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A system of three circular concentric non-touching tori is considered. An electrostatic charge can be applied to
each of the tori. The problem is to find the density of charge distribution over the surfaces of the tori, taking into
account the Coulomb interaction between the surfaces. The required density is found by the method of successive
approximations based on the fact that in the static case, at each of the points on the surface of each of the tori, the
total tangential strength of the Coulomb forces is zero. The corresponding functional is constructed, the problem
of numerical minimization of which is solved by the gradient descent method.
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Introduction

Due to the intensive study and exploration of outer
cosmic space, including in conditions of longer lasting
manned flights, the problem of ensuring the radiation
safety of space flights is becoming more urgent. There
is an obvious need to improve the existing and develop
fundamentally new approaches to ensuring radiation pro-
tection of habitable compartments and onboard spacecraft
equipment against harmful effects of galactic cosmic rays,
radiation from the Earth’s radiation belts, chromospheric
solar bursts, etc. One such approach is to create active
protection systems that use the ability of electric and
magnetic fields to change the direction of the moving
charged particles and deflect them from the surface of a
spacecraft [1-4].

As theoretical and experimental studies show, these
systems are set apart from the passive radiation protection
systems traditionally used in practice based on the use
of absorbing properties of materials. Active protection
provides a significantly lower level of generated secondary
radiation and a way higher order of radiation attenuation
per unit mass. Therefore, it not only allows to signif-
icantly reduce the total weight of a spacecraft, but also
proves to be extremely effective for protection of large
volumes.

One of the most promising ways to provide active radi-
ation protection is to implement an electrostatic discharge
(ESD) system based on the use of an electrostatically
charged shield covering the protected volume, which has
a certain potential relative to its environment and deflects
the incident flows of charged particles away from its
surface [5,6]. For the implementation of protective shields,
it was proposed to use a thin metallized film stretched
over a lightweight and durable spherical or cylindrical

frame [5]. Also an idea of the module structure of
ESD shield was suggested allowing to cover the surface
of a spacecraft having complex shape [6]. In general,
both the theoretical studies and the results of experi-
ments carried out in space on bio-satellites ,,Kosmos®
(from 605 to 2229) and spacecrafts ,,Prognoz [6-8], have
proved that effective ESD control is technically feasible
with the present day’s state of the art. It has been
established that the power consumed by the ESD is
low compared to the total reserve of energy resources
of the spacecraft. It should be also emphasized that
experiments made on the bio-satellite ,,Kosmos“-936 have
proved that ESD could operate in a self-charge mode [9].
This finding indicates high dependability of the ESD
systems.

Foreign studies concerning the development of active
anti-radiation protection systems also pay attention to
ESD systems (see, for example, the review [10] and
the literature cited in it). At that it is mentioned that
technical feasibility of ESD may be somewhat troublesome.
For example, these difficulties may be associated with
maintaining the required high electrostatic potentials in
conditions of a continuous flow of conductive plasma
particles in the near-Earth space. In some foreign pa-
pers, ESD was even rejected as inoperable. This, as
noted in [11], was based on the false assumption that
radial symmetry of the electrostatic field is necessary to
ensure the isotropic protection of a spacecraft. it was
demonstrated that ESD protection is feasible when compiled
of several shields. It is noted that the combination of
electric monopoles, dipoles, quadrupoles and more complex
structures makes it possible to generate an electrostatic
field that effectively protects the spacecraft from ionizing
radiation. For instance, in paper [11] an ESD system is
described having 18 electrostatically charged spheres. At
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the same time, proper use of physical asymmetry makes
it possible to repel both electrons and positively charged
ions without creating excessive secondary radiation. The
rapid deployment of such fields does not require heavy
structures with passive shields or concentric shells of
charges, and the vacuum breakdown limit can be easily
overcome [11].

