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Проведен анализ данных установки TAIGA-HiSCORE по оценке сигнала в окрестностях туманности

Бумеранг. Выполнено сравнение результатов без применения и с применением гамма-адронной сепарации.

Распределение значимости соответствует нормальному закону, что свидетельствует о преобладании фоно-

вых событий. Полученные результаты подтверждают необходимость улучшения методов гамма-адронной

сепарации, в частности, за счет ввода в строй новых компонент комплекса TAIGA (сцинтилляционных и

водных черенковских детекторов), что позволит повысить чувствительность к источникам гамма-излучения

с энергиями выше 100TeV.
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Одним из важных направлений астрофизики является

поиск ускорителей космических лучей, так называемых

ПэВатронов, путем регистрации их гамма-излучения с

энергией выше 100 TeV. Поиск и исследование таких

источников ведется в том числе с помощью черенков-

ской установки TAIGA-HiSCORE [1] астрофизического

комплекса TAIGA (Tunka Advanced Instrument for cosmic

rays and Gamma Astronomy) [2]. Это массив из распре-

деленных на площади 1.1 km2 120 детекторов, регистри-

рующих черенковское излучение широких атмосферных

ливней (ШАЛ). Детекторы представляют собой широко-

угольные оптические станции с четырьмя фотоэлектрон-

ными умножителями, оснащенными концентраторами

света — конусами Уинстона с характерным углом 30◦ .

Комплекс TAIGA расположен на широте 51.8◦ N.

Оптические станции установки TAIGA-HiSCORE могут

иметь два рабочих положения: направлены в зенит

или наклонены на зенитный угол 25◦ в сторону юга.

Наклон на юг требуется для наблюдения Крабовид-

ной туманности, имеющей склонение +22◦ 00′ 52.1′′,

и других источников со склонениями +2◦ − +52◦.

Вертикальное положение позволяет наблюдать небо в

диапазоне склонений +27◦ − +77◦. По данным экспе-

римента LHAASO [3] в этом диапазоне существует

несколько источников гамма-излучения с энергиями

выше 100 TeV. Особый интерес представляет остаток

сверхновой SNR G106.3+02.7 в области туманности

Бумеранг, которая имеет склонение +61◦ 10′ 00′′ . Этот

источник относится к классу протяженных, имеет ко-

метообразную форму, которую можно разделить на го-

ловную и хвостовую области. Поэтому гамма-излучение

от этого источника было зарегистрировано рядом экспе-

риментов в диапазонах координат RA = 336.3◦−337.6◦,

Dec = 60.6◦−61.3◦ [4–8]. SNR G106.3+02.7 доступен

для наблюдений на установке TAIGA-HiSCORE пре-

имущественно с сентября по декабрь. С учетом пло-

щади установки TAIGA-HiSCORE в ∼ 1 km2 и работы

в безлунные ночи, источник SNR G106.3+02.7 мож-

но наблюдать до 250 h за сезон и регистрировать до

30 гамма-квантов с E > 100 TeV и до 110 гамма-квантов

с E > 50TeV.

Поток гамма-квантов чрезвычайно мал по сравнению

с фоновым адронным космическим излучением. Поэтому

для выделения сигнала важно правильно оценивать

фон. В работе [9] описаны четыре метода оценки фо-

на при работе с данными установок наземной гамма-

астрономии. Чувствительность установок может иметь

пространственную и временную зависимость. Это огра-

ничивает применимость методов, в которых для оценки

фона требуются его набор из обширной области неба

или за продолжительное время. Так, в работе [10] было
показано влияние погодных условий во время измерений

на оценку значимости сигнала. Кроме того, для метода

равных зенитных углов существует ограничение на ра-

бочие зенитные углы ≥ 11.6◦, в то время как источник

SNR G106.3+02.7 поднимается до зенитного угла 9.2◦.

