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На основе лучевого приближения и теории возмущений разработан аппарат численно-аналитического

моделирования рефракции космического излучения в поле тяготения массивных объектов в окружении

случайных плазменных неоднородностей и гравитационного шума. Распространение излучения в поле

тяготения рассмотрено, как процесс в евклидовом пространстве с эффективным показателем преломления

вакуума, выраженным через гравитационный потенциал. Приведены результаты расчетов стохастического

замывания эффектов гравитационного линзирования в зависимости от пространственного расположения

источника и приемника излучения для разных типов случайных неоднородностей космической среды.
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Введение

Как известно [1–5], массивные астрофизические объ-

екты вносят заметный вклад в рефракцию электромаг-

нитного излучения при распространении в космической

среде. Группа гравитационных объектов приводит к фор-

мированию сложных распределений электромагнитного

поля. Анализируя такие эффекты, можно переходить к

решению обратной задачи по восстановлению парамет-

ров среды, а также оценивать характеристики объек-

тов, невидимых в электромагнитном диапазоне, но про-

являющих себя через гравитационное взаимодействие.

Между тем при изучении объектов на космологиче-

ских расстояниях в структуре принятого излучения мо-

гут возникать дополнительные рефракционные эффекты,

связанные с влиянием возмущений космической среды.

В частности, к таким возмущениям относятся случай-

ные плазменные неоднородности [2,4]. Для детального

восстановления возмущающих гравитационных потенци-

алов скрытых объектов по характеристикам принятого

излучения необходимо учитывать не только маскирую-

щее действие космической плазмы, но и присутствие

в окружающем пространстве областей стохастических

неоднородностей полей тяготения, поскольку последние

также могут приводить к частичному замыванию грави-

тационных эффектов

1. Аппарат численно-аналитического
моделирования

Для расчета влияния плазменных и гравитацион-

ных неоднородностей на рефракцию космического из-

лучения в поле тяготения использовались стохастиче-

ские лучевые дифференциальные уравнения в форме

Лагранжа−Эйлера в специальной сферической системе

координат [6], полученные из вариационного принципа
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где R, δ, ϕ — радиальная и угловые координаты луча

соответственно; α, β — текущие углы рефракции луча;

ñ — эффективный показатель преломления, учитываю-

щий случайные неоднородности космической среды и

аддитивный вклад гравитационных полей объектов в

общее поле тяготения [4,5]:

ñ = n0 + ñ1, n0 = 1 +
Rg

R
+
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∑
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× exp
[
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2
]

,

(2)
где n0 — эффективный показатель преломления регу-

лярного поля тяготения; ñ1 — описывает случайные

неоднородности космической среды; Rg — гравитацион-

ный радиус основного объекта тяготения; N — число

2302



Международная конференция ФизикА.СПб, 20–24 октября 2025 г. 2303

дополнительных регулярных неоднородностей показате-

ля преломления; Ai , ϕLi , δLi , RLi , bϕi , bδi , bRi — соответ-

ственно интенсивность, координаты центра локализации

и масштабы i-го регулярного возмущения поля тяготе-

ния. Геометрия задачи соответствует рис. 1 работы [5].
В результате решения системы (1) в приближении

метода возмущений (при ñ1 ≪ 1) была получена по-

рождающая система уравнений для расчета рефракции

излучения в регулярном поле тяготения (система (1)
при ñ1 = 0), а также система уравнений для расчета

дисперсий боковых отклонений лучей в картинной плос-

кости наблюдателя [4,5]:
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R0, δ0, α0, β0 — рефракционные характеристики луча

при ñ1 = 0; µ0, νR, νϕ, νδ — интенсивность и простран-

ственные радиусы корреляции неоднородностей кос-

мической среды; R′

L, ϕ
′

L, δ
′

L, mR, mϕ, mδ — координаты

центра и размеры области локализации неоднородно-

стей космической среды. Уравнения (3) получены в

предположении, что турбулентность космической сре-

ды характеризуется квазиоднородным случайным полем

неоднородностей показателя преломления. Для просто-

ты оценок использовалась гауссова форма однородной

части корреляционной функции. Отметим, что в общем

случае хаотические неоднородности многомасштабной

космической среды описываются степенным спектром.

