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Введение

Фотонные топологические изоляторы представляют

собой массивы связанных резонаторов, обеспечивающих

существование краевых состояний — распространение

или локализацию электромагнитной энергии вдоль гра-

ниц структуры. Существование такого волнового ре-

жима обусловлено симметрийными свойствами объема

системы и характеризуется однонаправленностью и от-

сутствием рассеяния на геометрических дефектах [1].
Один из способов реализации фотонного топологи-

ческого изолятора основан на использовании резона-

торов, геометрия которых характеризуется отсутству-

ющим центром инверсии. Нарушение симметрии про-

странственной инверсии резонатора приводит к тому,

что вместо электрической и магнитной дипольных мод

исходного резонатора с ненарушенной симметрией фор-

мируются две гибридные моды, соответствующие биа-

низотропному отклику [2,3]. В свою очередь, введение

бианизотропии приводит к открытию запрещенной зоны,

в которой существуют псевдоспин-поляризованные крае-

вые топологические состояния, направление распростра-

нения которых строго связано со знаком псевдоспина,

что является аналогом спин-орбитального взаимодей-

ствия [2,4]. Так, например, были предложены топологи-

ческие изоляторы на основе треугольной решетки, ха-

рактеризующиеся дираковской дисперсией [3,5], а также

на основе структур с симметрией C4v , с квадратичным

вырождением собственных мод [6].
Настоящая работа посвящена разработке теоретиче-

ской модели на основе метода диадной функции Грина

для описания топологического изолятора, состоящего

из бианизотропных частиц, расположенных в узлах

кубической решетки. Для исследования топологических

свойств рассматриваемой системы нами проведено вы-

числение кривизны Берри для трех ортогональных на-

правлений решетки. Раннее было предложено теоре-

тическое описание подобных систем в рамках теории

возмущений [7], применимое только в окрестностях

точек высокой симметрии и не включающее исследова-

ние топологических свойств, для которого необходимо

вычисление кривизны Берри во всей зоне Бриллюэна.

1. Вывод эффективного блоховского
гамильтониана

Рассмотрим кубическую решетку с периодом a , в

узлах которой расположены точечные электрические

px(y) и магнитные mx(y) диполи, ориентированные вдоль

оси x(y) (рис. 1), соответствующие одновременному воз-

буждению электрического и магнитного диполей в плос-

кости xy диэлектрического резонатора, состоящего из

двух концентрических цилиндров разных размеров, ось
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Рис. 1. Кубическая решетка с периодом a , в узлах ко-

торой расположены частицы с бианизотропным откликом.

Параметр µ характеризует силу связи электрического p и

магнитного m дипольных моментов.
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которых совпадает с осью z [3,6,8]. При этом геометрия

указанных резонаторов обеспечивает равенство величин

электрического и магнитного отклика, необходимое для

вырождения собственных мод в точках высокой сим-

метрии в отсутствии бианизотропии [2], поэтому будем

считать амплитуды электрических и магнитных полей в

заданном узле равными.

Компоненты электрического E и магнитного H полей

в узле с координатами (ia, ja, ka) связаны с дипольны-

ми моментами тензором поляризуемости α̂ (в симмет-

ричной системе единиц СГС):
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где β — поляризуемость, а χ — электромагнитная связь.

Тогда компоненты электрического и магнитного поля в

заданном узле определяются следующим выражением:
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(1)
где u = β/(β2−χ2) и v = χ/(β2−χ2). Пусть в области

частот, где наблюдается гибридизация электрического

и магнитного дипольных моментов, существует только

одно резонансное состояние с частотой ω0. Тогда пара-

метр u можно представить в виде аппроксимирующей

функции u = (ω−ω0)/C, где C — константа. Для того

чтобы привести параметры u и v к безразмерному виду,

введем параметры µ = va3 и λ = a3(ω−ω0)/C [8].
С другой стороны, амплитуды полей в заданном

