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The gradient descent method in the problem of charge distribution over
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A system of three circular concentric non-touching tori is considered. An electrostatic charge can be applied to

each of the tori. The problem is to find the density of charge distribution over the surfaces of the tori, taking into

account the Coulomb interaction between the surfaces. The required density is found by the method of successive

approximations based on the fact that in the static case, at each of the points on the surface of each of the tori, the

total tangential strength of the Coulomb forces is zero. The corresponding functional is constructed, the problem

of numerical minimization of which is solved by the gradient descent method.
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Introduction

Due to the intensive study and exploration of outer

cosmic space, including in conditions of longer lasting

manned flights, the problem of ensuring the radiation

safety of space flights is becoming more urgent. There

is an obvious need to improve the existing and develop

fundamentally new approaches to ensuring radiation pro-

tection of habitable compartments and onboard spacecraft

equipment against harmful effects of galactic cosmic rays,

radiation from the Earth’s radiation belts, chromospheric

solar bursts, etc. One such approach is to create active

protection systems that use the ability of electric and

magnetic fields to change the direction of the moving

charged particles and deflect them from the surface of a

spacecraft [1–4].

As theoretical and experimental studies show, these

systems are set apart from the passive radiation protection

systems traditionally used in practice based on the use

of absorbing properties of materials. Active protection

provides a significantly lower level of generated secondary

radiation and a way higher order of radiation attenuation

per unit mass. Therefore, it not only allows to signif-

icantly reduce the total weight of a spacecraft, but also

proves to be extremely effective for protection of large

volumes.

One of the most promising ways to provide active radi-

ation protection is to implement an electrostatic discharge

(ESD) system based on the use of an electrostatically

charged shield covering the protected volume, which has

a certain potential relative to its environment and deflects

the incident flows of charged particles away from its

surface [5,6]. For the implementation of protective shields,

it was proposed to use a thin metallized film stretched

over a lightweight and durable spherical or cylindrical

frame [5]. Also an idea of the module structure of

ESD shield was suggested allowing to cover the surface

of a spacecraft having complex shape [6]. In general,

both the theoretical studies and the results of experi-

ments carried out in space on bio-satellites
”
Kosmos“

(from 605 to 2229) and spacecrafts
”
Prognoz“ [6–8], have

proved that effective ESD control is technically feasible

with the present day’s state of the art. It has been

established that the power consumed by the ESD is

low compared to the total reserve of energy resources

of the spacecraft. It should be also emphasized that

experiments made on the bio-satellite
”
Kosmos“-936 have

proved that ESD could operate in a self-charge mode [9].
This finding indicates high dependability of the ESD

systems.

Foreign studies concerning the development of active

anti-radiation protection systems also pay attention to

ESD systems (see, for example, the review [10] and

the literature cited in it). At that it is mentioned that

technical feasibility of ESD may be somewhat troublesome.

For example, these difficulties may be associated with

maintaining the required high electrostatic potentials in

conditions of a continuous flow of conductive plasma

particles in the near-Earth space. In some foreign pa-

pers, ESD was even rejected as inoperable. This, as

noted in [11], was based on the false assumption that

radial symmetry of the electrostatic field is necessary to

ensure the isotropic protection of a spacecraft. it was

demonstrated that ESD protection is feasible when compiled

of several shields. It is noted that the combination of

electric monopoles, dipoles, quadrupoles and more complex

structures makes it possible to generate an electrostatic

field that effectively protects the spacecraft from ionizing

radiation. For instance, in paper [11] an ESD system is

described having 18 electrostatically charged spheres. At
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the same time, proper use of physical asymmetry makes

it possible to repel both electrons and positively charged

ions without creating excessive secondary radiation. The

rapid deployment of such fields does not require heavy

structures with passive shields or concentric shells of

charges, and the vacuum breakdown limit can be easily

overcome [11].

The continued research aimed at clarifying the feasi-

bility of ESD in terms of energy supply on board the

spacecraft, as well as the search for suitable materials

for electrostatic screens according to UV radiation resis-

tance criteria, resistance to impact of microparticles of

space debris, the ability to resist tensile loads, electri-

cal strength all this resulted in finding the acceptable

solutions and development of new ESD options [12],
but at the same time it revealed some new prob-

lems.

