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Проведено сравнение результатов численного исследования течения в пузырьковой колонне в рамках

моделей монодисперсной и полидисперсной рабочей среды. Оценка различия полученных решений показала,

что при увеличении размеров пузырей Rb > 1mm (что соответствует числу Рэйнольдса для пузырька

Reb > 400) обе модели эквивалентны. Это объясняется перестройкой потока в связи со сменой характера

силового взаимодействия между фазами. Таким образом, для исследования потоков с крупными пузырями

возможно использовать экономичные модели монодисперсной среды.
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Введение

Многофазные течения и, в частности, пузырьковые

течения являются неотъемлемой частью многих при-

родных и технологических процессов. Примерами могут

служить всплывающие со дна моря газовые пузыри (как
маркеры глубинных месторождений), спутный газ в виде

пузырей при нефтедобыче и транспорте нефтегазовой

смеси, химические пузырьковые реакторы [1].

Полидисперсность, как правило, играет важную роль

в формировании как глобальной структуры течений, так

и локальных свойств потока [2]. Учет полидисперсности

при численном моделировании предъявляет повышен-

ные требования к вычислительным системам, однако

обеспечивает детальное описание течений в широком

диапазоне определяющих параметров.

Несмотря на то что учет полидисперсности важен для

решения большого круга задач о течении пузырьковых

сред, монодисперсный подход также активно использует-

ся исследователями. Например, в работе [3] представлен
расчет трехмерной пузырьковой колонны в рамках моно-

дисперсного описания, сравнение с экспериментальными

результатами показало применимость использованного

подхода.

Целью настоящей работы является анализ влияния

полидисперсности в интересующем диапазоне определя-

ющих параметров, первичный анализ причин снижения

влияния полидисперсности на картину течения и вы-

деление режима, при котором возможно использование

монодисперсного подхода.

1. Математическая модель

Модель основана на эйлеро-эйлеровском подходе к

описанию многофазных течений (см., например, [4]).

В рамках этого подхода несущая (индекс l) и дисперсная

(индекс b) фазы рассматриваются как сплошносредные,

заполняющие всю расчетную область, в каждой точке

которой задается объемное содержание фазы α. При

этом плотности ρ каждой из фаз вычисляются как α · ρ0,
где ρ0 — плотность вещества соответствующей фазы.

Полидисперсность учитывается в рамках модели мно-

гих групп (MUltiple SIze Group или MUSIG). В мо-

дели вводится набор классов монодисперсных пузырь-

ков, для каждого класса i определяется свой размер

пузырька, Rib, объемная доля αib и скорость Vib, а

также своя система уравнений сохранения импульса и

массы (так называемая гетерогенная модель MUSIG [5]).
Распределение пузырей по размерам задается кусочно-

постоянной функцией, описывающей N классов (фрак-
ций) с постоянным размером пузырей [4].
Модель основана на уравнениях сохранения массы

и импульса для несущей и дисперсной фаз с учетом

межфазного силового взаимодействия, турбулентности и

дисперсии пузырей [4]. Силовое межфазное взаимодей-

ствие включает в себя силу плавучести FiB , силу Стокса

FiD , Сэффмана FiL, силу присоединенных масс FiV M и

пристенную силу FiWL:

FiB = αib(ρib − ρl)g,

FiD =
3ρl

8Rib

αibC iDVirel|Virel|, Virel = Vl −Vib,

FiL = C iLαibρlVirel × rotVl,

FiV M = 0.5αibρl

(DbVib

Dt
−

DlVl

Dt

)

,

FiWL = −C iWLαibρl|Virel − (VirelnW )nW |2nW .

Здесь g — ускорение свободного падения на поверхно-

сти несущей среды, nW — нормаль к ближайшей стенке.
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В работе [6] предложена корреляция для коэффициен-

та сопротивления C iD , основанная на числах Рэйнольдса

Reip и Этвеша Eoi :

C iD =
√

CD(Rei p)2 + CD(Eoi)2,

Rei p = ρlRibVib/µl, Eoi = 4g(ρl − ρib)R
2
ib/σ,

CD(Rei p) =
16

Rei p

(

1 + 2/(1 + 16/Rei p + 3.315/
√

Rei p)
)

,

CD(Eoi) = 4Eoi/(Eoi + 9.5), Eoi < 5.

Здесь µl — динамическая вязкость несущей среды, σ —

коэффициент поверхностного натяжения.

Для коэффициента C iL используется следующее выра-

жение [7]:

C iL = min
[

0.288 tanh(0.121Rei p), f (Eoi)
]

, Eoi < 4,

f (Eoi) = 0.00105Eo3
i − 0.0159Eo2

i − 0.0204Eoi + 0.474.

Коэффициент C iWL вычисляется по следующей форму-

ле [4]:

C iWL = 0.47max

{

0,
1

6.3
·

[1− yW /(20Rib)]

yW [yW /(20Rib)]0.7

}

,

где yW — расстояние до ближайшей стенки.