The continued research aimed at clarifying the feasi-
bility of ESD in terms of energy supply on board the
spacecraft, as well as the search for suitable materials
for electrostatic screens according to UV radiation resis-
tance criteria, resistance to impact of microparticles of
space debris, the ability to resist tensile loads, electri-
cal strength all this resulted in finding the acceptable
solutions and development of new ESD options [12],
but at the same time it revealed some new prob-
lems.

The first of them is that even with the use of the most
modern and advanced materials for the construction of ESD
with 12- charged spheres, the total mass of the ESD system
turns out to be too large for practical use of the system
compared to a system based on passive protection where
absorbing screens are used [12].

The second problem is that most of the works for
creation and testing of ESD systems in space success-
fully carried out in the USSR [1-3,5-9], was dealing
with protection against radiation with the energy level
from 10 to 100MeV. Now we understand that the real
problem is radiation with energy from 1 to 2GeV. So,
the issue is scaling, both in terms of energy and in
terms of the size of the ESD. Is it possible to create
an ESD capable of operating at such high levels of
energy consumption, and can it protect the entire space-
craft?

In the process of studying this issue, a new conceptual
design was proposed, which should be evaluated in the
course of upcoming studies, taking into account the com-
plexity and mass of the system. It is based on a torus
surrounding the spacecraft [12]. An ESP configuration
is proposed, which consists of a torus charged to a high
negative voltage surrounding the spacecraft and a set of
positively charged spheres. Van de Graaff generators have
been proposed as a mechanism for moving charge from a
spacecraft to a torus to create fields necessary to protect the
spacecratft.

Continued research on electrostatic shielding led to the
development of the idea of using toroidal surfaces by
switching to a configuration based on the use of several
toroidal surfaces (or toroidal rings, as they are titled
in [13]). Analytical and numerical studies show that with
the help of such electrostatic configurations, the radiation
from solar bursts can be practically eliminated. It is also
shown that the probability of ionizing particles penetrating
into toroidal surfaces is significantly reduced compared to
simpler spherical structures. It is established that the sizes
and the ratio of the radii of the toroidal surfaces can
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vary and may be optimized to achieve higher radiation
protection [13].

During preliminary analysis of the effectiveness of the
electrostatic protection system, it is usually limited to finding
the electric potential in the vicinity of the charged surface.
When the system has charged surfaces, where the charges
may have a mutual effect on the overall charge distribution,
this task is very difficult. In this view, the classical
solution method based on solving the Dirichlet problem
for the Laplace equation may be practically inapplicable,
and therefore other approaches are used.  Thus, for
example, in paper [14], when analyzing the effectiveness
of an ESD containing the above-mentioned system of
spherical surfaces, the problem of finding the -electric
potential is solved using the method of purely imaginary
charges.

When considering an ESD with a system of toroidal
surfaces, we note that for a single charged torus, the
potential in the outer region, found analytically by solv-
ing the Dirichlet problem for the Laplace equation, is
given, for example, in papers [13,15]. In [13], this
solution is used to find the charge that needs to be
distributed on the surface of the torus in order to maintain
a constant set potential value on this surface. For a
promising ESD system containing three concentric toroidal
surfaces [13], the task of finding the potential becomes
much more complicated because of mutual influence of
charges distributed over the surfaces of the tori. Therefore,
when analyzing the effectiveness of such an ESD, a
numerical approach based on the finite element method is
used.

The purpose of this study is to analyze the dynamics of
a spacecraft equipped with an ESD system that includes
three concentric toroidal surfaces. At the same time,
to analyze the electrodynamic effects resulting from the
interaction of charged surfaces with the Earth’s magnetic
field, it is not enough to know the electric potential of
a system of charged toroidal surfaces. We need to know
the density of charge distributions over the surfaces of the
tori.

