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Возникновение магнитных полей галактик описано методами магнитной гидродинамики и теории динамо.

Рассмотрены два различных масштаба — микроскопический, на котором применимы уравнения для

эволюции и переноса магнитного поля, непосредственно следующие из уравнений Максвелла, и макроско-

пический, на котором после усреднения по масштабам турбулентности рассматриваются уравнения динамо

средних полей. Особый интерес представляют модели, учитывающие значительную толщину галактического

диска. Во всех моделях возможность генерации магнитного поля описана спектром соответствующих

дифференциальных операторов.
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Введение

В настоящее время существуют однозначные дока-

зательства наличия магнитных полей в спиральных

галактиках [1]. Они основаны на данных о мерах фа-

радеевского вращения и исследовании спектра синхро-

тронного излучения. Вместе с тем возникают вопросы

о теоретическом объяснении возникновения магнитных

полей в подобных объектах. Межзвездный газ в боль-

шинстве таких галактик представляет собой частично

ионизованный водород, поэтому можно ожидать, что

эволюция полей в них описывается законами магнитной

гидродинамики для хорошо проводящих сред. Особую

сложность вызывает наличие двух принципиально раз-

ных масштабов.

В случае небольших масштабов возможно исполь-

зование микроскопических уравнений, вытекающих из

уравнений Максвелла в сплошной среде. При наличии

вихрей различных — подчас несоизмеримых — масшта-

бов возможны затухание, перенос или усиление поля.

Задача о возбуждении магнитного поля тогда сводится

к исследованию спектра соответствующих дифференци-

альных операторов [2]. Наличие собственных значений

с положительной действительной частью указывает на

возможность генерации. Подобные задачи актуальны как

для теоретической астрофизики, так и для вычислитель-

ной математики.

В случае глобальных магнитных полей гораздо

бо́льшую роль играют поля, усредненные по масштабам,

связанным с размерами турбулентных вихрей. После

усреднения в уравнении индукции появляется дополни-

тельное слагаемое, связанное со средней спиральностью

турбулентных движений. Совместно с дифференциаль-

ным вращением (связанным с убыванием угловой ско-

рости вращения галактики по мере удаления от цен-

тра) это приводит к действию α�-динамо [3]. Как и

в предыдущем случае, возможность роста магнитного

поля устанавливается путем исследования спектра со-

ответствующего дифференциального оператора.

Для тонких галактик Д. Мосс [4] предложил пла-

нарное приближение, позволяющее свести задачу об

эволюции магнитного поля к двум уравнениям в частных

производных для радиальной и азимутальной компо-

нент поля. Хотя эта модель создана для численного

моделирования, она позволяет найти спектр точно в

осесимметричном случае. Однако для многих реальных

объектов этого недостаточно: так, хотя толщина диска

существенно меньше радиуса, их величина может быть

вполне сопоставимой.

RZ-модель для магнитного поля призвана решить

данную проблему [5]. Она позволяет найти магнитное

поле при конечной толщине диска (когда ее отношение

к радиусу не есть малый параметр задачи), и учитывает

его более сложную вертикальную структуру. Одна из

трудностей подобного подхода — гораздо бо́льшая слож-

ность дифференциального оператора, характеризующего

эволюцию поля. Он не самосопряжен, поэтому при-

менение стандартных подходов теоретической физики

математически строго не обосновано. Мы рассмотрели
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упрощенную модель, в которой преобразование пере-

менных приводит к задаче для эрмитовых операторов,

откуда можно построить асимптотики для поля. Эти

результаты относятся к случаю дисков, имеющих толщи-

ну, не являющуюся пренебрежимо малой. Кроме того,

предполагалось, что она меняется по мере удаления

от центра.

В настоящей работе исследован спектр оператора для

галактического диска, расширяющегося по мере удале-

ния от центра (данная задача соответствует реальным

астрофизическим объектам). Ввиду сложности уравне-

ний мы решаем ее численно, используя метод обратных

итераций. Для этого приходится решать цепочку систем

линейных уравнений.

1. Спектральные задачи для полей,
квазипериодических
по пространству

При рассмотрении задач о генерации магнитного поля

турбулентным течением естественно пробовать модели-

ровать такое течение квазипериодическим полем. Тогда

задачу о динамо можно решать псевдоспектральными

методами с разложением искомых магнитных мод в

конечные ряды Фурье. Если для дискретизации для

каждого из основных периодов используется N гармо-

ник Фурье, мода описывается N6 армониками, из-за

чего задача оказывается весьма вычислительно сложной.

В связи с этим указанный подход к решению задачи

о динамо мы протестировали на примере вычисления

доминирующих мод оператора транспорта пассивного

скаляра. С учетом диффузии скалярной примеси он

имеет вид

L[c] = k1c − (u∇)c,

где k — коэффициент диффузии, u — поле скорости,

а c — скалярное поле концентрации примеси. Этот

оператор описывает эволюцию скалярных полей (таких
как температура или концентрация химического реа-

гента в объеме жидкости) и используется для стати-

стического анализа турбулентности (см., например, [6]).
С вычислительной точки зрения он во многом подобен

оператору магнитной диффузии. Однако, тогда как в

кинематическом динамо по теореме Я.Б. Зельдовича [7]
генерация возможна только для трехмерного течения, в

данной задаче можно ограничиться выбором двумерно-

го u, зависящего от двух декартовых переменных, что

уменьшает число расчетных гармоник Фурье до N4 и

требует существенно меньших оперативной памяти и

объема вычислений.