The first of them is that even with the use of the most

modern and advanced materials for the construction of ESD

with 12- charged spheres, the total mass of the ESD system

turns out to be too large for practical use of the system

compared to a system based on passive protection where

absorbing screens are used [12].

The second problem is that most of the works for

creation and testing of ESD systems in space success-

fully carried out in the USSR [1–3,5–9], was dealing

with protection against radiation with the energy level

from 10 to 100MeV. Now we understand that the real

problem is radiation with energy from 1 to 2GeV. So,

the issue is scaling, both in terms of energy and in

terms of the size of the ESD. Is it possible to create

an ESD capable of operating at such high levels of

energy consumption, and can it protect the entire space-

craft?

In the process of studying this issue, a new conceptual

design was proposed, which should be evaluated in the

course of upcoming studies, taking into account the com-

plexity and mass of the system. It is based on a torus

surrounding the spacecraft [12]. An ESP configuration

is proposed, which consists of a torus charged to a high

negative voltage surrounding the spacecraft and a set of

positively charged spheres. Van de Graaff generators have

been proposed as a mechanism for moving charge from a

spacecraft to a torus to create fields necessary to protect the

spacecraft.

Continued research on electrostatic shielding led to the

development of the idea of using toroidal surfaces by

switching to a configuration based on the use of several

toroidal surfaces (or toroidal rings, as they are titled

in [13]). Analytical and numerical studies show that with

the help of such electrostatic configurations, the radiation

from solar bursts can be practically eliminated. It is also

shown that the probability of ionizing particles penetrating

into toroidal surfaces is significantly reduced compared to

simpler spherical structures. It is established that the sizes

and the ratio of the radii of the toroidal surfaces can

vary and may be optimized to achieve higher radiation

protection [13].
During preliminary analysis of the effectiveness of the

electrostatic protection system, it is usually limited to finding

the electric potential in the vicinity of the charged surface.

When the system has charged surfaces, where the charges

may have a mutual effect on the overall charge distribution,

this task is very difficult. In this view, the classical

solution method based on solving the Dirichlet problem

for the Laplace equation may be practically inapplicable,

and therefore other approaches are used. Thus, for

example, in paper [14], when analyzing the effectiveness

of an ESD containing the above-mentioned system of

spherical surfaces, the problem of finding the electric

potential is solved using the method of purely imaginary

charges.

When considering an ESD with a system of toroidal

surfaces, we note that for a single charged torus, the

potential in the outer region, found analytically by solv-

ing the Dirichlet problem for the Laplace equation, is

given, for example, in papers [13,15]. In [13], this

solution is used to find the charge that needs to be

distributed on the surface of the torus in order to maintain

a constant set potential value on this surface. For a

promising ESD system containing three concentric toroidal

surfaces [13], the task of finding the potential becomes

much more complicated because of mutual influence of

charges distributed over the surfaces of the tori. Therefore,

when analyzing the effectiveness of such an ESD, a

numerical approach based on the finite element method is

used.

The purpose of this study is to analyze the dynamics of

a spacecraft equipped with an ESD system that includes

three concentric toroidal surfaces. At the same time,

to analyze the electrodynamic effects resulting from the

interaction of charged surfaces with the Earth’s magnetic

field, it is not enough to know the electric potential of

a system of charged toroidal surfaces. We need to know

the density of charge distributions over the surfaces of the

tori.

For a single torus, the problem of finding the charge

distribution density over the surface can be solved after

finding the derivative on the surface of the torus from

the potential in the outer part of the torus [16]. The

expression for the potential, as noted above, is outlined

in [13,15], where it is given as a Fourier series expansion,

the terms of which are expressed in terms of Legendre

functions of half-integer orders of the first and second

kinds.

In this paper, we consider a system of three concentric

non-intersecting hollow electrically conductive tori. An

electrostatic charge may be supplied to each of these tori.

The task is to find the densities of charge distributions

over the surfaces of these tori. To solve the problem,

it is proposed to directly find the densities of charge

distributions (bypassing the electric potential) using the

method of successive approximations, based on the fact that
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Figure 1. Three mutually perpendicular non-intersecting tori.

in the static case, at each of the points on the surface of

each of the tori, the total tangential tension of the Coulomb

forces is zero. At the same time, the interaction of charge

distributions on different tori is taken into account in this

study.

