в области между ГУВ и фронтальной поверхностью

тела. Начальное значение γ в зоне воздействия при

отсутствии газового разряда в ксеноне оценивалось, как

γs = 1.258, в воздухе в связи со слабой ионизацией пока-

затель адиабаты в отсутствие газового разряда считался

γs = 1.323.

1.3. Экспериментальные параметры разряда
у передней кромки модели

Для исследования влияния поверхностного разряда на

положение ГУВ была изготовлена полуцилиндрическая

модель с вмонтированными электродами. Электроды

горизонтально расположены на поверхности цилиндри-

ческой области тела, это видно на рис. 1, b. При органи-

зации разряда через эти электроды газоразрядный ток

охватывает поверхность носовой части тела по полу-

круговой траектории. В качестве источника напряжения

используется специально созданная LC-цепь, подключен-

ная к электродам через диагностическое сопротивление

R = 0.05�, что позволяет без дополнительных ключей

организовывать приповерхностный газовый разряд раз-

личной силе газоразрядного тока, которая определяется

поданным в цепь напряжением. Перед экспериментом

LC-цепь заряжается до заданного напряжения. Разряд

инициируется приходом ионизованного потока в область

между электродами и охватывает носовую часть тела по

полукруговой траектории. Разряд занимает область про-

странства у тела за ударной волной размером примерно

L × l × h = 4.5× 5× 0.5 cm. Воздействие начинается в

момент начала обтекания, и формирование ГУВ про-

исходит уже при наличии зоны газового разряда. При

торможении у поверхности тела кинетическая энергия

потока преобразуется в тепловую, за ГУВ газ ионизиру-

ется, его плотность и температура увеличиваются, при

этом температурное состояние становится близким к

равновесному. Газовый разряд увеличивает как степень

ионизации в области между ГУВ и моделью, так и
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Рис. 2. Осциллограммы разрядного тока (красная кривая)
и проводимости (синяя кривая) ксеноновой и воздушной

плазмы при поверхностном разряде. Ксенон — жирные линии,

воздух — тонкие линии.
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Рис. 3. Вольт-амперные характеристики (а), проводимость (b) и мощность (c) приповерхностного газового разряда в ксеноне

(красные круги) и воздухе (зеленые квадраты).

температуру электронов и газа в целом, изменяя при

этом степень неравновесности. Эти процессы влияют

на показатель адиабаты среды, а следовательно, и на

газодинамические параметры обтекания.

Характерные осциллограммы газоразрядного тока в

приповерхностной области и достигаемой при этом

проводимости плазмы 〈σ 〉 для экспериментов в ксеноне

и в воздухе приведены на рис. 2. Величина тока в разных

экспериментах менялась изменением величины заряд-

ного напряжения LC-цепи. Продолжительность разряда

определялась временем обтекания модели плазменной

средой, т. е. величиной пробки ионизованного газа. Дли-

тельность пробки ударно-сжатого в ударной трубе газа

в ксеноне и воздухе отличались в 3 раза, что видно из

токовых осциллограмм.

Время формирования отошедшей ударной волны у

модели порядка 70µs от начала обтекания, далее идет

стационарное обтекания модели. Именно в этой обла-

сти происходит диагностика течения. Шлирен-картина

фиксируется в области стационарного обтекания через

330µs после начала течения в ксеноне и 90µs в возду-

хе. Момент фиксации шлирен-картин показан черными

вертикальными стрелками на рис. 2.

Параметры воздействующего на обтекание поверх-

ностного газового разряда определялись эксперимен-

тально по вольт-амперным характеристикам зависимо-

сти газоразрядного тока I от напряжения на разрядном

промежутке Upl , которая приведена на рис. 3, а. По-

лучаемая при этом средняя эффективная проводимость

воздуха определялась по закону Ома для плазмы

j = 〈σ 〉E,

где плотность разрядного тока

j =
I

S
=

I

hl
,

а напряженность электрического поля

E =
Upl

L
.

