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Показано, что при наличии функциональной зависимости температуры Дебая 2(T ) в выражения для

энтропии и изохорной теплоемкости должны входить члены с первой и второй производными функции

2(T ) по температуре. Поэтому для выполнимости третьего начала термодинамики для n-мерного кристалла

функция 2(T ) и температурная зависимость параметра Грюнайзена γ(T ) при низких температурах должны

изменяться согласно зависимости (T/20)
n+1. При этом значение 20 отличается от величины 20s , которое

определяется из экспериментальной температурной зависимости теплоемкости без учета зависимости 2(T ).
Показано, что если функция 2(T ) уменьшается, то функция γ(T ) возрастает с ростом температуры от

значений 20 > 20s и γ0 > γ0s соответственно. При средних температурах функция 2(T ) имеет минимум, а

функция γ(T ) имеет максимум. Если функция 2(T ) возрастает от 20 < 20s до максимума, то функция γ(T )
убывает от γ0 < γ0s до минимума. Предложен метод определения температурной зависимости функции 2(T ).
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Введение

Температура Дебая (2) является важным параметром,

определяющим различные свойства вещества. Величина

2 также приближенно указывает температурную гра-

ницу, ниже которой начинают сказываться квантовые

эффекты. Поэтому определению величины 2 уделяется

большое внимание как в экспериментальных, так и в

теоретических работах.

В традиционной теории Дебая предполагается, что

величина 2 не зависит от температуры (T ) [1,2]. Тогда

выражения для вычисления свободной энергии (FD),

энтропии (SD = −(∂FD/∂T )V ) и изохорной теплоем-

кости (CD = T (∂SD/∂T )V = −T (∂2FD/∂T 2)V ) n-мерного

молекулярного кристалла получаются в виде
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Здесь NA — число Авогадро, ni — число ионов (или
атомов) в молекуле, kB — постоянная Больцмана, V —

объем кристалла, n = 1, 2, 3, Debn(x) — функция Дебая

для n-мерного кристалла, которая имеет вид [3]:

Debn(x) =
n

xn

x∫

0

tn

[exp(t) − 1]
dt. (4)

При низких температурах функцию Debn(x) можно

преобразовать к виду

Debn(x ≫ 1) ∼=
nAn

xn
− n exp(−x) ∼=

nAn

xn
, (5)

где An = n! ζ (n + 1), ζ (n + 1) — дзета-функция Ри-

мана [3]: ζ (2) = π2/6, ζ (3) = 1.202057, ζ (4) = π4/90,

т. е. A1 = π2/6, A2 = 2.404114, A3 = π4/15.

Значения 2 для конкретных веществ, эксперимен-

тально определенные по температурной зависимости

теплоемкости в предположении о независимости 2 от T ,

представлены во многих справочниках и монографи-

ях. Вместе с тем, у многих веществ обнаруживается

зависимость величины 2 от температуры [1,2,4–11].
Если принять во внимание наличие такой зависимости,

то выражения (2)−(3) будут содержать производные
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от функции 2(T ) по температуре и имеют более слож-

ный вид [12]:
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где S и C — это энтропия и изохорная теплоемкость

вещества, в котором обнаруживается зависимость вели-

чины 2 от температуры.

Для области низких температур (T ≪ 2(T )) данные

выражения имеют вид
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Здесь функции s∗D low и c∗

D low имеют традиционный

дебаевский вид [1,2]:
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Из (9) видно, что если параметр 2 в области низ-

ких температур имеет функциональную зависимость от

температуры, то величина 2(T ) должна определяться

из экспериментальной зависимости c∗(T )low с помощью

дифференциального уравнения. Однако на данном этапе

величину 2(T ) определяют с помощью степенного урав-

нения (11) [1,2,4–11].
При низких температурах функция 2(T ) должна

иметь такую зависимость, чтобы выражения (8) и (9)
удовлетворяли третьему началу термодинамики в

”
силь-

ной“ формулировке Планка

lim
T→0 K

S

nNAnikB

= 0, lim
T→0 K

C

nNAnikB

= 0. (12)

Это накладывает определенные ограничения на функ-

циональную зависимость 2(T ). В настоящей работе

изучены эти ограничения и получена корректная зависи-

мость для функции 2(T ) в области низких температур.

