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Введение

Сцинтилляционная установка Tunka-Grande [1] распо-
ложена в Тункинской долине, в 50 km от оз. Байкал.

Она представляет собой сеть из 19 станций наблюде-

ния, развернутых на площади около 0.5 km2. Установка

входит в состав астрофизического комплекса TAIGA [2]
и нацелена на исследование космических лучей (КЛ) и
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поиск диффузного гамма-излучения в диапазоне энергий

от 10 PeV до 1EeV методом регистрации электрон-

фотонной и мюонной компонент широких атмосферных

ливней (ШАЛ).

Анализ точности реконструкции параметров ШАЛ и

КЛ является важным этапом обработки эксперимен-

тальных данных. Для оценки качества восстановления

параметров используются два основных подхода: экспе-

риментальный и модельный.

Первый метод основан на сравнении результатов

обработки данных исследуемой и опорной установок

и подходит для экспериментов, расположенных на од-

ной площадке и регистрирующих одни и те же ши-

рокие атмосферные ливни. В рамках этого подхода

точность восстановления параметров ШАЛ и КЛ по

данным установки Tunka-Grande оценивалась с помо-

щью анализа ШАЛ, зарегистрированных одновремен-

но с черенковскими установками Тунка-133 [2,3] и

TAIGA-HiSCORE [2,4] в предположении, что точность

восстановления характеристик ШАЛ по данным че-

ренковских установок выше, чем по данным сцин-

тилляционной установки. При прочих равных усло-

виях это достигается за счет природы наблюдаемых

явлений и плотности размещения детекторов. Ключе-

вым преимуществом черенковских установок является

регистрация потока света, интегрированного по всем

глубинам развития ШАЛ в атмосфере, что обеспе-

чивает значительное сглаживание флуктуаций, прису-

щих заряженной компоненте ШАЛ. Исходя из это-

го, значения параметров ШАЛ и КЛ, восстановлен-

ные по данным черенковских установок, были при-

няты в качестве опорных. Но, строго говоря, подоб-

ный подход позволил получить лишь верхние огра-

ничения на ошибки реконструкции параметров ШАЛ

по данным установки Tunka-Grande [3,4], поскольку

черенковские установки имеют свои погрешности вос-

становления.

В основе второго альтернативного метода оценки

точности восстановления параметров ШАЛ лежит мо-

делирование процессов развития ШАЛ в атмосфере и

взаимодействия вторичных частиц с детекторами уста-

новки. В процессе моделирования формируется банк

искусственных ливней, содержащий результаты взаи-

модействия ШАЛ с детекторами установки. Смодели-

рованные события обрабатываются с помощью пакета

программ для обработки экспериментальных данных.

Точность реконструкции параметров ШАЛ и КЛ опре-

деляется путем сравнения восстановленных и исходных

значений.

Модельная оценка точности реконструкции парамет-

ров ШАЛ и КЛ по данным Tunka-Grande была вы-

полнена посредством сравнительного анализа рекон-

струированных и исходных параметров искусственных

ливней, сгенерированных с помощью инструментариев

CОRSIKA [5] и Geant4 [6].

1. Моделирование установке
Tunka-Gande

Моделирование отклика установки Tunka-Grande на

вторичные частицы ШАЛ было выполнено в два эта-

па. На первом шаге с помощью программного па-

кета CORSIKA (модель электромагнитных взаимодей-

ствий — EGS4, модели адронных взаимодействий —

QGSJET-II-04, Geisha) [5] были смоделированы 1 600 000

искусственных ливней (по 50 000 на каждую вариацию

зенитного угла и энергии). Параметры моделирования:

первичная частица — протон, энергетический диапазон

15 ≤ lg(E/1 eV) ≤ 16.75 с шагом 0.25, зенитные углы —

0◦, 15◦, 30◦, 45◦, диапазон азимутальных углов 0◦−360◦,

положение оси ШАЛ — равномерно разыграно внутри

круга радиусом 800m с центром координат, совпадаю-

щим с координатами центральной станции Tunka-Grande.

На втором этапе в цифровой модели установки Tunka-

Grande [7], реализованной с помощью инструментария

Geant4 [6], были смоделированы отклики сцинтилляци-

онных станций на частицы ШАЛ.