Зависимость средней эффективной проводимости воз-

духа, получаемой у поверхности модели в разряде, при-

ведена на рис. 3, b. Видно, что в воздухе для достижения

близких к ксенону проводимостей необходима организа-

ция гораздо большей величины газоразрядного тока. Это

значит, что для создания интенсивности разряда, сравни-

мой с интенсивностью в ксеноне, в воздушном разряде

необходимо увеличить напряженность электрического

поля в разрядном промежутке и мощность, подводимая

к разряду, при этом должна быть почти на порядок

больше, чем в ксеноне, что видно на рис. 3, с.
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a b c d e

f g h i

Рис. 4. Шлирен-картины течения при разной интенсивности газового разряда. Ксенон: а — I = 0; b — I = 370A, P = 35 kW;

c — I = 670A, P = 66 kW; d — I = 915A, P = 125 kW; e — I = 1200A, P = 158 kW. Воздух: f — I = 0; g — I = 607A,

P = 220 kW; h — I = 760А, P = 370 kW; i — I = 1040А, P = 530 kW.

1.4. Изменение картины обтекания

при поверхностном плазменном

воздействии

При разных интенсивностях газового поверхностно-

го разряда были получены шлирен-картины обтекания

полуцилиндрического тела потоком ксенона и потоком

воздуха. Примеры полученных картин обтекания модели

представлены на рис. 4. По шлирен-картинам измерялся

относительный отход ГУВ (d−d0)/d0, где d0 — расстоя-

ние между ГУВ и передней кромкой модели при стацио-

нарном обтекании в отсутствие разряда. Измерения для

каждого положения ударной волны проводились по оси

сопла при разных увеличениях шлирен-картины, затем

данные усреднялись. Неопределенность в нахождении

величины отхода составляет не более 10%. Эксперимен-

тальные данные показали, что при увеличении интенсив-

ности разряда в области между ГУВ и моделью стаци-

онарная ударная волна отходит от тела, расстояние d

увеличивается как в ксеноне, так и в воздухе. Отход

стационарной ГУВ при таком воздействии определяется

совокупностью причин. Это тепловые эффекты, а имен-

но нагрев газа за счет нагрева в разряде заряженных

частиц и передачи тепловой энергии при столкновениях

нейтральным атомам и молекулам, а также плазменные

эффекты, которые воздействуют на показатель адиаба-

ты среды, от которого зависят основные параметры

обтекания.

2. Численное моделирование

2.1. Методология и постановка задачи

В эксперименте ионизованный поток, организованный

в ударной трубе, достигает тела и вызывает зажигание

разряда между электродами, расположенными на теле,

к которым приложено напряжение. При достижении

потоком тела начинается формирование ГУВ, которая

проходит через зону воздействия газоразрядной плаз-

мы. При этом перед телом происходит дополнительная

ионизация за счет повышения температуры за фронтом

ударной волны. Следует отметить, что эта дополни-

тельная ионизация присутствует в стационарном тече-

нии и при отсутствии воздействия разряда. В расчетах

предполагается, что горячая зона воздействия ионизо-

ванного газа перед телом возникает мгновенно, что

обусловлено разницей временных масштабов развития

разрядных и газодинамических явлений. Таким образом,

воздействие разряда моделируется действием объемной

газовой области с повышенной энергией и изменен-

ным показателем адиабаты. Отметим, что расчеты для

ксенона включают наличие дополнительной ионизации

перед телом, а в расчетах воздуха она является незна-

чительной [16] и не учитывается. На рисунках ниже

граница зоны воздействия разряда обозначена красным

цветом.

Моделирование основано на уравнениях Навье−Сток-

са для идеального вязкого теплопроводного газа; пока-
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затель адиабаты варьировался при различных значениях

удельной мощности разряда q (мощность на единицу

массы). Предполагалось, что поток параллелен оси сим-

метрии. Численно решается полная система уравнений

Навье−Стокса в дивергентной форме для безразмерных

переменных [19]:

∂U

∂t
+

∂(F + Fv)

∂x
+

∂(G + Gv)

∂y
= H, (1)

U =


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ρ

ρu

ρv
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
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


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
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,

π1 = u
(

4/3ux − 2/3vy

)

+ v(vx + uy ),

π2 = v
(

4/3vy − 2/3ux

)

+ u(vx + uy ),

E = ρ
(

ε + 0.5(u2 + v2)
)

, N = Re Pr(γ − 1)/γ.