1. Mathematical model

A system of three non-intersecting hollow toroidal shells

made of a conductive material, having a common center

and oriented parallel to mutually perpendicular planes is

considered (Fig. 1).

Let’s denote by index i the elements of the torus on

which the charge distribution is adjusted, and by index

j the elements of the torus on which the tangential

component of tension is minimized. To avoid confusion,

these indexes will take alphabetic values instead of numeric

ones i, j = S,M, L for Small, Medium, and Large volumes,

respectively.

An orthogonal coordinate system (ϕ, ψ) is introduced

on each of the three toroidal surfaces (Fig. 2). Cartesian

coordinates of a point on a toroidal surface are easily

expressed using a cylindrical coordinate ρ = R + r · cosψ:















x = ρ · cosϕ = (R + r · cosψ) · cosϕ,

y = ρ · sinϕ = (R + r · cosψ) · sinϕ,

z = r · sinψ.

(1)

If, for certainty, we assume that the medium torus

is oriented parallel to the coordinate plane Oxy (Fig. 2

corresponds exactly to this case), then such a coordinate

system will look as















xM = (RM + rM · cosψM) · cosϕM ,

yM = (RM + rM · cosψM) · sinϕM ,

z M = rM · sinψM .

(2)

Here rM is the radius of the generating circle, and

RM is the distance from the center of the generating

circle to the axis of symmetry perpendicular to the ori-

entation plane, ϕ ∈ [0, 2π], ψ ∈ [0, 2π]. For the small

torus, which we assume to be oriented parallel to

the coordinate plane Oxz , the coordinate system will

be














xS = (RS + rS · cosψS) · cosϕS ,

yS = rS · sinψS,

z S = (RS + rS · cosψS) · sinϕS .

(3)

And for a large torus oriented parallel to the coordinate

plane Oyz , the expression will be















xL = rL · sinψL,

yL = (RL + rL · cosψL) · sinϕL,

z L = (RL + rL · cosψL) · cosϕL.

(4)

For each point M j (x̃ j , ỹ j , z̃ j) of each of the three toroidal

surfaces, the total tangential strength of the electrostatic

field generated by charges distributed over the surfaces

of all three tori shall be equal to zero vector. Here

and further, the tilde sign will refer to the coordinates

of those points at which the electrostatic field strength

is calculated. If we denote qi (ϕi , ψi) the density of

the charge distribution at the point Ni (x i , y i , z i), and
−→
τi j

(

ϕi , ψi , ϕ̃ j , ψ̃ j

)

— the projection of the vector
−−−→
Ni M j

on the tangent plane to the j-th toroidal surface containing

the point M j , then this tension can be represented as

the sum of integrals over the surfaces of three tori (k
is Coulomb’s constant, which in this problem can be

shortened):

−→
Eτ j =k

∑

i=S,M,L

r i

2π
∫

0

(Ri +r i · cosψi) dψi

2π
∫

0

qi ·
−→
τi j

|Ni M j |
3

dϕi =
−→
0 .

(5)

Vector
−−−→
Ni M j will have nine various expressions:

−−−→
NSMS =

=









(

RS +rS ·cos ψ̃S

)

·cos ϕ̃S−(RS +rS ·cosψS)·cosϕS

rS · sin ψ̃S − rS · sinψS

(

RS +rS ·cos ψ̃S
)

·sin−ϕ̃S (RS +rS ·cosψS)·sinϕS









,

(6)
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Figure 2. The coordinate system on a toroidal shell.

−−−−→
NMMS =

=









(

RS +rS ·cos ψ̃S
)

·cos ϕ̃S−(RM +rM ·cosψM)·cosϕM

rS ·sin ψ̃S − (RM + rM · cosψM) · sinϕM

(

RS + rS · cos ψ̃S

)

· sin ϕ̃S − rM · sinψM









,

(7)

−−−→
NLMS =

=









(

RS + rS · cos ψ̃S
)

· cos ϕ̃S − rL · sinψL

rS · sin ψ̃S − (RL + rL · cosψL) · sinϕL

(

RS +rS ·cos ψ̃S
)

·sin ϕ̃S−(RL+rL ·cosψL)·cosϕL









,

(8)

−−−−→
NSMM =

=









(

RM +rM ·cos ψ̃M
)

·cos ϕ̃M−(RS +rS ·cosψS)·cosϕS

(

RM + rM · cos ψ̃M
)