For a single torus, the problem of finding the charge
distribution density over the surface can be solved after
finding the derivative on the surface of the torus from
the potential in the outer part of the torus [16]. The
expression for the potential, as noted above, is outlined
in [13,15], where it is given as a Fourier series expansion,
the terms of which are expressed in terms of Legendre
functions of half-integer orders of the first and second
kinds.

In this paper, we consider a system of three concentric
non-intersecting hollow electrically conductive tori. An
electrostatic charge may be supplied to each of these tori.
The task is to find the densities of charge distributions
over the surfaces of these tori. To solve the problem,
it is proposed to directly find the densities of charge
distributions (bypassing the electric potential) using the
method of successive approximations, based on the fact that
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Figure 1. Three mutually perpendicular non-intersecting tori.

in the static case, at each of the points on the surface of
each of the tori, the total tangential tension of the Coulomb
forces is zero. At the same time, the interaction of charge
distributions on different tori is taken into account in this
study.

1. Mathematical model

A system of three non-intersecting hollow toroidal shells
made of a conductive material, having a common center
and oriented parallel to mutually perpendicular planes is
considered (Fig. 1).

Let’s denote by index i the elements of the torus on
which the charge distribution is adjusted, and by index
j the elements of the torus on which the tangential
component of tension is minimized. To avoid confusion,
these indexes will take alphabetic values instead of numeric
ones i, j = S, M, L for Small, Medium, and Large volumes,
respectively.

An orthogonal coordinate system (¢, 1) is introduced
on each of the three toroidal surfaces (Fig. 2). Cartesian
coordinates of a point on a toroidal surface are easily
expressed using a cylindrical coordinate p = R+ r - cos:

X=p-cosp = (R+r -cosp)-cosg,
y=p-sing =(R+r -cosp)-sing, (1)
Z=r -sin.

If, for certainty, we assume that the medium torus

is oriented parallel to the coordinate plane Oxy (Fig. 2
corresponds exactly to this case), then such a coordinate

system will look as

XM = (Rm + I'm - cospm) - cos om,
ym = (Rm 4+ 'm - costpm) - sin pm, (2)

Iy =TI'm ~Sinlp|\/|.

Here ry is the radius of the generating circle, and
Rm is the distance from the center of the generating
circle to the axis of symmetry perpendicular to the ori-
entation plane, ¢ € [0,27], ¥ € [0,27]. For the small
torus, which we assume to be oriented parallel to
the coordinate plane Oxz, the coordinate system will
be

Xs = (Rs+ s cosips) - cos s,

Ys=TIs- sin 1/)5, (3)
zs = (Rs+rs-coss) - sin@s.

And for a large torus oriented parallel to the coordinate
plane Oyz, the expression will be

XL=1TIL- SiIllpL,
yL=(RL+rL-cosy)-sing, (4)

zp = (RL+rL-costpL) - cosqp.

For each point Mj (Xj, ¥j, Zj) of each of the three toroidal
surfaces, the total tangential strength of the electrostatic
field generated by charges distributed over the surfaces
of all three tori shall be equal to zero vector. Here
and further, the tilde sign will refer to the coordinates
of those points at which the electrostatic field strength
is calculated. If we denote q; (@i, i) the density of
the charge distribution at the point N; (Xi, Vi, zi), and
g ~ " . . —
T ((pi,zpi,(pj,wj) — the projection of the vector NiM;
on the tangent plane to the j-th toroidal surface containing
the point Mj, then this tension can be represented as
the sum of integrals over the surfaces of three tori (k
is Coulomb’s constant, which in this problem can be
shortened):

2 2 N
N T —
E;j=k Z ri/(Ri—i—ri-cosl/)i)dl/)i G ”3 pi=0.
i=SM.L o INiM;|
(5)

Vector NjM; will have nine various expressions:
—
NsMs =

(Rs+rs-cosths) -cos ps— (Rs+I s cos Ps) -cos Ps

= rS'sim}S—rysinz,bs ;
(Rs—i- I's-cos 1,7)3) -sin—@s (Rs+rs-cos s) -sin ps

(6)
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Figure 2. The coordinate system on a toroidal shell.