Здесь ρ, p, u, v — плотность газа, давление, x - и y -

компоненты скорости. Удельная мощность в области

более высокой энергии газа, образованной разрядом,

равна q (где q — варьируемый параметр), а удельная

внутренняя энергия ε равна

ε = p/
(

ρ(γ − 1)
)

.

Для зависимости динамической вязкости µ от темпе-

ратуры T для воздуха использовался закон Сазерленда

µ =
T 1.5(1 + s1)

T + s1
,

где s1 = 110K. Для ксенона полагалось, что

µ = T 0.5.

Предполагалось, что коэффициент теплопроводности k

зависит от температуры как

k = T 0.5.

Задача решается в безразмерных переменных, кото-

рые выражаются через размерные переменные (обозна-
ченные индексом

”
dim“) следующим образом:

t =
tdim

tn,

, x =
xdim

ln,

, y =
ydim

ln,

, u =
udim

un,

, v =
vdim

un,

,

ρ =
ρdim

ρn

, p =
pdim

pn

, T =
Tdim

Tn

.

В расчетах использовались следующие масштабирую-

щие коэффициенты:

ρn = ρ∞, pn = p∞, ln = D, Tn = T∞,

un = (p∞/ρ∞)0.5, tn = ln/un,

где индекс ∞ определяет параметры набегающего пото-

ка. На рисунках ниже, где не указано иное, значения по

осям приводятся в безразмерном виде.

На границах тела используются граничные условия,

обеспечивающие отсутствие нормальных потоков и от-

сутствие проскальзывания:

∂ p

∂n
= 0,

∂T

∂n
= 0, V = 0.

На выходных границах используются граничные усло-

вия, обеспечивающие отсутствие отражения:

∂ p

∂n
= 0,

∂T

∂n
= 0,

∂V

∂n
= 0,

где V — скорость потока.

Начальными условиями являются параметры набегаю-

щего потока: плотность ρ∞, давление p∞ и скорость u∞.

Для ксенона задача решалась с учетом начальной повы-

шенной ионизации газа перед телом.

Приповерхностное энерговыделение моделируется за-

данием стационарной области с более высокой энер-

гией газа с использованием правой части уравнения

энергии в (1), где q — удельная мощность в этой

области. Ширина этой области в направлении x выбира-

ется с помощью обработки экспериментальных шлирен-

изображений (рис. 4). Предполагается, что эта область

возникает мгновенно и определяется через начальные

условия и значения удельной мощности q и показателя

адиабаты газоразрядной плазмы γs .

Моделирование выполняется с использованием вычис-

лительного кода на основе комплексно консервативных

разностных схем [20], которые имеют второй порядок

точности по пространству и по времени. Для постро-

ения схемы используется пятиточечный шаблон схемы

Лакса, что приводит к шахматным, ортогональным и

равномерным сеткам во всей вычислительной области.

Для повышения порядка аппроксимации при разработке

схем используются дифференциальные следствия систе-

мы (1) для частных производных по x и по y . Таким

образом, помимо основных консервативных переменных

используются их первые производные по x и y , которые

считаются неизвестными функциями и вычисляются на
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Таблица 1. Определяющие параметры набегающего потока и нормирующие коэффициенты для моделирования воздействия