· sin ϕ̃M − rS · sinψS

rM · sin ψ̃M − (RS + rS · cosψS) · sinϕS









,

(9)

−−−−→
NMMM =

=









(

RM +rM ·cos ψ̃M

)

·cos ϕ̃M−(RM +rM ·cosψM)·cosϕM

(

RM +rM ·cos ψ̃M
)

·sin ϕ̃M−(RM +rM ·cosψM)·sinϕM

rM · sin ψ̃M − rM · sinψM









,

(10)

−−−−→
NLMM =

=









(

RM + rM · cos ψ̃M
)

· cos ϕ̃M − rL · sinψL

(

RM +rM ·cos ψ̃M
)

·sin ϕ̃M−(RL+rL ·cosψL)·sinϕL

rM · sin ψ̃M − (RL + rL · cosψL) · cosϕL









,

(11)

−−−→
NSML =

=









rL · sin ψ̃L − (RS + rS · cosψS) · cosϕS

(

RL + rL · cos ψ̃L
)

· sin ϕ̃L − rS · sinψS

(

RL+rL ·cos ψ̃L
)

·cos ϕ̃L−(RS +rS ·cosψS)·sinϕS









,

(12)

−−−−→
NMML =

=









rL · sin ψ̃L − (RM + rM · cosψM) · cosϕM

(

RL+rL ·cos ψ̃L
)

·sin ϕ̃L−(RM +rM ·cosψM)·sinϕM

(

RL + rL · cos ψ̃L
)

· cos ϕ̃L − rM · sinψM









,

(13)

−−−→
NLML =

=









rL · sin ψ̃L − rL · sinψL

(

RL+rL ·cos ψ̃L
)

·sin ϕ̃L−(RL+rL ·cosψL)·sinϕL

(

RL+rL ·cos ψ̃L

)

·cos ϕ̃L−(RL+rL ·cosψL)·cosϕL









.

(14)
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The projection
−→
τi j can be found from the formula

−→
τi j =

−−−→
Ni M j −

(−−−→
Ni M j ·

−→n j

)

· −→n j , (15)

where −→n j
(

ϕ̃ j , ψ̃ j
)

is the normal vector to the corresponding

toroidal surface in point M j . For the medium toroidal

surface −→nM =







cos ψ̃M · cos ϕ̃M

cos ψ̃M · sin ϕ̃M

sin ψ̃M






, for the small toroidal

surface −→nS =







cos ψ̃S · cos ϕ̃S

sin ψ̃S

cos ψ̃S · sin ϕ̃S






, for the large toroidal

surface we have −→nL =







sin ψ̃L

cos ψ̃L · sin ϕ̃L

cos ψ̃L · cos ϕ̃L






.

Accordingly, the scalar products
(−−−→

Ni M j ·
−→n j

)

will take

the following nine different values for the corresponding

indexes i and j :

(−−−→
NSMS ·

−→nS

)

=

(

(

RS +rS ·cos ψ̃S
)

·cos ϕ̃S−(RS +rS ·cosψS)

×cosϕS

)

· cos ψ̃S · cos ϕ̃S +
(

rS · sin ψ̃S−rS · sinψS
)

·sin ψ̃S

+

(

(

RS +rS · cos ψ̃S

)

· sin ϕ̃S − (RS +rS · cosψS) · sinϕS

)

× cos ψ̃S · sin ϕ̃S,

(16)

(−−−−→
NMMS ·

−→nS

)

=

(

(

RS +rS ·cos ψ̃S
)

·cos ϕ̃S−(RM +rM ·cosψM)

×cosϕM

)

·cos ψ̃S ·cos ϕ̃S +
(

rS ·sin ψ̃S − (RM + rM ·cosψM)

×sinϕM

)

·sin ψ̃S +

(

(

RS + rS ·cos ψ̃S
)

·sin ϕ̃S − rM ·sinψM

)

× cos ψ̃S · sin ϕ̃S ,

(17)

(−−−→
NLMS ·

−→nS

)

=

(

(

RS + rS · cos ψ̃S

)

· cos ϕ̃S − rL · sinψL

)

×cos ψ̃S · cos ϕ̃S +
(

rS · sin ψ̃S − (RL + rL · cosψL) · sinϕL
)

×sin ψ̃S +

(

(

RS + rS · cos ψ̃S

)