В настоящей работе проводится анализ эксперимен-

тальных данных, полученных за периоды октябрь–де-
кабрь 2022 г. и сентябрь−октябрь 2023 г., когда оп-

тические станции TAIGA-HiSCORE были направле-

ны в зенит. Всего за эти два сезона источник

SNR G106.3+02.7 наблюдался 143 h. Согласно на-

шим расчетам с использованием спектра источника

из работы [3], за это время можно было зареги-

2360



Международная конференция ФизикА.СПб, 20–24 октября 2025 г. 2361

341 339 337 335

57

59

61

65

RA, deg

D
ec

, 
d
eg

63

333

–3

–2

–1

0

1

2

3

S
ig
n
if
ic
a
n
ce

–4 –2 0 2 4

–1
10

–2
10

–3
10

–4
10

–5
10

–6
10

D
en
si
ty

Significance

Рис. 1. Слева — карта значимости сигнала в регионе туманности Бумеранг для событий без классификации. Справа —

распределение значимости (красная линия) и стандартное нормальное распределение (черная штриховая линия).

стрировать до 62 гамма-квантов с E > 50 TeV. Выбор-

ка событий ограничена областью неба в пределах

RA = RA0−5◦−RA0+5◦, Dec = Dec0−5◦−Dec0+5◦, где

RA0 = 337◦, Dec0 = 61.17◦ — координаты источника

гамма-излучения с E > 100 TeV по данным эксперимен-

та LHAASO. Также применены критерии ≥ 6 сработав-

ших станций при регистрации ШАЛ и положение оси

ШАЛ внутри периметра установки, что обеспечивает

угловое разрешение детектора около 0.16◦ .

Для оценки фона применяется так называемый рамоч-

ный метод. Этот метод устойчив к вариациям угловой

чувствительности установки и не зависит от зенитного

угла наблюдений. Суть метода заключается в следую-

щем.

Сначала исследуемый участок неба разделяется на

ячейки 0.1◦ × 0.1◦ во второй экваториальной системе

координат. Каждой ячейке присваивается сумма зареги-

стрированных событий из окрестности, обусловленной

угловым разрешением установки. Так, в настоящей ра-

боте принимается угловое разрешение R68 = 0.16◦, что

означает, что 68% событий, исходящих из точечного

источника, восстанавливаются с угловой ошибкой не

более 0.16◦ . Принимая модель двумерного нормального

распределения для угловой ошибки, мы находим, что в

2 · R68-окрестности источника содержится 98.96% собы-

тий, что можно считать полным сигналом источника.

Затем уровень фона в каждой исследуемой ячей-

ке неба определяется как среднее значение фона на

участке неба в виде прямоугольной рамки вокруг ис-

следуемой ячейки. Рамка имеет толщину 0.1◦ RA для

вертикальных сторон и 0.1◦ Dec для горизонтальных

сторон. Размер рамки задается, исходя из углового

разрешения установки. Для того чтобы при оценке

фона в исследуемой ячейке события из ее окрестности

не попадали в рамку, расстояние между этой ячейкой

и рамкой должно составлять не менее 4 · R68 = 0.64◦ .

Ширина рамки в координатах RA пропорциональна

1/ cos(Dec). Так, при склонении Dec = 61.17◦ в окрест-

ность точки RAi с радиусом 0.64◦ попадают значения

RA = RAi−1.33− RAi+1.33. Для работы на указанном

выше участке неба были взяты максимальные размеры

рамки, соответствующие склонению на верхнем краю

участка Dec = 66.17◦ с охватом RAi−1.58− RAi+1.58.

Округляя до десятых долей градуса и делая отступы

от исследуемой ячейки 1.5◦ и 0.6◦ по RA и Dec со-

ответственно, получаем, что вокруг исследуемой ячейки

формируется рамка из 92 ячеек.