Модельное течение задается как суперпозиция

U = αν + (1− α)w,

где пространственно-периодичные ν(x) и w(x) имеют

несоизмеримые периоды Lν j
и Lw j

по декартовой коор-

динате x j , а параметр 0 ≤ α ≤ 1 можно интерпретиро-
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Рис. 1. Инкремент роста доминирующей моды в задаче о

транспорте пассивного скаляра как функция степени квазипе-

риодичности течения α.

вать как
”
степень квазипериодичности“ течения u. Усло-

вия соленоидальности div(u) = 0 в терминах коэффици-

ентов Фурье νk и wk имеют вид kννk = kwwk = 0, где

kν = 2π(n1/Lν1
, n2/Lν 2

), kw = 2π(m1/Lw1
, m2/Lw2

) —

волновые векторы, n j и m j — целые числа. Соле-

ноидальные поля ν и w синтезированы как конечные

ряды Фурье (N = 32 гармоники по каждому декартовому

направлению) с соответствующими периодичностями,

псевдослучайными коэффициентами и экспоненциально

убывающим энергетическим спектром. Мода c представ-

ляется в виде

c =
∑

n,m

cn,m exp[i(kν + kw)x].

На рис. 1 показаны предварительные результаты рас-

четов для периодов Lν = 2π, Lw = 23/2π и коэффициен-

та диффузии k = 0.1. Невязки вычисления собственных

мод не превосходят 10−4 . Согласно рис. 1, затухание до-

минирующей моды в рассматриваемой задаче в средней

части интервала 0 ≤ α ≤ 1 существенно меньше, чем

для периодических течений на границах этого интерва-

ла. Это можно интерпретировать как благоприятность

квазипериодичности течения для улучшения перемеши-

ваемости переносимого скаляра.

Данный эксперимент показал применимость предло-

женного подхода к расчету доминирующих мод для

квазипериодических полей скорости; в дальнейшем пла-

нируется применить его для более сложных объектов

при решении задачи о действии в них кинематического

динамо.

2. Спектральная задача для RZ-модели
в расширяющемся диске

Эволюция крупномасштабного магнитного поля опи-

сывается уравнением динамо среднего поля. При исполь-
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зовании RZ-модели основная компонента поля — азиму-

тальная. В безразмерных переменных (когда расстояния

измеряются в единицах радиуса объекта) азимутальное

поле B подчиняется следующему дифференциальному

уравнению [8]:

∂B/∂t = D1/2B + D1/2z∂B/∂z

+ λ2(∂2B/∂z 2 + ∂2B/∂r2 + ∂B/r∂r − B/r2),

заданному в безразмерных переменных (расстояния из-

меряются в радиусах галактики) в области 0 < r < 1,

−h(r) < z < h(r), h(r) = h0(r/r0)
9/8, на границе кото-

рой поле обращается в нуль. Здесь D — динамо-число,

характеризующее одновременное действие α-эффекта и

дифференциального вращения.

Переход к задаче на собственные значения осуществ-

ляется стандартной подстановкой

B(r, z , t) = B(r, z ) exp(γt).

Далее переходим от переменной z к масштабирован-

ной координате

X = z/h(r)

с последующим разделением переменных:

B(r, x) = R(r)X(x).

Далее решаем задачи по переменным x и r . Задача

на собственные значения для R(r) включает в себя

производные вплоть до второго порядка:

γR = ÂR;

Â = [D1/
− λ2/r25/8 + κm/r9/8]

+ λ2/r2R + λ2/rd/dr + λ2d2/dr2;

R(rmin) = R(1) = 0,

где κm = λ2π2m2/4 — собственное значение, соответ-

ствующее моде Xm(x).
Оценим теперь численно собственные функции и соб-

ственные значения. Для этого применен метод обратных

итераций. Он особенно эффективен для вычисления

нескольких первых собственных значений несамосопря-

женного оператора. Используя некоторую начальную

аппроксимацию собственного вектора, метод последова-

тельно улучшает ее итерациями

Rk+1 =
(

(Â − σ Ê)−1Rk

)

/Ck ,

где Ck — нормирующие константы, а σ — аппроксима-

ция искомого собственного значения.

Дискретизировав уравнения конечными разностя-

ми второго порядка с учетом граничных условий

R(rmin) = R(1) = 0 [9], мы получили матричное пред-

ставление уравнений в виде трехдиагональных систем.

Решение этих систем проводилось методом прогонки.

Однако в нашей задаче, из-за некоторых приближений,
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Рис. 2. Старшие радиальные собственные функции. Сплошная

кривая — R1(r), штриховая — R2(r).

нарушается условие диагонального преобладания, что

делает классическую схему неустойчивой. Для обеспе-

чения устойчивости численного решения за счет учета

возможных знакопеременных коэффициентов мы ис-

пользовали модифицированный алгоритм немонотонной

прогонки.

На рис. 2 представлены первая и вторая найденные

собственные функции. Для собственных значений при

D = 10 получаем γ1 = 3.1, что означает возможность

генерации магнитного поля. В то же время для мод

высоких порядков приходится вести речь о затухании.

Выводы

В работе исследованы задачи на собственные зна-

чения, возникающие при генерации магнитных полей

галактик. Для этого изучено модельное уравнение, опи-

сывающее рост мелкомасштабной компоненты. Также

изучен процесс роста магнитного поля в
”
толстом“

диске с меняющейся толщиной, получены старшие соб-

ственные функции. Показано, что для реалистичных зна-

чений динамо-чисел рост возможен лишь для старшей

радиальной моды.
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