· sin ϕ̃S − (RL + rL · cosψL)

× cosϕL

)

· cos ψ̃S · sin ϕ̃S,

(18)

(−−−−→
NSMM · −→nM

)

=

(

(

RM +rM · cos ψ̃M
)

· cos ϕ̃M−
(

RS + rS

×cosψS

)

· cosϕS

)

· cos ψ̃M · cos ϕ̃M +

(

(

RM +rM · cos ψ̃M

)

× sin ϕ̃M − rS · sinψS

)

· cos ψ̃M · sin ϕ̃M +
(

rM · sin ψ̃M

− (RS + rS · cosψS) · sinϕS

)

· sin ψ̃M,

(19)
(−−−−→

NMMM · −→nM

)

=

(

(

RM +rM · cos ψ̃M

)

· cos ϕ̃M−
(

RM + rM

×cosψM

)

· cosϕM

)

· cos ψ̃M · cos ϕ̃M +

(

(

RM +rM · cos ψ̃M
)

× sin ϕ̃M − (RM + rM · cosψM) · sinϕM

)

· cos ψ̃M · sin ϕ̃M

+
(

rM · sin ψ̃M − rM · sinψM

)

· sin ψ̃M,

(20)
(−−−−→

NLMM · −→nM

)

=

(

(

RM +rM · cos ψ̃M

)

· cos ϕ̃M−rL · sinψL

)

×cos ψ̃M · cos ϕ̃M +

(

(

RM +rM · cos ψ̃M
)

· sin ϕ̃M−
(

RL+rL

×cosψL

)

· sinϕL

)

· cos ψ̃M · sin ϕ̃M +
(

rM · sin ψ̃M−
(

RL+rL

× cosψL
)

· cosϕL

)

· sin ψ̃M,

(21)
(−−−→

NSML ·
−→nL

)

=
(

rL · sin ψ̃L − (RS + rS · cosψS) · cosϕS
)

×sin ψ̃L+

(

(

RL+rL · cos ψ̃L

)

· sin ϕ̃L−rS · sinψS

)

· cos ψ̃L

×sin ϕ̃L+

(

(

RL+rL · cos ψ̃L
)

· cos ϕ̃L−(RS + rS · cosψS)

× sinϕS

)

· cos ψ̃L · cos ϕ̃L,

(22)
(−−−−→

NMML ·
−→nL

)

=
(

rL · sin ψ̃L−(RM +rM · cosψM) · cosϕM
)

×sin ψ̃L+

(

(

RL+rL · cos ψ̃L
)

· sin ϕ̃L−
(

RM +rM · cosψM
)

× sinϕM

)

· cos ψ̃L · sin ϕ̃L +

(

(

RL + rL · cos ψ̃L
)

· cos ϕ̃L

− rM · sinψM

)

· cos ψ̃L · cos ϕ̃L,

(23)
(−−−→

NLML ·
−→nL

)

=
(

rL · sin ψ̃L−rL · sinψL

)

· sin ψ̃L+

(

(

RL+rL

×cos ψ̃L
)

· sin ϕ̃L−(RL+rL · cosψL) · sinϕL

)

·cos ψ̃L ·sin ϕ̃L

+

(

(

RL+rL · cos ψ̃L

)

· cos ϕ̃L − (RL+rL · cosψL) · cosϕL

)

× cos ψ̃L · cos ϕ̃L.

(24)
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For specific index values i and j , we will have the following nine vector expressions
−→
τi j :

−→
τSS =











(

RS + rS · cos ψ̃S
)

· cos ϕ̃S − (RS + rS · cosψS) · cosϕS −
(−−−→

NSMS ·
−→nS

)

· cos ψ̃S · cos ϕ̃S

rS · sin ψ̃S − rS · sinψS −
(−−−→

NSMS ·
−→nS

)

· sin ψ̃S
(

RS + rS · cos ψ̃S
)

· sin ϕ̃S − (RS + rS · cosψS) · sinϕS −
(−−−→

NSMS ·
−→nS

)

· cos ψ̃S · sin ϕ̃S











, (25)

−→
τMS =











(

RS + rS · cos ψ̃S

)

· cos ϕ̃S − (RM + rM · cosψM) · cosϕM −
(−−−−→

NMMS ·
−→nS

)