1. Метод расчета и результаты

Так как в большинстве случаев экспериментально

определенная зависимость 2(T ) убывает с ростом тем-

пературы от значения 20 = 2(T = 0K) [1,2,4–11], при-
мем для функции 2(T ) при низких температурах фор-

мулу вида

2(T )low = 20

[

1− χn

(
T

20

)k]

, (13)

где χn — численный коэффициент.

Тогда из (8)−(11), ограничиваясь при T ≪ 20 линей-

ными по (T/20)
n членами, легко получить
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(15)
Из (14) и (15) видно, что при любом χn функции

s∗low и c∗

low равны нулю при T = 0K. При этом для

соблюдения зависимости c∗

low ∝ (T/20)
n должно выпол-

няться условие k ≥ n + 1. Кроме того, чтобы при χn < 0

выполнялось s∗low ≥ 0 и c∗

low ≥ 0, должно соблюдаться

условие

2(n + 1)2

nk
An

(
T

20

)n+1−k

≥ −χn = |χn| > 0. (16)

Из (16) следует, что для того чтобы величина

χn < 0 не зависела от температуры, необходимо при-

нять k = n + 1. Также при χn < 0 и k > n + 1 из (16)
следует наличие максимумов у функций s∗low и c∗

low

при Tmax/20 > 0, после которых функции s∗low и c∗

low

будут уменьшаться с ростом T/20. Так как наличие этих

максимумов противоречит экспериментам, мы должны

принять k = n + 1. Значения максимумов легко найти

из (14) и (15):

Tmax(s)

20

=

[
2(n + 1)2An

k(k − 1)|χn|

]1/[k−(n+1)]

,

Tmax(c)

20

=

[
2(n + 1)2n An

k(k − 1)2|χn|

]1/[k−(n+1)]

. (17)

Из (17) видно, что для того чтобы температуры

максимумов совпадали, т. е. чтобы выполнялось условие:

Tmax(s) = Tmax(c), также должно выполняться k = n + 1.

При этом значения максимумов уходят в бесконечность,

т. е. становятся недостижимыми. Таким образом, можно
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утверждать, что для n-мерного кристалла входящие

в (13) параметры должны удовлетворять условиям

k = n + 1, χn > −
2(n + 1)An

n
. (18)

Из зависимости (13) можно получить выражение для

параметра Грюнайзена в виде

γ(T )low = −

(
∂ ln2(T )low

∂ lnV

)

T

= γ0 +
χn

[
(n + 1)γ0 +

(
∂ ln χn

∂ ln v

)

T

](
T
20

)n+1

[
1− χn

(
T
20

)n+1]

∼= γ0 + χn[(n + 1)γ0 − λ0]

(
T

2n

)n+1

. (19)

Здесь введены следующие обозначения:

γ0 = −

(
∂ ln20

∂ lnV

)

T=0 K

, λn = −

(
∂ ln χn

∂ lnV

)

T

. (20)

Параметр Грюнайзена определяет степень возраста-

ния температуры Дебая при изотермическом сжатии

кристалла. Параметр λn определяет степень увеличения

значения χn при изотермическом сжатии кристалла.