узле могут быть найдены как сумма полей, созданных

всеми остальными точечными диполями, выраженных с

помощью диадной функции Грина G(r, k0) = G:
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(2)
Диадная функция Грина определяется расстоянием

между точечными диполями

r = a

√
(m − i)2 + (n − j)2 + (l − k)2

и волновым числом k0. Согласно введенным допуще-

ниям, электрические и магнитные компоненты диадной

функции Грина совпадают, Gee = Gmm . Кроме того, элек-

тромагнитные и магнитоэлектрические компоненты свя-

заны соотношением Gem = −Gme . Компоненты диадной

функции Грина определяются следующими выражения-

ми (в симметричной системе единиц СГС):

Gee
ζ η = (∂ζ ∂η + k2

0δζ η)
eik0r

r
,

Gem
ζ η = rotGee

ζ η = ik0εζ ηz ∂z

eik0r

r
,

где εζ ηz — символ Леви−Чивиты, δζ η — символ Кроне-

кера и ∂ζ = ∂/∂ζ . Полученные выражения для компонент

диадной функции Грина в квазистатическом приближе-

нии (k0 = 0) имеют следующий вид:

Gee
xx =

(
3a2(m−i)2/r2−1

)
/r3,

Gee
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(
3a2(n − j)2/r2 − 1

)
/r3,
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xy = 3a2(m − i)(n − j)/r5,

Gem
xx = Gem

xy = Gem
yx = Gem

yy = 0.

Для упрощения вывода будем учитывать только связи

между соседями в первой и второй координационных

сферах. Согласно теореме Блоха, дипольные моменты

в узлах кубической решетки с координатами (ia, ja, ka)
и (ma, na, la) связаны между собой фазовым множите-

лем

(
pi jk
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x ,mi jk
y

)T
= e−ikx (i−m)−iky( j−n)−ikz (k−l)

×
(
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x ,mmnl

y

)T
,

где kx , ky и kz — волновые вектора вдоль

осей x , y и z . Объединив уравнения (1) и (2) и

переписав результат в виде задачи на собственные

значения Ĥ|ψ〉 = λ|ψ〉 с учетом теоремы Блоха

и полученных выражений для диадной функции

Грина, получим эффективный блоховский

гамильтониан Ĥ в базисе |ψ〉 = (px , py ,mx ,my )
T .

Перейдем в базис псевдоспиновых состояний

|ψ′〉 = (px + mx , py + my , px − mx , py − my )
T [3] путем

преобразования Ĥ ′ = UĤU↑, где матрица U имеет

следующий вид:

U =
1√
2





1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1



 .

Наконец, эффективный блоховский гамильтониан в

псевдоспиновом базисе |ψ′〉 определяется как:

Ĥ ′=





b iµ−d 0 0

−iµ−d c 0 0

0 0 b −iµ−d

0 0 iµ−d c



 =

(
Ĥ↑ 0

0 Ĥ↓

)
,

b = 4 cos kx − 2 cos ky − 2 cos kz

+
1√
2

(cos kx cos ky + cos kx cos kz − 2 cos ky cos kz ),
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c = −2 cos kx + 4 cos ky − 2 cos kz

+
1√
2
(cos kx cos ky + cos ky cos kz − 2 cos kx cos kz ),

d =
3√
2
sin kx sin ky ,

где Ĥ↑ и Ĥ↓ обозначают псевдоспиновые части блохов-

ского гамильтониана с противоположной поляризацией.

2. Дисперсионные кривые
и топологические свойства

Дисперсионные кривые полученного блоховского га-

мильтониана Ĥ ′ для трех различных значений параметра

бианизотропии µ показаны на рис. 2 и описываются

следующим выражением:

λ
↑(↓)
1(2) = cos kx + cos ky − 2 cos kz

+
1

2
√
2

(2 cos kx cos ky − cos kx cos kz − cos ky cos kz )

± 1

4
√
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(
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√
2 cos kz

+72
√
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− 36 cos kx cos ky

(
17 + 8

√
2 cos kz + cos(2kz )

)

+9 cos(2kx )
(
13+4 cos(2ky )+8

√
2 cos kz + cos(2kz )

))1/2

.