· cos ψ̃S · cos ϕ̃S

rS · sin ψ̃S − (RM + rM · cosψM) · sinϕM −
(−−−−→

NMMS ·
−→nS

)

· sin ψ̃S
(

RS + rS · cos ψ̃S

)

· sin ϕ̃S − rM · sinψM −
(−−−−→

NMMS ·
−→nS

)

· cos ψ̃S · sin ϕ̃S











, (26)

−→
τLS =











(

RS + rS · cos ψ̃S

)

· cos ϕ̃S − rL · sinψL −
(−−−→

NLMS ·
−→nS

)

· cos ψ̃S · cos ϕ̃S

rS · sin ψ̃S − (RL + rL · cosψL) · sinϕL −
(−−−→

NLMS ·
−→nS

)

· sin ψ̃S
(

RS + rS · cos ψ̃S

)

· sin ϕ̃S − (RL + rL · cosψL) · cosϕL −
(−−−→

NLMS ·
−→nS

)

· cos ψ̃S · sin ϕ̃S











, (27)

−→
τSM =











(

RM + rM · cos ψ̃M
)

· cos ϕ̃M − (RS + rS · cosψS) · cosϕS −
(−−−−→

NSMM · −→nM

)

· cos ψ̃M · cos ϕ̃M
(

RM + rM · cos ψ̃M
)

· sin ϕ̃M − rS · sinψS −
(−−−−→

NSMM · −→nM

)

· cos ψ̃M · sin ϕ̃M

rM · sin ψ̃M − (RS + rS · cosψS) · sinϕS −
(−−−−→

NSMM · −→nM

)

· sin ψ̃M











, (28)

−−→
τMM =











(

RM + rM · cos ψ̃M
)

· cos ϕ̃M − (RM + rM · cosψM) · cosϕM −
(−−−−→

NMMM · −→nM

)

· cos ψ̃M · cos ϕ̃M
(

RM + rM · cos ψ̃M
)

· sin ϕ̃M − (RM + rM · cosψM) · sinϕM −
(−−−−→

NMMM · −→nM

)

· cos ψ̃M · sin ϕ̃M

rM · sin ψ̃M − rM · sinψM −
(−−−−→

NMMM · −→nM

)

· sin ψ̃M











, (29)

−→
τLM =











(

RM + rM · cos ψ̃M
)

· cos ϕ̃M − rL · sinψL −
(−−−−→

NLMM · −→nM

)

· cos ψ̃M · cos ϕ̃M
(

RM + rM · cos ψ̃M
)

· sin ϕ̃M − (RL + rL · cosψL) · sinϕL −
(−−−−→

NLMM · −→nM

)

· cos ψ̃M · sin ϕ̃M

rM · sin ψ̃M − (RL + rL · cosψL) · cosϕL −
(−−−−→

NLMM · −→nM

)

· sin ψ̃M











, (30)

−→
τSL =











rL · sin ψ̃L − (RS + rS · cosψS) · cosϕS −
(−−−→

NSML ·
−→nL

)

· sin ψ̃L
(

RL + rL · cos ψ̃L
)

· sin ϕ̃L − rS · sinψS −
(−−−→

NSML ·
−→nL

)

· cos ψ̃L · sin ϕ̃L
(

RL + rL · cos ψ̃L
)

· cos ϕ̃L − (RS + rS · cosψS) · sinϕS −
(−−−→

NSML ·
−→nL

)

· cos ψ̃L · cos ϕ̃L











, (31)

−→
τML =











rL · sin ψ̃L − (RM + rM · cosψM) · cosϕM −
(−−−−→

NMML ·
−→nL

)

· sin ψ̃L
(

RL + rL · cos ψ̃L
)

· sin ϕ̃L − (RM + rM · cosψM) · sinϕM −
(−−−−→

NMML ·
−→nL

)

· cos ψ̃L · sin ϕ̃L
(

RL + rL · cos ψ̃L
)

· cos ϕ̃L − rM · sinψM −
(−−−−→

NMML ·
−→nL

)

· cos ψ̃L · cos ϕ̃L











, (32)

−→
τLL =











rL · sin ψ̃L − rL · sinψL −
(−−−→

NLML ·
−→nL

)

· sin ψ̃L
(

RL + rL · cos ψ̃L
)

· sin ϕ̃L − (RL + rL · cosψL) · sinϕL −
(−−−→

NLML · −→nL

)