Заметим, что в литературе (в зависимости от мето-

да экспериментального определения) встречаются два

параметра Грюнайзена: вибрационный и термодинами-

ческий [4,13–15]. Вибрационный параметр Грюнайзена

определяется по изменению частоты колебаний атомов

(ω) при сжатии кристалла: γ = (∂ lnω/∂ lnV )T . Термо-

динамический параметр Грюнайзена определяется по

соотношению изобарного коэффициента теплового рас-

ширения (αp = (∂ lnV/∂T )P), изотермического модуля

упругости (BT = −V (∂P/∂V )T), объема (V ) и изохор-

ной теплоемкости (C): γTh = αpBTV/C . Отметим, что

при наличии температурной зависимости 2(T ) данное

выражение для γTh некорректно [15]. Это связано с тем,

что, согласно (7), в теплоемкость войдут члены с первой

и второй производными функции 2(T ) по температуре,

а величина αpBT = (∂S/∂V )T будет зависеть от первой

производной функции 2(T ) по температуре. Это при-

водит к отличию величин γ и γTh . Здесь мы изучаем

вибрационный параметр Грюнайзена γ .

При k = n + 1 зависимость в (15) будет соответство-

вать экспериментальной, но вычисление величины 20

необходимо будет производить уже не из (11), а из

выражения, которое следует из (15):

c∗

low
∼=

[

(n + 1)n An +
n2

2
χn

](
T

20

)n

. (21)

Это приводит к поправке в рассчитанную из (11) тем-

пературу Дебая при T = 0K. Приравнивая выражения

для теплоемкостей из (11) и (21), можно получить

20
∼= 20s

[

1 +
n

2(n + 1)An

χn

]1/n

, (22)

где 20s — величина, определенная из эксперимен-

тальных значений теплоемкости без учета зависимости

2(T )low , т. е. 20s рассчитывается из степенного уравне-

ния (11).

Из формулы (22) выражение для параметра Грюнай-

зена примет вид

γ0 = −

(
∂ ln20

∂ lnV

)

T=0 K

= γ0s +
χnλn

2(n + 1)An + nχn

. (23)

где γ0s — это величина параметра Грюнайзена, опреде-

ленная из функции 20s(V ), т е. без учета температурной

зависимости 2(T )low :

γ0s = −

(
∂ ln20s

∂ lnV

)

T=0 K

.

Таким образом, при χn > 0 с ростом температуры

функция 2(T )low уменьшается (это следует из (13)),
а функция γ(T )low возрастает (это следует из (19)).
Функция 2(T )low уменьшается от значений 20 > 20s

(это неравенство следует из (22)), а функция γ(T )low

возрастает от значения γ0 > γ0s (это следует из (23)).
Так как при высоких температурах (T ≫ 20) функция

2(T ) не уходит в область отрицательных значений (как
это должно быть следуя (13)), а имеет положительное

значение, сравнимое с 20 (как это следует из экспе-

риментальных данных), в области средних температур

функция 2(T ) должна иметь минимум. Функция γ(T )
при высоких температурах не уходит в бесконечность

(как это должно быть, следуя (19)), а имеет конечное

значение, поэтому в области средних температур функ-

ция γ(T ) должна иметь максимум. Отметим, что из на-

ших формул не следует наличие указанных экстремумов,

так как эти формулы получены при условии T ≪ 20.

Поэтому из этих формул нельзя оценить положение

этих экстремумов. Однако существование этих экстре-

мумов следует из физического определения функций

2(T ) и γ(T ), согласно которым эти функции должны

иметь конечное положительное значение. На наличие

экстремумов было также указано во многих работах,

например, в [1,2,4,5,10].

При χn < 0 картина меняется на противоположную:

функция 2(T )low возрастает с ростом температуры от

значения 20 < 20s , а функция γ(T )low уменьшается

от γ0 < γ0s . В обоих случаях для выполнения тре-

тьего начала термодинамики в виде (12) изменение

функций 2(T )low и γ(T )low должно быть пропорцио-

нально зависимости (T/20)
n+1. Отметим, что в случае

χn > 0 и k > n + 1, либо при χn = 0, функции s∗(T )low

и c∗(T )low будут следовать дебаевским зависимостям,

а величины 20 и γ0 будут совпадать со значениями

20s и γ0s , ввиду исчезновения поправок к дебаевским

зависимостям в формулах (14) и (15). В случае χn = 0

это очевидно. А в случае χn > 0 и k > n + 1 вторые

слагаемые в (14) и (15) при T/20, близком к нулю,

будут намного меньше первых слагаемых, и поэтому их
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Значения температур Дебая, которые определены из теплоем-