A
z
M;
B
\d >
L/ r
R
—_
NmMs =

(Rs+rs-00517)s)-cosgbs—(RM +Im-Costm )-cos Pm
= rg-sinlﬁg—(RM+rM-cost)-sian s

(Rs+ rs-cos{bs) -sin (s — Iy - siny

(7)
—
N Ms =
(R5+r5~COSIZ‘5) ~COS(Z)5—I'|_~SiIl1p|_
= rs-sim])s—(RL—l—rL-cosz,bL)-sin(pL ,
(R3+rs-cos1~ps)-sind)s—(RL+rL-coswL)~cos<pL
(8)
—
NsMm =
(RM+rM~cos1,~bM)-cos<Z)M—(Rs+rs-cos1ps)-cosq)g
= (Rv +Tm - costh) - singu — I's - sints ,
r'u -sinlﬁM — (Rs+rs- costs) - sin@s
)

—

NvyMy =
(RM+rM~cos1ZM)-COS(Z)M—(RM—l-rM-cosz,bM)-cosq)M
= (RM+rM-cosz,NbM)-sin<Z)M—(RM+rM-cost)-Sin(pM ,

'm -sim];M —I'm -sim/)M
(10)
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—_
NLMp =

(Rm +rwm -COSI/N)M) -cos Py — L - siny
= (RM+rM~cos1,ZM)-sind)M—(RL+r|_~coswL)~sin(pL ,

- sinyy — (RL4rL-cost) - cosL

(11)

NsM| =

re-sing — (Rs+rs- cosws) - cos s
= (RL—I—I'L-COSI/N)L) -sin@ —rs-sinis ,

(RL+r-cos 1}L) -cos ¢ — (Rs+Trs-coss) -sin @s
(12)

—_
NuM| =
re-sing — (Ru 4 v - costhy) - cos @y
= (RL—HL-cosbe)-sind)L—(RM+rM-cost)~sin(pM ,

(RL+rL -COSI/N)L) -Cos QL — 'y - siniu
(13)

NML =

re ~sin1,~b|_ —I. ~sin1,b|_
= (RL—i—rL-cosz])L)-singbL—(RL—i-rL-COSI/)L)-singDL

(RL—HL-cospr) -cos L — (R_+rL-costp)-cos @
(14)
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The projection 7; can be found from the formula
7 = NMj — (Nimj - ) -y, (15)

where 71} (@j, % j) is the normal vector to the corresponding
toroidal surface in point M;. For the medium toroidal
COS P - COS P
cos Py - sin Pu

surface Ny = , for the small toroidal

sin 1]}M
cos s - COS Ps
surface Ng = sin s , for the large toroidal
cos s - sin g

sin I}L
cos iy - sin

Cos | - Cos PL

N
surface we have n| =

. = .
Accordingly, the scalar products (NiMj . nj) will take
the following nine different values for the corresponding
indexes i and j:

(NSMS . n_§) = <(Rs+rs~cos 1}3)-cos<i)3— (Rs+Ts-cosphs)
X COS <p3> - COS 1}3- cos Ps+ (rs - sin z,Nbs—rs- sinlps) ~sin1,~b3

+ <(R3+rs - cos i) - sin s — (Rs+Ts - cosPs) - singos)

X cos s - sin Ps,
(16)

(NMMs-ﬁs})ZQRs—i—rs-COSl])s)-COS(Z)s—(RM +I'm -COSI/)M)
XCOS(pM) -coS g+ oS Ps + (rs-sim])s — (Rm +rm-costm)

xsin(pM) -sin s + ((Rs—i— r's-costs) sinPs — 'y -sim/)M)

X COS IZS - sin @s,
(17)