приповерхностного разряда в ксеноне и в воздухе

Ксенон

Описание
Размерное Безразмерное Нормирующий

значение значение коэффициент

Число Маха набегающего потока, M∞ 6.8

Показатель адиабаты в набегающем потоке, γ 1.217

Число Рейнольдса, Re 4558.9

Число Прандтля, Pr 0.623

Давление в набегающем потоке, p∞ 3.1 · 103 Pa 1.0 pn = p∞

Плотность в набегающем потоке, ρ∞ 0.040793 kg/m3 1.0 ρn = ρ∞

Температура в набегающем потоке T∞ 1200K 1.0 Tn = T∞

Удельная мощность в области плазмы q
0, 52, 82.5, 119.5, qn = pn/(tnρn) =

147.2, 213.3 = 0.698299 · 106 kW/кg

Скорость, u 2067.96m/s 7.502 un = (pn/ρn)
0.5 = 275.668m/s

Время, t 1.0 tn = ln/un = 108.827 µs

Воздух

Число Маха набегающего потока, M∞ 4.153

Показатель адиабаты в набегающем потоке, γ 1.323

Число Рейнольдса, Re 6763.2

Число Прандтля, Pr 0.703

Давление в набегающем потоке, p∞ 6790.546 Pa 1.0 pn = p∞

Плотность в набегающем потоке, ρ∞ 0.017572 kg/m3 1.0 ρn = ρ∞

Температура в набегающем потоке, T∞ 1302.024K 1.0 Tn = T∞

Удельная мощность в области плазмы, q 0, 43, 55, 57, 75, 130 qn = pn/(tnρn) = 8.00763 · 106 kW/кg

Скорость, u 2969.272m/s 4.776 un = (pn/ρn)
0.5 = 621.64m/s

Время, t 1.0 tn = ln/un = 48.26 µs

том же шаблоне. Необходимые вторые производные

вычисляются с использованием значений первых произ-

водных в узлах шаблона.

В шахматных сетках, используемых в расчетах, рас-

стояние между узлами равно 2hx и 2hy (где hx

и hy обозначают пространственные шаги по направ-

лениям x и y соответственно). Выбор шага по

времени осуществляется с использованием критерия

Куранта−Фридрихса−Леви. Расчеты проводились при

hx = hy = 0.001 на областях, содержащих порядка 6 · 106

узлов (считая средний узел шаблона).

Границы аэродинамического тела вводятся в расчет-

ную область без нарушения в ней законов сохранения.

Криволинейная граница вписывается в прямоугольную

шахматную разностную сетку путем построения раз-

ностных схем в окрестности границы с использованием

новых типов шаблонов на основе 1/4, 1/2 и 3/4 частей

ячейки. Такие неполные ячейки соседствуют с полными

стандартными ячейками, обеспечивая выполнение зако-

нов сохранения во всей расчетной области, включая

области, прилегающие к границам тела. Детали постро-

ения схем в расчетной области и в окрестности границ

аэродинамического тела, а также ряд тестовых расчетов,

представлены в [20]. Анализ сеточной сходимости при-

веден в [16,17].

2.2. Численные результаты по управлению
головной ударной волной в ксеноне

и воздухе

Определяющие параметры потока и нормирующие

коэффициенты, принятые при моделировании воздей-

ствия приповерхностного разряда в ксеноне и в воздухе,

приведены в табл. 1.

Рис. 5 иллюстрирует стационарный режим течения

при воздействии энергии приповерхностного разряда на

положение ГУВ в момент времени t = 2.0. Показаны

стационарные поля плотности в изохорах для разных

значений удельной мощности (проведено наложение

имиджей). Видно, что чем больше значение удельной
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Рис. 5. Поля плотности в изохорах для различных значений удельной мощности q, t = 2.0: а — ксенон, M = 6.8, γ = 1.217,

γs = 1.258; b — воздух, M = 4.15, γ = 1.323, γs = 1.323.

мощности q, тем дальше удалена ГУВ от тела в ста-

ционарном режиме.

Механизм влияния на положение стационарной ГУВ

приповерхностного энерговклада установлен в [16] и

связан с тем, что ГУВ при своем формировании движет-

ся через уже существующую нагретую область газораз-

рядной плазмы (что обусловлено разницей временных

масштабов формирования зоны плазмы разряда и га-

зодинамических процессов). Таким образом, параметры

зоны разряда оказывают влияние на параметры форми-

рующейся ГУВ на нестационарной стадии течения, а

следовательно, эти параметры определяют положение

ГУВ и на стационарной стадии.