кости и из упругих свойств кристалла [16], и рассчитанные

из них с помощью (25) значения χ3

Crystal 20s , K 2el
0 , K χ3

C-diam 2220 2252 0.7597

Si 645 655 0.8180

Ge 374 379 0.7039

3C-SiC 1080 1108 1.3821

c-BN 1850 1900 1.4424

AlN 825 903 5.3907

AlP 588 553 −2.9119

AlAs 417 411 −0.7368

ZnO 399.5 418.8 2.6330

ZnS 340 349 1.4119

можно не учитывать в расчетах как величины 20, так

и значения γ0.

Для оценки величины χn можно предложить следу-

ющий метод. Известно, что температуру Дебая можно

определить также и по модулю упругости кристалла

(BT = −V (∂P/∂V )T) [4,16–22]. Однако значение, опре-

деленное из модуля упругости 2el
0 , отличается от значе-

ния температуры Дебая, которое определяется из тем-

пературной зависимости изохорной теплоемкости (20s),
т. е. из формулы (11). Так как при расчетах модуля

упругости кристалла не используются производные сво-

бодной энергии по температуре, можно предположить,

что значение 2el
0 совпадает со значением 20, или очень

близко к нему. Тогда оценку величины χn можно сделать

из выражения, которое следует из (22):

χn =
2(n + 1)An

n

[(
2el

0

20s

)n

− 1

]

. (24)

Для трехмерного кристалла (24) преобразуется к виду

χ3 =
8π4

45

[(
2el

0

20s

)3

− 1

]

= 17.317

[(
2el

0

20s

)3

− 1

]

. (25)

В таблице представлены значения χ3, которые рас-

считаны с помощью (25) для некоторых кристаллов.

Значения температур Дебая, которые определены из теп-

лоемкости (20s) и из упругих свойств (2el
0 ) кристалла

при T = 0K, взяты из работы [16, тaбл. 4].

Из таблицы видно, что в большинстве случаев функ-

ция 2(T )low убывает с ростом температуры от вели-

чины 2el
0 . Отметим, что величины 20s и 2el

0 , как это

указано в обзоре [16], имеют определенный интервал

дисперсии, который довольно разный у разных авто-

ров. Поэтому оценки величины χ3 из таблицы также

имеют приближенный характер. Однако оценки функ-

ции 2(T )low , проведенные другими, более сложными

методами в работах [1,2,4–11], также указывают, что

для большинства изученных веществ функция 2(T )low

убывает с ростом температуры. Отметим также, что

в [15] нами был предложен другой метод для оценки

величины χn однокомпонентных кристаллов, исходящий

из параметров парного межатомного потенциала. Одна-

ко метод из (25), несмотря на свою простоту, применим

и для многокомпонентных кристаллов.

2. Обсуждение результатов

К сожалению, не все зависимости, полученные для

функции 2(T )low , удовлетворяют вышеуказанным усло-

виям: некорректные зависимости были получены во

многих работах. Например, для трехмерных кристал-

лов в [8,16] была получена квадратичная зависимость:

2(T )low ∝ T 2, а в работе [23] было получено линейное

возрастание функции 2(T )low с ростом T . Квадратич-

ная зависимость для 2(T )low приводит к появлению

линейной зависимости энтропии и теплоемкости от

температуры в (8) и (9), а линейная зависимость для

2(T )low приводит к нарушению третьего начала термо-

динамики (12) для энтропии.