— y ) _
(NLMs-ns) = ( (Rs+rs-costps) - cosds — I - sinih
xcosfbs - oS Ps+ (rs . sinz}s— (RL+rL-cosyp) - singoL)

xsinl,?)s—i- ((Rs—i— rs-cosﬂ)s) -sin@s — (R +r - cosyy)

X COS (pL) - COoS 1}3 - sin @s,
(18)

. - N
(NSMM -nM) =( (Ru-+rwm-costu) -COS(pM—(Rs+rs
xcosws) -COS(ps) . cosz];M - cos pm + ((RM +Im -cosz];M)
X sin @y — rs-sim/)s> - cosy - sindy + (rM - sin Py

— (Rs+rs-coswps) - singos) - sin P,
(19)

— - _
(NMMM -nM): (Rm+Tm - costhm) -COS(pM—(RM +rm
xcosz,/)M) -COS(pM) . cosz];M -COS(Z)M+<(RM+rM -cosﬂ)M)

x singy — (Rw +rm - costhm) - singoM> - cos Py - sin dm

+ (TM ~Sin1:b|\/| —I'm -sinz,bM) -Sinl}M,
(20)

. N ) _
(NLMM . nM): (Rm+Twm - costhm) - cos @y —rL - sinyh
X COS P -cos¢M+<(RM+rM -costhu ) - singm — (RL+TL
xcosz,bL)- singoL> ~cos¢M - 8in P +(rM -sinlﬁM—(RL+rL
X cos ) -cosgoL) - sinhy,

(21)

(NsML . n_|_)) :(rL ~sin1,~b|_ — (Rs+ rs-cosws) -COSgDs)
XSiHI}L—‘r ((RL—HL . COSIZ‘L) -sind)L—rS-sinz,bs> -COSINPL

X sin @ + <(R|_+r|_ . cosiL) -cosPL— (Rs+rs- costps)

X sin gos) - COS z,ZL - COS @,
(22)
(NMML . H_L)) = (rL . Sian‘L—(RM +I'm ~COS¢M) ~COS(pM)

X sin i + ((RL+r|_ -cosiL) - sin@L— (Rm-+Tw - cospm)
X singoM> -cosL - sin@, + ((RL +rL -coszZL) - COS PL

—I'm -sim/)M> -COSI/N)L - COS @,
(23)
—_— — . ~ . . ~
(NLML . nL) :(rL . sme—rL . SlnlpL) . SlIlIPL—F (RL—HL
X COS I}L) -sin@—(R_+rL - cost) - sin<pL)-cos YL -sin @,
+ <(R|_+r|_ . cosz];L) ~cos @ — (RL+r - cosy) -cosg0L>

X COSL - COS PL.
(24)
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For specific index values i and j, we will have the following nine vector expressions IT; :

- ~ — ~ -
(Rs+ rs-costs) - cosPs — (Rs+ I's - cosps) - cos ps — (NSMS- ns) - COS s - COS Ps
— .o . 7 — .7
Tss = rs-sinys—rs-sinys — (NsMs-ns) - sin s , (25)

~ . . _ ~ .
(Rs+ rs-cosws) -sin@s — (Rs+rs- coswps) - sinps — (NSMS- ns) - cos s - sin Pg

~ - —_ ~ -
(Rs+rs-costps) - cosPs — (Rw + I'v - oSy - COS Py — (NMMS- ns) - CoS s - COS Ps
- . — N -
rs-Slnlps— (RM +I'm -COSIPM) -smem — (NMMs- ns) ~sm¢3 , (26)

~ C~ . 7 — ~ .o~
(Rs+rs-costps) - sin@s — 'y - singhy — (NMMS- ns) - cos s - sin Ps

2l
7
Il

~ - i —_ ~ -
(Rs+rs- costs) - cosps — I - sinip — (NLMS- ns) - oS 1s - COS Ps
_ L~ . —’ N -
s = Is: Slnlps— (RL +re- COSIPL) -SIn@L — (NLMs- ns) ~sm1p5 , (27)