В работе используется k−ω SST-модель турбулентно-

сти [8] с дополнительными источниковыми слагаемыми,

описывающими генерацию и диссипацию турбулентно-

сти из-за движения пузырьков относительно несущей

среды [4]. Эффективная вязкость несущей среды вычис-

ляется с учетом поправки Сато [9]. Дисперсия пузырьков
за счет турбулентных пульсаций скорости в несущей

среде учитывается при помощи дополнительного диффу-

зионного члена в уравнениях сохранения объемной доли

пузырей и их численной плотности [4].

2. Численный метод

Предложенная математическая модель была реали-

зована в виде программного кода с использовани-

ем конечно-объемной аппроксимации уравнений на

неструктурированных гексагональных сетках. Для по-

лучения детальной картины течения и минимизации

ошибки дискретизации использовался второй порядок

точности по пространственным координатам. Для рас-

чета полей давления и скоростей фаз был применен

алгоритм SIMPLE с поправкой на многофазность. Итера-

ционный процесс был организован при помощи метода

установления по псевдовремени с первым порядком

точности. Модель и численный метод были детально

протестированы, получено хорошее согласие с экспери-

ментом (см. [4]).

3. Постановка задачи

В настоящей работе проведена серия расчетов с

постоянным расходом пузырей. Число классов N = 1

для случая монодисперсных пузырей. На основе ана-

лиза, проведенного в статье [4], для полидиспесного

случая N = 10. Течение происходит в осесимметричной

пузырьковой колонне диаметром D = 0.07m и высотой

H = 0.65m за счет силы Архимеда, пузыри поступают

со дна колонны и покидают ее сверху через свободную

поверхность. Колонна изначально заполнена водой. Газ

в виде пузырей поступает в колонну через вмонтирован-

ный в дно соосный осесимметричный аэратор диаметром

d = 0.05m. Параметры газа соответствуют воздуху при

нормальных условиях. Давление окружающей среды,

соответствующее давлению на свободной поверхности,

считается равным атмосферному, температура окружа-

ющей среды T = 297K, коэффициент поверхностного

натяжения 6 = 0.072N/m (вода-воздух).

4. Результаты

Результаты моделирования в полидисперсной и мо-

нодисперсной постановках для характерного размера

пузырька Rb 0.25 и 1mm представлены на рис. 1.

В качестве критерия для оценки различия решений, по-

лученных в рамках полидисперсного и монодисперсного

подходов, использовалось нормированное среднеквадра-

тичное отклонение искомой величины, рассчитанное по

всей области течения. Видно, что для пузырьков раз-

мером 0.25mm влияние полидисперсности существенно

(величина критерия составляет 10% для скорости и бо-

лее 60% для объемной доли и межфазной поверхности),
в то время как для пузырей 1mm величина критерия

составляет менее 1%.

Расчет равновесной относительной скорости пузырей

Vrel был проведен также с использованием аналити-

ческой нульмерной модели, основанной на уравнении

баланса межфазного силового взаимодействия и силы

плавучести:

αib(ρib − ρl)g =
3ρl

8Rib

αibC iDVirel|Virel|.

Замыкающие соотношения взяты из полной матема-

тической модели. Расчеты показали хорошее согласие

с численными экспериментами (рис. 2) и возможность

применимости аналитического выражения для анализа

течения.

Исследование изменения характера силового взаимо-

действия было проведено с использованием аналитиче-

ской модели, результаты представлены на рис. 3. Видно,

что с увеличением размеров пузырьков меняется влия-

ние отдельных составляющих силы межфазного трения.

При малых размерах пузырька доминирует вязкое тре-

ние на поверхности пузырька, при увеличении размера

форма пузырька становится отличной от сферической,
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Рис. 1. Распределения объемной доли пузырей (a), скорости пузырей (b) и плотности площади межфазной поверхности (c) в

поперечном сечении, отстоящем от дна на 0.45m, с использованием монодисперсного и полидисперсного подходов.
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Рис. 2. Сравнение результатов вычисления относительной

скорости пузырей при помощи численного моделирования и

с использованием аналитического выражения.

и основной вклад в силу трения вносит составляющая,

отвечающая за деформацию пузырька.

Заключение

Анализ силового взаимодействия показал, что при

размерах пузырька Rb порядка 1mm происходит пере-

стройка потока, в частности, меняется характер силы

трения (Стокса). Для малых пузырей основной вклад

в силу Стокса вносит вязкое трение на границе раз-
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Рис. 3. Изменение полного коэффициента силы Стокса

CD(Reb, Eo) в зависимости от размера пузырька db = 2Rb; при-

ведены отдельные составляющие, описывающие зависимость

от вязкого трения CD(Reb), и от формы пузырька CD(Eo).
Приведена кривая изменения числа Рэйнольдса пузырька Reb

от размера пузырька.

дела фаз, а для больших пузырей сила Стокса опреде-

ляется деформацией пузырька. Результаты численного

моделирования хорошо согласуются с предсказаниями

предложенной аналитической модели для определения

равновесной скорости пузырей, основанной на балансе

межфазного силового взаимодействия. Изменение ха-

рактера силового взаимодействия фаз при увеличении

размера пузырька приводит к уменьшению влияния

полидисперсности пузырьковой фазы на структуру те-

чений в пузырьковых реакторах колонного типа, что
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позволяет использовать экономичные модели монодис-

персной среды.
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