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Нагрев и разрушение пористого поверхностного слоя кометного ядра
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Рассмотрена модель нагрева поверхностного слоя кометы и сублимации имеющихся в нем льдов,

учитывающая наличие закрытых пор. В процессе длительной эволюции кометы в результате переконденсации

летучие компоненты соединяют частицы пыли и могут образовывать замкнутые полости (поры). По мере

нагрева газообразные продукты сублимации покидают поверхностный слой через открытые поры. Количество

льда уменьшается, и газ из ранее закрытых пор создает повышенное давление в поверхностном слое,

достаточное для его разрушения и формирования газо-пылевого потока. Таким образом, результаты

моделирования согласуются с наблюдаемой эжекцией пылевых агрегатов даже для условий низких значений

потока энергии солнечного излучения.
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Кометы являются уникальными объектами Солнечной

системы, сформировавшимися на начальной стадии ее

эволюции [1]. Исследование комет имеет важное значе-

ние для разработки модели образования Солнечной си-

стемы [1–3], оценки вероятности столкновения с Землей,

а также проверки существующих гипотез зарождения

жизни на нашей планете.

На большей части траектории своего движения коме-

ты не активны. С приближением к Солнцу под действием

солнечного излучения происходит процесс сублимации

летучих веществ из поверхностного слоя ядра, сопро-

вождающийся уносом пыли.

Математические модели нагрева кометного ядра раз-

виваются достаточно давно [4–9]. Все они базируются

на решении классического уравнения теплопроводности

с учетом особенностей строения поверхностного слоя,

обусловливающих постановку граничных условий на

поверхности ядра и выбор значений теплофизических

параметров, и различаются уровнем детализации струк-

туры слоя, в том числе наличием/отсутствием
”
сухой“

мантии, поверхностного/объемного испарения, учетом

диффузии летучих компонентов и пр.

Ряд моделей предсказывает интегральную газопро-

изводительность ядра в согласии с экспериментальны-

ми данными. Однако существуют нерешенные вопросы,

связанные с пониманием механизмов уноса пыли с

поверхности и корректным предсказанием интегральных

потоков пыли. Под пылью понимаются крупные (доли
микрона и выше) частицы, которые в общем случае

могут содержать как включение минералов (силикатов,
карбидов, сульфидов), так и лед различной природы

(H2O, CO2, CO). Предполагается, что частицы пыли свя-

заны друг с другом силами Ван-дер-Ваальса. Для отрыва,

например, пылевого агрегата миллиметрового размера

необходимо давление порядка 1 Pa [10]. Как правило,

преобладающей летучей компонентой является водяной

лед. Температура поверхности ядра, состоящего только

из водяного льда, при
”
максимальном“ сближении ядра

с Солнцем на расстояние S = 1 au составляет примерно

207K, что соответствует давлению насыщенных паров

0.46 Pa. На большей части траектории (S > 1 au) дав-

ление насыщенных паров оказывается существенно (на
порядки) ниже. Наличие мантии (для которой степень

черноты близка к единице и отсутствует отвод тепла за

счет процесса испарения льдов) увеличивает температу-

ру
”
сухого“ слоя, однако не приводит к существенному

росту давления сублимированных молекул в глубине за

его пределами. Углекислый газ и моноксид углерода в

твердой фазе имеют большие давления насыщения для

заданной температуры по сравнению с водяным льдом.

Но их объемная доля обычно существенно ниже.

Целью настоящей работы является формулировка

математической модели прогрева пористого приповерх-

ностного слоя кометного ядра под действием солнечного

излучения с учетом процессов объемной сублимации

летучих компонентов и их диффузии, и исследование с

ее помощью распределения давления газовой фазы внут-

ри слоя и возможности его разрушения. Предлагаемая

модель основывается на применении законов сохране-

ния в форме дифференциальных уравнений в частных

производных. К ее особенностям относится включение

в рассмотрение внутри поверхностного слоя микрополо-
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стей (пор), изначально изолированных и открывающихся

в процессе эволюции поверхностного слоя по мере

сублимации льдов. Таким образом, модель описывает как

приповерхностный слой с открытыми порами и сублими-

рующими льдами, так и внутреннее пространство ядра

кометы с закрытыми порами, а также область перехода

между ними. Структура пористой среды описывается в

общем виде с помощью объемных долей компонентов.

Предлагаемая модель нагрева и разрушения поверх-

ностного слоя предсказывает достаточные давления для

разрушения поверхностного слоя ядра.

Поверхностный слой кометы рассматривается как

полидисперсная среда — хаотическое нагромождение

агломератов разной формы и размеров. Тугоплавкие зер-

на покрыты слоем замерзших летучих компонентов —

льдов. В процессе образования и эволюции кометы

пространственное распределение льдов изменяется в ре-

зультате коалесценции и переконденсации. Поверхност-

ное натяжение и зависимость равновесного давления от

кривизны приводят к образованию закрытых полостей —

пор. В процессе испарения слой льда истончается и

поры открываются. Содержащийся в них пар повышает

давление в
”
сухом“ поверхностном слое, увеличивая

вероятность отрыва пыли.