7 . ~ 7 — ~ . ~
(R3+ rs-cosws) -sin@s — (R +r-costp) - cosp — (NLMS- ns) - COS s - Sin Pg

(Rm +rwm - costpy) - cos Py — (Rs+ I's - cosips) - cos ps — (NSMM . nM) - COS P - COS P

T = (Rv +r'wm -cosfm) singy — I's - sins — (NSMM m) - cos Py - sin Pm , (28)
. ~ . —_ . . ~
'm ~Slnlp|\/| — (R3+r3~cos¢3) - SIn s — (NsMM . nM) -SlnlpM
~ ~ —) ~ ~
(Rm +Tm - costhy) - cosPy — (Rm + v - costhu) - cos gy — (NMMM -nM) - COS M - COS Py
N - o . N -
VM = (RM + v ~cos1,bM) -sin@m — (Rm + Iy - cosyy) - singy — (NMMM . nM) - COS P - Sin Py , (29)

.S . N = s
I'm -s1n1pM —I'm -SlnlpM — (NMMM -nM) ~sm1,bM

~ - . _ ~ -
(RM +Im -COSI/)M) -Ccos@Py — I -siny — (NLMM . nM) - COS M - COS PMm
N - o . — L, ~ L
TiMm=| (Rw+rm-cosphm) singy — (RL+rL-cosipp)-sing — (NLMM . nM) -cospm -singm |, (30)

.~ N = P
'm ~sm1,bM — (RL+I’|_-COS¢|_) cCOSQPL — (NLMM -nM) ~sm1,bM

.= N w P
ro-sinyy — (Rs+rs- cosps) - cos ps — (NSML-nL) - sin
— ~ o . el ~
T = (RL+rL-cos¢L) -sin@ — r's - sinyg — (NSML . nL) - COS Yy - sin @ , (31)

~ ~ . _ — ~ ~
(RL+rL-costpL) - cosdL — (Rs+T's- cosips) - sinps — (NSML . nL) - COS YL - COS P

.~ N LR Py
ro-singy — (Rm +rwm - costhm) - cospm — (NMML . nL) - sin
~ .~ . NV iy S~
™ML = (RL+r|_-cos1,bL) -sin@ — (Rv +rwm - costpm) - singpm — (NMML . nL) -cosy -sing. |, (32)
3 ~ . —_— ~ ~
(RL-+rL-costp) -cos@L — Iy - sinpy — (NMML . nL) - cos Yy - cos P

!

.o . —_— .o
ry-siny, —rp -siny, — (NLML- L) - sin
L= (RL+rL -cosbe) sing — (RL+TrL-cosypy) - sing, — (NLML . n_[) ~cost-sing | . (33)
(RL+rL~cos1}L) -cosgbL—(RL—i—rL-coswL)-coswL—( n

z
2|

. nL) - COS be - COS P

Technical Physics, 2025, Vol. 70, No. 6
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Since the equality E—T; — 0 must be fulfilled at all points
M; of all three toroidal surfaces, the search for densities
of g; charge distributions can be reduced to minimizing the
functional equal to the sum of three integrals over the tori
surfaces from the length square of the vector that should
turn to be zero:

/2 2n
ri R +r cos 1 dz,/) ri (R
2 )
1 cos i )d [in 'T|3d¢.)d
(34)

In the last two cases, the integrations are not carried over
full turns due to the octahedral symmetry of the problem.