В отсутствии бианизотропии (µ = 0) дисперсия ха-

рактеризуется квадратичным вырождением в точках вы-

сокой симметрии Ŵ(0, 0, 0) и M(π, π, 0). Кроме того,

вырождение наблюдается в точке A(π, π, π), между точ-

ками Ŵ(0, 0, 0) и Z(0, 0, π) и между точками M(π, π, 0)
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Рис. 2. Дисперсионные кривые эффективного блоховского

гамильтониана Ĥ′ в первой зоне Бриллюэна кубической ре-

шетки. Сплошные, пунктирные и штриховые кривые соответ-

ствуют трем различным значениям параметра бианизотропии.
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Рис. 3. Распределения кривизны Берри �z в плоскости xy

для верхней (a,b) и нижней (c,d) ветвей собственных состоя-

ний, отвечающие псевдоспин-вверх Ĥ↑ и псевдоспин-вниз Ĥ↓

частям гамильтониана Ĥ′ при значении параметра бианизотро-

пии µ = 10.

и A(π, π, π). При введении бианизотропии вырожде-

ние снимается, а увеличение значения параметра µ

сопровождается увеличением ширины запрещенной зо-

ны. Действительно, в точке Ŵ(0, 0, 0) выражение для

собственных значений принимает вид λ
↑(↓)
1(2) = ±µ, что

подчеркивает определяющую роль бианизотропии в от-

крытии запрещенной зоны.

Для исследования топологических свойств кубиче-

ской решетки из бианизотропных частиц было прове-

дено вычисление распределения кривизны Берри (пред-
ставляющей собой аналог магнитного поля в обрат-

ном пространстве [9]) для трех различных плоскостей

по формуле

�ξ (kζ , kη, kξ = 0) =
∂

∂kζ

〈
ψ
↑(↓)
1(2)

∣∣∣∣
∂

∂kη

∣∣∣∣ψ
↑(↓)
1(2)

〉

− ∂

∂kη

〈
ψ
↑(↓)
1(2)

∣∣∣∣
∂

∂kζ

∣∣∣∣ψ
↑(↓)
1(2)

〉
,

где ξ 6= ζ 6= η принимают значения [x ; y ; z ], верхний

индекс собственной функции ψ указывает на псевдоспи-

новую часть гамильтониана Ĥ↑(↓), а нижний индекс —

на ветвь собственных значений. В отсутствии бианизо-

тропии (µ = 0) кривизна Берри для всех плоскостей об-

ращается в нуль. При введении бианизотропии (µ = 10)
наблюдается ненулевое локальное и противоположное

по знаку распределение кривизны Берри �z в окрестно-

стях точек с координатами (0,0) и (π, π), как показано
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на рис. 3. При этом значения распределения кривизны

Берри меняют свой знак при смене направления псев-

доспина или ветви собственных состояний. Кривизна

Берри в двух других плоскостях �x и �y сохраняет свои

тривиальные свойства даже при ненулевом параметре

бианизотропии µ. Таким образом, рассматриваемая ку-

бическая решетка является примером слабого топологи-

ческого изолятора с нетривиальными топологическими

свойствами вдоль оси z .

Заключение

Предложена теоретическая модель для описания куби-

ческой решетки из бианизотропных резонаторов, осно-

ванная на диадной функции Грина и учитывающая связи

между узлами в первой и второй координационных сфе-

рах. Продемонстрирована определяющая роль бианизо-

тропии в открытии запрещенной зоны и возникновении

нетривиальных топологических свойств, как следует из

распределений кривизны Берри. Предложенная модель

может быть использована для описания массивов резо-

наторов с бианизотропным откликом, размер которых,

как и расстояние между ближайшими резонаторами,

много меньше длины волны электромагнитного излуче-

ния в рассматриваемом диапазоне частот.
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