В [11] для функции 2(T ) была предложена формула с

шестью подгоночными константами:
”
calorimetric Debye

temperature“, которая имеет вид [11, Eq. (12)]:

2cal(T ) = a1 exp(−b1T ) + a2[1− exp(−b2T
2)] + c.

Однако подстановка данной зависимости в форму-

лу (8) приводит к нарушению третьего начала термо-

динамики (12) из-за следующих соотношений:

(
∂2cal

∂T

)

V

=−a1b1 exp(−b1T )+a2b2z T z−1 exp(−b1T
2),

lim
T→0 K

(
∂2cal

∂T

)

V

= −a1b1 6= 0.

В последнее время модель Дебая также используют

для изучения теплоемкости двух-(2D) [24,25] и одно-

мерных (1D) структур [26]. При этом в [24] для 2D-

слоя Ne было получено линейное убывание функции

2(T )low с ростом температуры. А в [25] для 2D-графена

был получен линейный рост функции 2(T )low с ростом

температуры. Однако для выполнения третьего начала

термодинамики в виде (12) изменение функции 2(T )low

должно быть для 2D-структур пропорционально зависи-

мости (T/20)
3, а для 1D-структур — пропорциональ-

но (T/20)
2. Использование некорректной зависимости

для функции 2(T )low может привести к некорректным

температурным зависимостям других свойств кристалла,

которые связаны с данной функцией.

Чтобы в теоретических моделях избавиться от про-

блемы корректного учета температурной зависимости

температуры Дебая, можно пойти по простому пути,
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предположив (как это сделали Эйнштейн и Дебай), что
функция 2 зависит только от плотности и не изменяется

при изохорическом росте температуры. Так было сдела-

но в работах [20–22,27,28], где величину 2 рассчитывали

либо из упругих свойств кристалла [20–22], либо из

параметров парного межатомного потенциала [27,28].
Этот метод позволил как соблюсти третье начало

термодинамики, так и получить хорошее согласие с

экспериментальными данными.

Заключение

Если при низких температурах температура Дебая

для n-мерного кристалла изменяется с температурой,

то значения 2(T ) должны определяться из эксперимен-

тальной зависимости c∗(T )low путем решения дифферен-

циального уравнения (7) или (9), а не из степенного

уравнения (11). При этом термодинамический параметр

Грюнайзена должен отличаться от вибрационного пара-

метра Грюнайзена: γTh 6= γ .

Для выполнения третьего начала термодинамики

функция 2(T ) при низких температурах должна изме-

няться согласно зависимости

2(T )low = 20[1− χn(T/20)
n+1].

При этом параметр Грюнайзена должен изменяться

по зависимости (19). Для нахождения значений 20

и χn можно также использовать степенное уравнение,

которое следует из формул (15) и (18):

c∗(T )low
∼= cD(T )∗low +

n2

2
χn

(
T

20

)n

= n

[

(n + 1)An +
n

2
χn

](
T

20

)n

.

Показано, что при χn > 0 функция 2(T )low уменьша-

ется, а функция γ(T )low возрастает с ростом темпера-

туры от значений 20 > 20s и γ0 > γ0s соответственно.

В области средних температур функция 2(T ) должна

иметь минимум, а функция γ(T ) должна иметь макси-

мум. При χn < 0 картина меняется на противоположную:

функция 2(T )low возрастает с ростом температуры от

значения 20 < 20s до максимума, а функция γ(T )low

уменьшается от γ0 < γ0s до минимума.

При любом χn 6= 0 значение 20 отличается от вели-

чины 20s , которое определяется из экспериментальных

значений теплоемкости без учета зависимости 2(T )low .

В случае χn > 0 и k > n + 1, либо при χn = 0 функ-

ции s∗(T )low и c∗(T )low будут следовать дебаевским

зависимостям, а величины 20 и γ0 будут совпадать со

значениями 20s и γ0s ввиду исчезновения поправок к

дебаевским зависимостям.
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