To solve the problem of minimizing the functional
numerically, all four definite integrals were replaced by
sums according to the quadrature formula of the average
rectangles.  Taking into account the limited computer
resources, during numerical integration, the nodes were
located from each other with an interval of 3°. To avoid
division by zero, the nodes for variables ¢; = 7; /60 and
@j = m (3a; + 1.5)/180 and, respectively, ;i = a3 /60 and
by = (3B +1.5)/180, were taken with a shift of one

and a half degrees. As a result, the expression was

minimized
(3/3,+15)
Z rJZ Rj+rj-cos —————*~ 180
j=SM,L ﬁj 1
120 5
I
(Z r.Z(R.—H. COSE)
a,—1 i=SM,L  Bi=
NER SN R EALES
60 1|NiMj|3 60 60°

aj=

(35)

The resulting function of 3 x 120 x 120 = 43200 vari-
ables was minimized by method of gradient descent.
This method is an iterative numerical method for solving
optimization problems. It is characterized by simplic-
ity of calculations and weak requirements for the mini-
mized function [17], although it is not optimal [18]. If
there were no octahedral symmetry, then in this prob-
lem, in order to apply the gradient descent method, it
would be necessary to have expressions of all 43200
partial derivatives of this minimized function.  Actu-
ally only 43200:8 = 5400 of such derivative are calcu-

lated:

(3/3, .y 5)

3Qm Z r,Z Rj+rj-cos ————* 180

j=SM.,L ,311

p 30 120 ﬁ
|
X@ Z riZ<Ri+r| COSE)

&=1 \i=SM,L =1

p 120 q T—) ;7[ ﬁ
i - Tij m
_ R r -
N [F 60 <m+mcos 60>

T Tmj T T
60 Ny [ 60 ) 60
(36)
Uniform charge distributions over each of the toroidal
surfaces were used as an initial approximation. lLe. if
on the i-th toroidal surface the charge Q; was initially
distributed, then, it was assumed that q; (@i, ¥i) = Qi/S,
where S = 4n2Rr; is the area of i-th toroidal surface.
The new value of the charge distribution density was
found by the formula

new od of
di =0 aqi ’ (37)
where L is a small positive hyperparameter selected em-
pirically in test calculations. During each iteration of the
gradient descent method, the calculated total amount of
charge on each of the toroidal surfaces was changed, which
can be found using the approximate formula

120 120

Q{‘e'w:riZ(R.+rcos—) 6OZq (38)

Bi=1

Since, in fact, the amount of charge remained unchanged,
before the next iteration, the value g had to be adjusted
by distributing the missing part of the charge evenly over
the entire surface

L Qo

5 (59)

a = q™”

2. Computer simulation results

The results of  numerical calculations are
given for  structures  with  relative  dimensions
Rs:Rw:RL:rs:rm:rp=3:6:9:1:1:1. The graphs

show the charge distribution densities for the case when
the unit charge was applied only to the medium torus, and
there were no charges on the small and large tori. These
densities are measured in units equal to the ratio of the
charge applied to the medium torus to the square of the
radius of the tori forming the circles (all three radii were
the same in calculations).

Technical Physics, 2025, Vol. 70, No. 6
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Figure 3 shows the charge distribution density Qm at
the points of the medium toroidal surface depending on
the angle ¥m. The left part of the graphs (¥m = 0)
corresponds to the points located further from the center
of the torus, and the right part (yy =) corresponds
to the points that are located closer to the center. The
uncharged large and small tori attract the charges of the
medium torus. Graph [/ corresponds to the cross-section
@wm = /2 which is maximally close to the large torus, while
graph 2 — to the cross-section gy = 0 maximally close to
the small torus . These results are quite expected, since
the ,,dipole” is induced on an uncharged conductor, which
reciprocally attracts the charges that generated it. If there
were neither small nor large tori, but only one charged
medium one, then the tension graph would look like a
curve practically connecting the lower parts of the graphs
shown. This is completely consistent with the fact that the
charges, repelling each other, are distributed with greater
concentration on the outer parts of the charged body.

Figure 4 shows the charge distribution density gy at the
points of the medium toroidal surface depending on the
angle .