2. Реконструкция и анализ
смоделированных данных

При обработке смоделированных ШАЛ использова-

лась программа реконструкции экспериментальных дан-

ных Tunka-Grande. Алгоритм восстановления парамет-

ров ШАЛ по данным Tunka-Grande подробно описан в

работах [3,8]. В разд. 2 приведен лишь краткий обзор с

уточнением тех этапов реконструкции, которые связаны

с восстановлением пространственного распределения

заряженных частиц ШАЛ и энергии.

Направление прихода и положение оси ливня, число

заряженных частиц в ШАЛ, параметр возраста ливней

и энергия восстанавливаются по энерговыделениям и

временам срабатывания наземных детекторов с помо-

щью итеративной процедуры, включающей 3 этапа.

На первом шаге вычисляются число и соответствующая

плотность попавших в детекторы частиц. Направление

прихода ливня восстанавливается по методу треуголь-

ника по временам срабатывания наземных детекторов.

В процедуре используются до четырех детекторов с

максимальной плотностью зарегистрированных частиц.

Начальные значения координат положения оси ливня

на площадке установки x , y вычисляются с помощью

метода центра масс, число заряженных частиц в ШАЛ

Ne в нулевом приближении оценивается как среднее

взвешенное по плотности частиц и значению функции

пространственного распределения частиц при фиксиро-

ванном возрасте ливня s = 1 в сработавших наземных

детекторах. На втором этапе направление прихода ливня

корректируется за счет учета кривизны фронта ШАЛ [8].
Координаты оси x , y и Ne уточняются методом макси-

мального правдоподобия путем минимизации функции

двух переменных x и y модифицированным методом
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Рис. 1. Плотность частиц в наземных детекторах установки в зависимости от ортогонального расстояния до оси ШАЛ для

энергий lg(E/1 eV) 15.5, 16, 16.5 (a) и 15.75, 16.25, 16.75 (b).

симплексов [9,10] при фиксированном параметре возрас-

та ливня s = 1. На последнем этапе также используется

метод максимального правдоподобия, но уже с тремя

свободными параметрами — x , y , и s . В качестве вход-

ных значений используются результаты предыдущего

этапа. В завершение вычисляется плотность заряженных

частиц на расстоянии 200m от оси ШАЛ ρ200 и восста-

навливается первичная энергия [8].

Ключевым моментом процедуры реконструкции яв-

ляется восстановление пространственного распреде-

ления вторичных частиц в ШАЛ. Пространствен-

ное распределение заряженных частиц в ШАЛ

восстанавливается с помощью вариации функции

Нишимуры−Каматы−Грейзена, полученной эмпириче-

ским путем на установке ШАЛ-МГУ [11]. В качестве

функции пространственного распределения (ФПР) мю-

онов используется функция Грейзена [12]. В остальном

восстановление числа мюонов в ШАЛ Nµ по данным мю-

онных детекторов выполняется по тому же алгоритму,

параллельно с анализом данных наземных детекторов.

Процедура восстановления была применена ко всем

событиям ШАЛ с тремя и более сработавшими наземны-

ми детекторами. На рис. 1, a, b представлено сравнение

усредненных смоделированных и расчетных плотностей

заряженных частиц для ливней с фиксированной энер-

гией в диапазоне 15.5 ≤ lg(E/1 eV) ≤ 16.75. Кружки

соответствуют распределению смоделированных плот-

ностей частиц в наземных детекторах в зависимости от

расстояния до смоделированной оси ШАЛ, квадраты —

распределению расчетных плотностей частиц в зависи-

мости от расстояния до восстановленной оси ливня. Ре-

конструированные плотности заряженных частиц полу-

чены путем решения обратной задачи с использованием

вычисленных для каждого детектора значений ФПР и

восстановленного Ne в ШАЛ.