Между тем в ряде случаев [7] при расчетах низших мо-

ментов флуктуаций направления распространения сиг-

налов просвечивания можно использовать эффективный

гауссовый спектр, если в качестве пространственного

масштаба неоднородностей считать внешний масштаб

космической турбулентности, заданной степенным спек-

тром. Это связано с тем, что высокочастотная часть

спектра неоднородностей в большей степени влияет на

амплитуду сигнала, чем на его фазу [7].

2. Результаты расчетов
и их обсуждение

На рис. 1−3 представлены результаты расчетов ре-

фракционных характеристик излучения на основе систем

уравнений (1), (3) для случая смещенного точечного

источника относительно луча зрения по угловой коор-

динате δ на фиксированном расстоянии R. Начальные

условия составляли ϕn = 0, Rn = 50 cul (cul — услов-

ная единица длины). Для оценки влияния смещения

источника излучения от луча зрения на наблюдае-

мый эффект рассматривалось два положения источни-

ка со значениями угловой координаты δn = 0.3 rad и

δn = 0.6 rad. Прицельный угловой параметр αn варьиро-

вался в диапазоне (−0.75)−(+0.75) rad, а βn — в диа-

пазонах (−0.75)−(−0.03) и (+0.03)−(+0.75) rad. Рас-
чет проводился до радиальной координаты Rk = 50 cul,

где формировалась картинная плоскость наблюдателя

(далее —
”
лучевая картина“) с отмеченными на ней

конечными угловыми координатами (ϕk ; δk) луча. На

рис. 1 представлена лучевая картина в плоскости наблю-

дателя при транспорте космического излучения через

регулярное поле тяготения одиночного объекта. Для на-

глядности конечные угловые значения (ϕk ; δk) здесь по-

казаны в декартовых координатах: x k = Rk cosϕk cos δk ,

y k = Rk sinϕk cos δk .

Из полученных результатов расчетов видно, что фор-

мирование лучевой картины зависит от расположения

точечного источника. В верхней части распределения то-

чек прихода лучей в картинную плоскость наблюдателя

происходит уплотнение области периферии (формиро-
вание дуги) с постепенным уменьшением в размерах.

В нижней части распределения возникает смещение

линзовой области в центральную часть распределения

с уменьшением пространственных масштабов. Также на

рис. 1, b следует отметить переход линзового эффекта из

верхней периферийной части распределения в нижнюю

область лучевой картины. За счет смещения источника

излучения в картинной плоскости наблюдателя начи-

нают формироваться дугообразные линзовые эффекты.

Также в распределении точек прихода в картинную

плоскость следует отметить свечеподобное образование,

выраженное заметной структуризацией точек в цен-

тральной области выше плоскости луча зрения (относи-
тельно y k = 0). Этот эффект соответствует появлению

источника излучения в прямой видимости для наблюда-

теля. Чем выше источник над плоскостью луча зрения,

тем более выражена степень структуризации.

Одной из проблем, приводящей к потере информации

об источнике излучения, является случайное распре-

деление массы в поле тяготения массивного объек-

та или на луче зрения (далее —
”
гравитационный

шум“). Расчет влияния гравитационного шума на лу-

чевую картину проводился при следующих парамет-

рах: νR = 0.1 cul, νϕ = νδ = 0.1, R′

L = 0 cul, ϕ′

L = δ′L = 0,

µ0 = 10−5, mR = 25 cul−2, mϕ, mδ → ∞. На рис. 2 пред-

ставлены результаты моделирования, где боковые крас-

ные отрезки соответствуют среднеквадратичным боко-

вым отклонениям лучей в плоскости наблюдателя под

влиянием гравитационно-шумового
”
облака“. Чем боль-

ше длина отрезка, тем сильнее отклонение луча. Зна-

чения длин отрезков боковых отклонений лучей в кар-
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Рис. 1. Лучевая картина в плоскости наблюдателя при транспорте космического излучения вблизи одиночного массивного объекта

с различным смещением точечного источника на фиксированном расстоянии R вдоль угловой координаты δ от луча зрения:

δn = 0.3 rad (a) и 0.6 rad (b), при отсутствии случайных неоднородностей. Отмеченные точки соответствуют лучам, пришедшим

на фиксированное расстояние Rk .
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Рис. 2. Лучевая картина в плоскости наблюдателя при транс-

порте космического излучения вблизи одиночного массивного

объекта, погруженного в гравитационный шум. Источник из-

лучения расположен при δn = 0.3 rad. Красные отрезки соот-

ветствуют среднеквадратичным боковым отклонениям лучей в

картинной плоскости наблюдателя под влиянием гравитацион-

ного шума.