It is known from electrostatics that charges tend to
concentrate in areas with maximum positive curvature,
especially those located further from the center. The results
obtained fully correspond to it. Graph 4 corresponds to
wexternal® circumference of toroidal surface which is most
remote from the center, and graph 3 — to ,internal®
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Figure 3. Charge distribution density on the surface of the
medium torus versus ,radial“ coordinate.
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Figure 4. Charge distribution density on the surface of a medium
torus versus ,circumferential“ coordinate.
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Figure 5. Induced charge distribution density on the surface of
an uncharged large torus versus ,radial“ coordinate.
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Figure 6. Induced charge distribution density on the surface of
an uncharged large torus versus ,;radial“ coordinate.

circumference. If there were no small and large tori, then
both of these lines would turn out to be horizontal lines
running at the minimum levels of the graphs shown. The
right part of the graph 4 turns out to be higher because
it approaches the large torus, which, although not charged,
is itself a dipole due to the redistribution of charges and
attracts the charges. For a similar reason, due to the
approach to the small torus, the graph 3 has an elevation
in the left part.

Figures 5-8 show the dependences of the charge distri-
bution density on uncharged (i.e., having total zero charges)
large and small tori. The results obtained fully correspond
to the physical concept. For example, in Fig. 5 and 6
the graphs 5 and 8, located below the graphs 6 and 7
correspond to the cross sections that are as close as possible
to the charged medium torus. Moreover, in both cases, the
maximum modulus charge of the opposite sign is induced
on the side (inner, where 1 = 7, for the large torus, and
outer, where s = 0, — for the small torus), which turns
out to be closer to the charged medium torus.

In Figures 7 and 8, the graphs /0 and /I, which
differ little from the horizontal lines, correspond to the tori
circumferences maximally distant from the charged medium
torus, i.e., for the large torus — to the outer circumference,
and for the small torus — to the inner circumference. The
graphs 9 and 72 correspond to the circumferences of the
tori closest to the charged medium torus. And, of course,
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Figure 7. Induced charge distribution density on the surface of
an uncharged large torus versus ,,circumferential“ coordinate.
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Figure 8. Induced charge distribution density on the surface of
an uncharged small torus versus ,.circumferential“ coordinate.

the parts of these graphs where the charge takes on negative
values correspond to those parts of the circumferences that
are closer to the charged medium torus. For the large
torus these points lie in the vicinity of value ¢ = 7/2, and
for the small torus — the points are located in the vicinity
of value ¢s = 0.

Fig. 9 for all of the three tori illustrates the side view.
For the large torus it corresponds to the view form the end
of Ox axis, for the medium torus — to the view from the
end of Oz axis, for the small torus — to the view from the
end of Oy axis.

The horizontal segments between the small and medium
tori correspond to the sections of the Ox axis, and the
vertical segments between the medium and large tori
correspond to Oy axis. The isolines on the tori, drawn
with a step of 0.001, correspond to the same values of
the charge distribution density. The isolines corresponding
to zero charge density are marked with pointers. Fig9
demonstrates that on the medium torus, maximum density
of isolines occurs on its outer parts near Oy axis, i.e., near
the large torus, whereas minimum density occurs on the
inner part of the torus. The mutual influence of charges
located on the medium torus and induced on the large
torus is manifested in the fact that the density of isolines on
the large torus reaches the highest values near the medium
torus.

Figure 9. TIsolines of the charge distribution density on the
surfaces of the tori.

Conclusion

The findings of the study allow us making a conclusion
on the possibility of solving the problems of electrostatic
charges distribution densities on one or a small number of
conducting bodies with smooth surfaces using an iterative
numerical method that minimizes the tangential components
of stresses on the surfaces of these bodies. The classical
gradient descent method was used in this study, which
does not claim competitive advantages in terms of speed
or resource intensity, but allowed us to obtain a solution
to a new relevant and quite sophisticated problem for the
first time. In the future, the authors plan to improve the
calculation methodology in order to reduce computational
costs. In particular, artificial intelligence is planned to be
used.
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