В рассматриваемом варианте модели учитывается

только лед H2O, однако модель может быть легко

обобщена на любое число летучих компонентов. Для

описания многокомпонентной пористой среды вводится

объемная доля тугоплавкой пыли ψd и льда ψi . Тогда

объемная доля пор равна: ψp = ψo + ψc = 1− ψi − ψd,

где ψo и ψc — объемная доля открытых и закрытых

пор соответственно. Концентрация молекул газообраз-

ной фазы вычисляется в расчете на полный объем

вещества кометы: ni = dNi/dV , где dNi — количество

молекул газообразной фазы (в нашем случае — паров

воды) в объеме dV = dx · dy · dz .

В закрытых порах (параметры с индексом c) давление
газа равновесное (кривизна поверхности не учитыва-

ется). Поскольку давления невелики, плотность газов

на три и более порядков меньше их твердой фазы,

поэтому изменением ее объема при испарении можно

пренебречь. Тогда для них выполняется уравнение состо-

яния: pi = ni,ckT/ψc , ni,c = pi,s (T )ψc/kT , где pi,s (T ) —

равновесное давление паров при температуре T , k —

постоянная Больцмана.

Уравнения тепло- и массопереноса записываются в

одномерном приближении. Поскольку толщина прогре-

ваемого слоя (десятки сантиметров) много меньше

размеров кометы, кривизной поверхности можно прене-

бречь и использовать декартову координату x . Начало

координат — на поверхности кометы.

Для открытых пор (параметры с индексом o) записы-

вается уравнение диффузии с источниковыми членами

в правой части, учитывающими соответственно диффу-

зию, испарение/конденсацию и открытие пор

∂ni,o

∂t
= − ∂

∂x
g i + qi − ni,c

∂ψc

∂t
. (1)

Поскольку концентрация газообразной фазы мала,

молекулы значительно чаще сталкиваются со стенками

пор, чем друг с другом. Поэтому диффузионный поток

определяется диффузией Кнудсена [8]:

g i = −Dch
i

∂(ni,o

√
T )

∂x
, Dch

i =
1

3
dp

(

8k

πmi

)1/2

, (2)

где dp — характерный диаметр пор. Испаре-

ние/конденсация проходят в свободномолекулярном ре-

жиме, поэтому скорость испарения qi равна

qi =
4ψo

dp

ψi

ψi + ψd

√

1

2πmi kT
1P i ,

1P i = pi,s(T ) − pi,o, ψi > 0. (3)

Если твердая фаза отсутствует (ψi = 0), то возможна

только конденсация.

Объемная доля льда уменьшается в результате его

испарения
∂ψi

∂t
= −qi

mi

ρi

, (4)

где mi , ρi — масса молекулы воды и плотность твердого

льда соответственно. По мере уменьшения толщины ле-

дяного слоя увеличивается доля открытых пор и умень-

шается закрытых ψc = ψpχ(ψi), χ(ψi |t=0) ≈ 1, χ(0) ≈ 0.

Здесь ψ(ψi) — гладкая ступенчатая функция (сигмоида),
параметры которой выбираются исходя из следующих

предположений: в исходном состоянии большинство пор

закрыты, после полного испарения льда — открыты.

Изменение температуры описывается уравнением [5]:

(ρdψdcd + ρiψic i + noC + ncC)
∂T

∂t

=
∂

∂x

(

λ
∂T

∂x

)

−Cg i

∂T

∂x
− qi H. (5)

Коэффициент при производной температуры по вре-

мени в левой части учитывает теплоемкости всех ком-

понентов вещества кометы — пыли ρdψdcd , льда ρiψic i

(ρ, c — плотность и удельная теплоемкость твердого ве-

щества) и паров в закрытых и открытых порах noC + ncC

(C — теплоемкость в расчете на одну молекулу).
Слагаемые в правой части учитывают теплопроводность

и испарение/конденсацию (H — энтальпия фазового

перехода в расчете на одну молекулу). Коэффициент

теплопроводности складывается из теплопроводности

по газу, пористой среде из пыли и льда, а также

радиационного теплообмена.