Рис. 6 иллюстрирует динамику x -координаты фронта

ГУВ при изменении значений q в процессе установления

стационарного течения. Положение ГУВ определялось

путем выделения координаты x , соответствующей мак-

симальному значению px на фронте волны. Отметим,

что наличие флуктуаций в этих зависимостях обу-

словлено дискретностью представления фронта ударной

волны в разностной ячейке, связанной с построени-

ем алгоритма отслеживания фронта ГУВ. На рис. 6

для воздуха приведены касательные к кривым, которые

имеют разные углы наклона к оси x . Это означает,

что скорость ГУВ на нестационарной стадии также

различна для разных значений q, причем эта ско-

рость больше для больших q. Таким образом, при

прохождении ГУВ через область разрядной плазмы

чем больше значение удельной мощности, тем дальше

ГУВ удаляется от тела, что влияет на положение
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Рис. 6. Динамика x -координаты ГУВ при различных значени-

ях q в процессе установления стационарного режима течения

в ксеноне и в воздухе.

ГУВ в стационарном режиме течения. Отметим, что,

поскольку расстояние до ГУВ непосредственно влия-

ет на аэродинамические характеристики обтекаемого

тела, возможность влиять на положение ГУВ означа-

ет возможность управления аэродинамикой летящего

объекта.
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M = 6.8, γ = 1.217; b — воздух, M = 4.15, γ = 1.323.

Воздействие приповерхностной плазменной области

на аэродинамические характеристики обтекаемого тела

исследовалось в [16] в воздухе и в [17] в ксеноне

при числах Маха набегающего потока 4.1 и 6.8 соот-

ветственно. В этих работах приведена динамика плот-

ности, давления, температуры и относительной силы

сопротивления F/F0 при установлении их значений в

точке торможения на цилиндре для различных значений

удельной мощности плазменной области q. Здесь сила

сопротивления равна

F =

0.5D
∫

0

pb dy,

где pb — значение давления на цилиндрической части

поверхности тела, F0 — значение силы сопротивления F

без энерговклада.

Результаты, приведенные в [16,17], указывают на тот

факт, что в точке торможения на стадии стационара

давление демонстрирует лишь незначительные измене-

ния с ростом q, тогда как разрежение газа заметно

увеличивается, что приводит к существенному повыше-

нию температуры. Там же получено, что относительная

сила сопротивления F/F0, действующая на фронтальную

поверхность тела, уменьшается с ростом расстояния

ГУВ от тела. В стационарном режиме эта сила несколько

больше для более высоких значений q, как показано на

приведенных рисунках в работах [16,17].

Расчеты показали, что в приповерхностной области

за счет выделения энергии разряда происходят суще-

ственные изменения температуры и плотности. Также

установлено, что положение ГУВ в стационарном со-

стоянии зависит от показателя адиабаты газоразрядной

плазмы γs . Поля плотности для стационарных режимов

течения при q = 100 и изменяющихся значениях γs ,

представленные на рис. 7, иллюстрируют тот факт, что

большему значению γs соответствует больший отход

стационарной ГУВ. Получено, что в потоках с числами

Маха до 7 положение стационарной ГУВ реагирует даже

на незначительное изменение γs , причем чем меньше

число Маха потока, тем легче управлять положением

стационарной ГУВ за счет изменения γs . Отметим,

что постоянное значение удельной мощности разряда

означает постоянный джоулев нагрев, обеспечиваемый

разрядом, а динамика γs определяется степенью иониза-

ции и степенью неравновесности в плазменной зоне [14].
Таким образом, рис. 7 отражает влияние чисто плазмен-

ных параметров на стационарное положение ГУВ.

2.3. Сравнение экспериментальных

и численных результатов

Расчетные и экспериментальные зависимости отно-

сительного отхода стационарной ГУВ от аэродинами-

ческого тела в зависимости от мощности разряда для

ксенона и воздуха показаны на рис. 8. Здесь при моде-

лировании потока ксенона учитывалась дополнительная
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ионизация плазмы за ГУВ в области плазмы перед

моделью (начальное значение γs = 1.258 [17]). Из рис. 8

очевидно, что установившиеся относительные значения

отхода определяются двумя параметрами q и γs , причем

с ростом тока и мощности разряда показатель адиабаты

имеет тенденцию к росту в ксеноне и к уменьшению в

воздухе. Получено также, что значения относительного

отхода, полученные экспериментально и в моделирова-

нии, согласуются. На начальном этапе (в ксеноне для

0 < P < 54.2 kW, в воздухе для 0 < P < 240 kW) зави-

симость относительного отхода от мощности разряда

близка к линейной. Кроме того, в ксеноне получено ко-

лебание относительного отхода при 54.2 < P < 86.6 kW.