Результаты моделирования подтвердили эксперимен-

тальную оценку пороговой энергии регистрации ШАЛ

на площади установки — эффективность регистрации

искусственных ливней с E = 10 PeV в круге радиусом

400m составила ≈ 95%. Радиус круга эффективной

регистрации растет с увеличением энергии ШАЛ и для

ливней с E = 30 PeV достигает 650m, что значительно

превышает размер самой установки. Однако сравнение

восстановленных и исходных параметров внешних ШАЛ

показало, что в текущей конфигурации установки Tunka-

Grande анализ ливней, упавших за ее пределами, требует

отдельного рассмотрения. В первую очередь это касает-

ся вертикальныхШАЛ. В таких событиях положение оси

ливня восстанавливается внутри установки, притягива-

ясь к локальному максимуму плотности частиц, который

может наблюдаться как в станции внешнего, так и в

станции внутреннего круга.

Для исключения подобных событий были введены

дополнительные условия отбора: 1) в случае, если в

событии сработало менее 6 станций, число внутренних

сработавших стаций превышает или равно числу внеш-

них сработавших станций; 2) если станция с максималь-

ной плотностью заряженных частиц принадлежит внеш-

нему кругу, число зарегистрированных в ней частиц

не меньше 50; 3) расстояние между восстановленным

положением оси ШАЛ и станцией с максимальным

числом заряженных частиц ≤ 150m.

По оставшимся после дополнительного прореживания

ливням были оценены точность восстановления поло-

жения оси и направления прихода ШАЛ и первичной

энергии.

3. Модельная оценка

Угловое разрешение установки Tunka-Grande оцени-

валось по 68 процентилю в распределении событий

в зависимости от плоского угла ψ между восстанов-

ленным и исходным направлением прихода ШАЛ, точ-

ность восстановления положения оси ШАЛ — по 68

Журнал технической физики, 2025, том 95, вып. 12
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Ошибки восстановления параметров ШАЛ

lg (E/eV) 15. 15.25 15.5 15.75 16. 16.25 16.5 16.75

ψ68,
◦ 3.4 2.8 2.2 1.7 1.4 1.2 1.1 1

R68, m 81 68 50 31 21 15 12 10

σE , % 86 73 55 43 36 34 30 26

процентилю в распределении событий в зависимости

от расстояния R между восстановленным и исход-

ным положением оси ливня. Ошибка восстановления

энергии σE вычислялась по среднеквадратичному от-

клонению σ в распределении событий по логариф-

му отношения восстановленной энергии к заданной

(σE = (10σ − 1) · 100%). Рис. 2 демонстрирует точность

восстановления направления прихода (рис. 2, a), положе-
ния оси (рис. 2, b) и энергии (рис. 2, c) смоделированных
ливней с энергией 10 PeV, пришедших под углом 0◦−45◦

на площадь установки, ограниченную кругом радиусом

400 m. Вертикальные штриховые линии на рис. 2, a, b

соответствуют значениям параметров ψ и R, в пределах

которых содержится 68% значений соответствующих

искомых распределений. Модельная оценка точности

восстановления параметров ШАЛ с энергиями в диа-

пазоне 15. ≤ lg(E/1 eV) ≤ 16.75 по данным установки

Tunka-Grande представлена в таблице.

4. Сравнение с результатами
экспериментальной оценки

Анализ совместных событий Tunka-Grande с черен-

ковскими установками Тунка-133 и TAIGA-HISCORE

показал, что при восстановлении событий с энергией

E ≥ 10 PeV, ограниченных зенитным углом прихода 45◦,

угловое разрешение сцинтилляционной установки со-

ставляет 2.3◦, точность восстановления положения оси

не хуже 26m, энергетическое разрешение — 36% [8].
Итоги модельной оценки (см. таблицу) несколько лучше

результатов, полученных экспериментально. Это объяс-

няется тем, что экспериментальная оценка позволяет

получить только суммарную погрешность, включающую

ошибки каждой из участвующих в анализе установок.

Заключение

По результатам модельной оценки при регистрации

ливней с энергией E > 10 PeV, пришедших на площадь

установки Tunka-Grande под углом до 45◦, текущая ме-

тодика позволяет восстанавливать положение оси ШАЛ

с погрешностью не более 26m, направление прихода с

точностью не хуже 1.4◦ и первичную энергию с ошибкой

не более 36%. Полученные значения демонстрируют

хорошее согласие с итогами экспериментальной оценки

и доказывают эффективность использования установки

Tunka-Grande в качестве инструмента для исследования

первичных КЛ и поиска диффузных гамма-квантов в

энергетическом диапазоне 10 PeV−1EeV.
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