Для оценки значимости сигнала в исследуемой ячейке

используется классическая формула Ли−Ма [6]:

S =
√
2 ·

{

Non · ln
(

(1 + k) · Non

k · (Non + No f f )

)

+ No f f · ln
(

(1 + k) · No f f

Non + No f f

)}1/2

, (1)

где Non — число событий в некотором окне наблюдения,

в котором предполагается источник; No f f — число

событий в таком же окне наблюдения без источника, т. е.

фоновых событий; k = Ton/To f f , а Ton и To f f — время

наблюдения источника и фона соответственно. В случае

рамочного метода Non — число событий в исследуемой

ячейке, No f f — число событий в рамке. Ячейка и рамка

наблюдаются одновременно, но, так как рамка состоит

из 92 ячеек, k = 1/92.

На рис. 1 показаны результаты анализа данных без

применения гамма-адронной сепарации. Распределение

значимости сигнала соответствует нормальному зако-

ну (µ = 0.06, σ = 0.98), что ожидаемо при слабом

сигнале от источника и без подавления фона. Так,

в точке RA0 = 337◦, Dec0 = 61.17◦ зарегистрировано

1941 событие при среднем фоне 1938.7, и превышение

уровня полного сигнала над средним уровнем фона

составляет 2.3 события, что соответствует 0.05σ . При

этом в 1941 событие входят ожидаемые 62 гамма-кванта.
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Рис. 2. Слева — карта значимости сигнала в регионе туманности Бумеранг для событий c классификацией по параметру dH .

Справа — распределение значимости (красная линия) и стандартное нормальное распределение (черная штриховая линия).

В качестве способа уменьшения адронного фона пред-

лагается параметр dH , представляющий собой разницу

между максимумом ШАЛ и уровнем наблюдения, вы-

раженную в g/cm2, т. е. dH = (Xmax − Xobs)/ cos(Ze). По

экспериментальным данным dH можно выразить через

параметр P80/200, описанный в работе [12], который

равен отношению плотности зарегистрированных черен-

ковских фотонов на расстоянии 80 и 200m от оси

ШАЛ: dH = 30 + (9.8− P80/200)/0.013. По результатам

моделирования получено, что ШАЛ от тяжелых ядер

(кислород, железо) имеют значение dH > 450 g/cm2.

Ниже этого порога находятся ∼ 30% протонных ШАЛ

и ∼ 60% гамма-индуцированных ШАЛ. На рис. 2 по-

казаны результаты с применением такого критерия к

набору данных. B точке RA0 = 337◦, Dec0 = 61.17◦

содержится 615 событий при среднем фоне 607, что со-

ставляет 0.32σ . Уровень фона после применения крите-

рия dH < 450 g/cm2 составляет 31.2% от изначального

уровня, что согласуется с результатами моделирования.

Тогда ожидается, что сигнал от источника уменьшается

до ∼ 37 гамма-квантов. Таким образом, предложенный

метод не является достаточно сильным способом гамма-

адронной сепарации, что, как и в случае без нее, дает

нормальное распределение значимости сигнала.

Проведенный анализ не выявил статистически значи-

мого сигнала от SNR G106.3+02.7 в данных TAIGA-

HiSCORE, что согласуется с ожиданиями для слабых

источников в условиях высокого адронного фона. Полу-

ченные результаты демонстрируют необходимость даль-

нейшего совершенствования методов гамма-адронной

сепарации и накопления данных. Так, в 2019 г. в составе

комплекса TAIGA началось развертывание сцинтилляци-

онной установки TAIGA-Muon [13] — сети детекторов

электрон-фотонной и мюонной компонент ШАЛ. Также

планируется дополнить комплекс сетью водных черен-

ковских детекторов объемом 50m3 на глубине 2.5m.

В перспективе с увеличением статистики и применением

более жестких критериев отбора совместная работа ука-

занных установок сможет внести вклад в исследование

ПэВатронов, в особенности источников со склонением

+27◦ − +77◦ .
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L. Pavletić, M. Persic, M. Pihet, G. Pirola, F. Podobnik,

P.G. Prada Moroni, E. Prandini, G. Principe, C. Priyadarshi,
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