тинной плоскости наблюдателя получены с помощью со-

отношений σx = σδRk cosϕk sin δk , σy = σδRk sinϕk sin δk .

Из рис. 2 следует, что при локализации гравитационно-

шумового
”
облака“ вблизи массивного объекта про-

исходит стохастическое замывание центральной части

лучевой картины. При увеличении оптического пути

луча при распространении в поле тяготения происходит

рост его боковых отклонений в картинной плоскости.

В рассмотренном случае дугообразные области гравита-

ционной фокусировки не деформируются под влиянием

гравитационного шума вследствие конечных размеров

”
облака“. Однако с увеличением расстояний между ис-

точниками и гравитационно-линзовыми объектами даже

относительно малое
”
облако“ может привести к замы-

ванию областей фокусировок, что отразится в потере

информации об источнике излучения.

Для получения достоверной информации об ис-

точнике излучения, расположенного на космологиче-

ских расстояниях, также необходим учет влияния слу-

чайных плазменных неоднородностей. Расчет замыва-

ния эффекта гравитационного линзирования в кос-

мической плазме проводился в случае равномерного

распределения неоднородностей во всей среде, т. е.

mR, mϕ, mδ → ∞. Интенсивность неоднородностей зада-

валась в виде µ0 = µ′

0( f pl/ f )2, где f pl — плазменная

частота, f — частота космического излучения. Пара-

метры задачи составляли: νR = 0.1 cul, νϕ = νδ = 0.1,

R′

L = 0 cul, ϕ′

L = δ′L = 0, µ′

0 = 0.01, f pl = 12MHz. На

рис. 3 представлены результаты расчетов для f = 6GHz

(рис. 3, a) и f = 300MHz (рис. 3, b). Из рис. 3 следует,

что, как и в случае рис. 2, наибольший эффект сто-

хастического замывания лучевой картины отмечается в

центральной части. Следует отметить, что при частоте

излучения 6GHz (рис. 3, a) эффект замывания несуще-

ственен, что приводит к сохранению четкости очерта-

ния дугообразных линзовых эффектов. В особенности

это касается центральной области фокусировки. При

частоте излучения 300MHz (рис. 3, b) лучевая картина

подвергается значительному замыванию под влиянием

Журнал технической физики, 2025, том 95, вып. 12
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Рис. 3. Замывание гравитационного линзирования в космической плазме. Частоты излучения — 6GHz (a) и 300MHz (b).
Параметры: µ′

0 = 0.01, f pl = 12MHz.

плазменных неоднородностей. В этом случае линзовый

эффект в центральной части лучевой картины будет

размыт, а дуга на периферии сохранится, но с частичным

размытием очертания.

Заключение

Для расчета влияния плазменных и гравитационных

неоднородностей на рефракцию космического излучения

в поле тяготения массивных объектов используется

лучевое приближение и теория возмущений. Выполнены

расчеты рефракционных характеристик излучения в гра-

витационных полях различной конфигурации. Отмечено,

что при смещении источника излучения относительно

луча зрения на гравитационно-линзовый объект в лу-

чевой картине формируются две области фокусировок

дугообразного типа. Под воздействием случайных грави-

тационных и плазменных неоднородностей эти эффекты

могут подвергаться стохастическому замыванию. Для

дуги, локализованной на периферии лучевой картины,

эффект будет незначителен, в отличие от центральной

области фокусировки. При этом степень замывания лу-

чевой картины также зависит от длины волны излучения,

интенсивности и пространственных радиусов корреля-

ции неоднородностей космической среды. Указанные

особенности необходимо учитывать при интерпретации

данных наблюдений сложных гравитационно-линзовых

эффектов.
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