Это колебание можно объяснить тем, что показатель

адиабаты γs сильно зависит от степени ионизации в этом

диапазоне токов разряда, что может приводить как к его

увеличению, так и к уменьшению [17].
На рис. 9 представлено сравнение численных картин

течения и шлирен-изображений потока при воздействии

приповерхностного разряда в ксеноне и воздухе. Расхож-
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Таблица 2. Соответствие между током разряда I, удельной мощностью q и показателем адиабаты газоразрядной плазмы γs

в ксеноне и воздухе

Ксенон

I, A 0 373 604 673 800 915 1196

q 0 52 82.5 119.5 147.2 213.3 579

qdim · 10−6 kW/kg 0 36.312 57.610 83.447 102.790 148.947 404.315

γs 1.258 1.256 1.25 1.275 1.253 1.288 1.293

Воздух

I, A 0 607 640 645 760 900 1040

q 0 45 55 57 75 101 130

qdim · 10−6 kW/kg 0 360.34 440.42 456.43 600.57 705.28 1041.0

γs 1.323 1.29 1.3 1.3 1.28 1.24 1.2
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Рис. 10. Отношения относительных отходов (красные круги), мощностей разрядов (синие треугольники) и показателей адиабаты

(зеленые квадраты) и удельных мощностей (фиолетовые ромбы) в воздухе к соответствующим параметрам в ксеноне в

зависимости: а — от величины газоразрядного тока; b — от отношения мощностей разрядов.

дение расчетной и экспериментальной формы ударной

волны на периферии связано с расходящейся структурой

потока в сопле. Некоторое рассогласование расчетного

и экспериментального имиджей на рис. 9, c объясняется

тем фактом, что в начальных условиях для воздуха не

учитывается дополнительная ионизация потока у тела

(это расхождение отсутствует при рассмотрении от-

носительных отходов). Можно отметить соответствие

численных и экспериментальных картин потока по поло-

жению ГУВ на оси симметрии для полученных парамет-

ров γs и q, оцененных размеров области плазмы разряда

и установленных начальных условий для набегающего

потока в случае ксенона и воздуха.

В табл. 2 показано соответствие между удельной мощ-

ностью, вырабатываемой разрядом q, током разряда I и

значением показателя адиабаты в зоне разряда γs для

ксенона и воздуха. Здесь qdim — размерная величина

удельной мощности q. Видно, что в ксеноне с ростом

тока разряда удельная мощность увеличивается; пока-

затель адиабаты γs остается практически неизменным

в интервале 1.25−1.258 (до значения тока разряда

I = 604А), затем наблюдается колебание γs до значе-

ния 1.275. При более высоких значениях тока разряда

показатель адиабаты γs увеличивается до значения 1.293.

В воздухе с ростом тока разряда удельная мощность

также увеличивается; показатель адиабаты γs остается

практически неизменным в интервале 1.3−1.323 (до зна-

чения тока разряда I = 645А). При более высоких значе-

ниях тока разряда показатель адиабаты γs уменьшается.

3. Обсуждение результатов

Был проведен обобщающий анализ полученных в

эксперименте и численном моделировании данных для

ксенона и воздуха. В качестве критерия сравнения была

выбрана величина газоразрядного тока у поверхности

модели. Для этого были построены зависимости основ-

ных параметров от газоразрядного тока и взяты отноше-

ния соответствующих параметров в воздухе к значению

этого параметра в ксеноне. На рис. 10, а приведены

зависимости отношений относительного отхода стаци-

онарной ГУВ 1d = (d−d0)/d0, мощностей разрядов и

показателей адиабаты газоразрядной плазмы от тока

разряда. Видно, что при малых значениях тока до 600А
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скорость возрастания отхода ГУВ больше в воздухе,

чем в ксеноне, но по мере увеличения тока скорость

возрастания отхода в ксеноне становится больше и

значительно превосходит скорость возрастания отхода

ГУВ в воздухе. При I = 1200A величина относительного

отхода в разных газах одинакова, но при этом для до-

стижения такого же отхода мощность разряда в воздухе

должна быть почти в 4 раза больше, чем в ксеноне.