Основной вклад в теплопроводность вносит пористая

среда, теплопроводность которой существенно зависит

от ее структуры. В литературе рассматриваются различ-

ные модели, дающие при соответствующем выборе пара-

метров значения теплопроводности, близкие к экспери-

ментальным данным. В настоящей работе мы ограничим-

ся заданием значений λ, равным 0.002W ·m−1K−1 [8].
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На поверхности кометы задаются граничные условия

для концентрации газообразной компоненты (индекс s

соответствует значениям концентрации и температуры

на поверхности, т. е. при x = 0)

Dch
i

∂(no

√
T )

∂x
=

1

4
no,s

(

8kTS

πmi

)1/2

, (6)

и температуры

I0

( rH

1 au

)

−2

(1− A) cosυ = εσT 4
S − λ(T )

∂T

∂x

∣

∣

∣

∣

x=0

. (7)

Здесь I0 = 1360W/m2 — интенсивность солнечного

света на расстоянии 1 au, rH — расстояние до Солнца,

A — альбедо кометы, υ — угол между локальной

нормалью к поверхности и направлением на Солнце,

ε — степень черноты (в дальнем ИК диапазоне), σ —

постоянная Стефана−Больцмана.

Расчеты по предложенной модели выполнены с ис-

пользованием разработанного программного кода [11].
Дискретизация уравнений диффузии (1) и теплопро-

водности (5) выполнена методом конечных разностей.

Использована неявная схема с разностными оператора-

ми, имеющими первый порядок точности по времени и

второй по пространству. Процессы нагрева и диффузии

на каждом временнóм шаге рассматриваются последо-

вательно [8,12]. Вначале решается уравнение теплопро-

водности. Особенностью этой части вычислительного

алгоритма является необходимость определения темпе-

ратуры на границе расчетной области с использованием

нелинейного уравнения (7). Затем с использованием

данных о распределении температуры решается уравне-

ние диффузии. Регулярная расчетная сетка имеет шаг

4 · 10−5 m, глубина слоя — 0.2m, шаг по времени —

0.01 s, рассматриваемый интервал времени 10 оборотов

кометного ядра — 124 h.

Основная серия расчетов выполнена для расстояния

кометы до Солнца 2.5 au. Рассматривается пористый

слой, состоящий из пыли (начальная доля ψd = 0.2),
льда (начальная доля ψi = 0.1) и паров воды, запол-

няющих поры (начальная доля ψ0 = 0.013). Плотность

пыли — 2000 kg/m3, льда — 920 kg/m3 [8]. Теплоемкость
льда и пыли полагалась равной 1000 J/(kg ·K). Расчеты
представлены для элемента поверхности сферического

ядра, находящегося на экваторе. Ось вращения ядра

перпендикулярна плоскости орбиты кометы. Период вра-

щения T = 12.4 h.

На рис. 1 показано изменение температуры элемента

поверхности ядра при его вращении вокруг собственной

оси.

Поток солнечного излучения на рассматриваемом

расстоянии от Солнца составляет 217W/m2. Так как

ядро кометы вращается, элемент поверхности переходит

с дневной (освещаемой) стороны на ночную и наоборот.

Температура меняется периодическим образом. За счет

излучения в космическое пространство и отвода тепла

теплопроводностью поверхность остывает, минимальная

0 2 4 6

150

t/T
8 10

100

200

250

T
, 
K

Рис. 1. Зависимость температуры элемента поверхности на

экваторе от времени.
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0.15
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T
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0

T/8

T/4

T/2

Рис. 2. Распределение температуры по глубине слоя в различ-

ные моменты времени.

температура составляет около 110K. Квазипериодиче-

ский режим устанавливается по истечении 3−5 оборо-

тов, далее графики изменения температуры во времени

с хорошей точностью повторяются на каждом обороте.

За 10 оборотов тепловая волна проходит примерно

15 cm вглубь кометного ядра. На рис. 2 показано рас-

пределение температуры по глубине ядра в различные

моменты времени: 0 и T/8 — дневная сторона (0
и 1.55 h соответственно), T/4 — граница дневной и

ночной стороны (3.1 h) и T/2 — ночная сторона (6.2 h).
Изменения температуры затрагивают только приповерх-

ностный слой, на достаточном удалении от поверхности

распределение температуры не зависит от времени. Тем-
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Рис. 3. Распределение давления по глубине слоя для разных

моментов времени.

пература по глубине приповерхностного слоя меняется

существенно нелинейно.

Давление в приповерхностном слое определяется ин-

тегральным вкладом открытых и закрытых пор. Рас-

пределение давления по глубине слоя для различных

моментов времени приведено на рис. 3.

Для рассматриваемого удаления ядра от Солнца

(2.5 au) на части дневной стороны максимальное дав-

ление существенно превышает значение 1 Pa. Таким

образом, согласно [10], возможно разрушение слоя и

эжекция пылевых агрегатов даже для условий низких

значений потока энергии солнечного излучения. С при-

ближением к Солнцу ожидается усиление наблюдаемого

эффекта. На ночной стороне давление в слое падает за

счет уменьшения температуры (рис. 2), и происходит

конденсация молекул на стенках открытых/закрытых

пор.
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зовании вычислительного ресурса СКЦ СПбПУ Петра

Великого.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.
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