Рост газоразрядного тока сопровождается уменьшением

отношения отходов стационарных ГУВ и увеличением

отношения мощностей. Отношение показателя адиабаты

в воздухе к показателю адиабаты в ксеноне уменьшается,

как с ростом тока, так и с ростом отношения мощностей

(рис. 10, b). Можно отметить, что показатели адиабаты

в газоразрядной плазме в двухатомном и одноатомном

газах близки по значению и становятся одинаковыми

при токе 800А и отношении мощностей разрядов 3.6.

До этих же значений тока и мощностей отношение

удельных мощностей практически не меняется, при

дальнейшем увеличении тока и мощности разряда на-

блюдается резкий рост отношения удельных мощностей,

что указывает на значительное превосходство необходи-

мой для дальнейшего воздействия на положение ГУВ

мощности, вкладываемой в единицу массы воздушной

плазмы по сравнению с ксеноновой при больших интен-

сивностях разряда.

Заключение

В работе приведены экспериментальные и числен-

ные результаты исследования влияния приповерхност-

ной плазменной области около аэродинамического тела,

образующейся при организации газового разряда в ксе-

ноне и воздухе, на положение стационарной головной

ударной волны. Получены поля параметров течения при

различных значениях удельной мощности разряда q и

показателя адиабаты γs в плазменной области, созданной

газовым разрядом. Сравнение численных и экспери-

ментальных значений относительного отхода стацио-

нарной головной ударной волны продемонстрировало

их хорошее совпадение. Получены следующие новые

результаты:

— показана возможность управления ГУВ и аэроди-

намическими характеристиками тела в газах с разными

показателями адиабаты за счет образования объемной

плазменной области, которая формируется с помощью

поверхностного газового разряда, организованного на

всей фронтальной поверхности тела;

— установлено, что положение стационарной ГУВ

определяется удельной мощностью разряда и значени-

ем показателя адиабаты (на которое влияют степень

ионизации и степень неравновесности) в зоне плазмы,

создаваемой разрядом. При этом показатель адиаба-

ты газоразрядной плазмы играет существенную роль

в динамике структуры течения и в величине отхода

стационарной ГУВ от тела;

— получено, что на начальном этапе (в ксеноне для

0 < P < 54.2 kW, в воздухе для 0 < P < 240 kW) зависи-
мость относительного отхода от мощности разряда близ-

ка к линейной, при этом показатель адиабаты близок к

постоянному (в ксеноне 1.258 < γs < 1.253, в воздухе

1.3 < γs < 1.323). В ксеноне получен неравномерный

отход ГУВ от тела в стадии стационарного обтекания

при мощности разряда 54.2 < P < 86.6 kW;

— установлено, что для активного управления по-

ложением ГУВ в воздухе мощность поверхностного

газового разряда должна быть почти в 4 раза больше

мощности в ксеноне; при увеличении тока отношение

мощности разряда в воздухе к мощности в ксеноне

растет, при этом отношение относительных отходов и

показателей адиабаты уменьшаются. Получено, что по-

казатели адиабаты в воздухе и ксеноне в газоразрядной

плазме близки по значению и становятся одинаковыми

при токе разряда 800 А и вкладываемой мощности в

ксенон 95 kW и в воздух 345 kW, с этих же значений

тока и мощностей наблюдается сильный рост удельной

мощности в разряде воздуха по сравнению с разрядом

в ксеноне.

Таким образом, показана возможность управления как

стационарным положением ГУВ, так и характеристика-

ми аэродинамического тела в газах с различными показа-

телями адиабаты путем создания объемной плазменной

области перед всей его фронтальной поверхностью с

помощью варьирования показателя адиабаты плазмы

и энергетических характеристик разряда. Полученные

результаты имеют потенциал для разработки систем

управления высокоскоростными потоками с учетом не

только тепловых эффектов, но и влияния параметров

плазмы.
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