· cos ψ̃L · sin ϕ̃L
(

RL + rL · cos ψ̃L
)

· cos ϕ̃L − (RL + rL · cosψL) · cosϕL −
(−−−→

NLML ·
−→nL

)

· cos ψ̃L · cos ϕ̃L











. (33)
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Since the equality
−→
Eτ j =

−→
0 must be fulfilled at all points

M j of all three toroidal surfaces, the search for densities

of qi charge distributions can be reduced to minimizing the

functional equal to the sum of three integrals over the tori

surfaces from the length square of the vector that should

turn to be zero:

∑

j=S,M,L

r j

π
∫

0

(

R j + r j cos ψ̃ j
)

dψ̃ j

π/2
∫

0

(

∑

i=S,M,L

r i

2π
∫

0

(Ri

+ r i cosψi)dψi

2π
∫

0

qi ·
−→
τi j

|Ni M j |
3

dϕi

)2

dϕ̃ j .

(34)

In the last two cases, the integrations are not carried over

full turns due to the octahedral symmetry of the problem.

To solve the problem of minimizing the functional

numerically, all four definite integrals were replaced by

sums according to the quadrature formula of the average

rectangles. Taking into account the limited computer

resources, during numerical integration, the nodes were

located from each other with an interval of 3◦. To avoid

division by zero, the nodes for variables ϕi = παi/60 and

ϕ̃ j = π (3α̃ j + 1.5)/180 and, respectively, ψi = πβi/60 and

ψ̃ j = π
(

3β̃ j + 1.5
)

/180, were taken with a shift of one

and a half degrees. As a result, the expression was

minimized

f (qi) =
∑

j=S,M,L

r j

60
∑

β̃ j =1



R j + r j · cos
π

(

3β̃ j + 1.5
)

180





×
π

60

30
∑

α̃ j =1

(

∑

i=S,M,L

r i

120
∑

βi =1

(

Ri + r i · cos
πβi

60

)

×
π

60

120
∑

αi =1

qi ·
−→
τi j

|Ni M j |
3
·
π

60

)2

·
π

60
.

(35)

The resulting function of 3× 120× 120 = 43 200 vari-

ables was minimized by method of gradient descent.

This method is an iterative numerical method for solving

optimization problems. It is characterized by simplic-

ity of calculations and weak requirements for the mini-

mized function [17], although it is not optimal [18]. If

there were no octahedral symmetry, then in this prob-

lem, in order to apply the gradient descent method, it

would be necessary to have expressions of all 43 200

partial derivatives of this minimized function. Actu-

ally only 43 200 : 8 = 5400 of such derivative are calcu-

lated:

∂ f
∂qm

=
∑

j=S,M,L

r j

60
∑

β̃ j =1



R j + r j · cos
π

(

3β̃ j + 1.5
)

180





×
π

60

30
∑

α̃ j =1





∑

i=S,M,L

r i

120
∑

βi =1

(

Ri + r i · cos
πβi

60

)

×
π

60

120
∑

αi =1

qi ·
−→
τi j

|Ni M j |
3

π

60
rm

(

Rm + rm · cos
πβm

60

)

×
π

60

−→
τm j

|NmM j |
3
·
π

60

)

·
π

60
.

(36)
Uniform charge distributions over each of the toroidal

surfaces were used as an initial approximation. I.e. if

on the i-th toroidal surface the charge Qi was initially

distributed, then, it was assumed that qi(ϕi , ψi) = Qi/Si ,

where Si = 4π2Ri r i is the area of i-th toroidal surface.

The new value of the charge distribution density was

found by the formula

qnew
i = qold

i − L ·
∂ f
∂qi

, (37)

where L is a small positive hyperparameter selected em-

pirically in test calculations. During each iteration of the

gradient descent method, the calculated total amount of

charge on each of the toroidal surfaces was changed, which

can be found using the approximate formula

Qnew
i = r i

120
∑

βi =1

(

Ri + r i cos
πβi

60

)

·
π

60

120
∑

αi =1

qnew
i

π

60
. (38)

Since, in fact, the amount of charge remained unchanged,

before the next iteration, the value qnew
i had to be adjusted

by distributing the missing part of the charge evenly over

the entire surface

qi = qnew
i +

Qold
i − Qnew

i

Si
. (39)

2. Computer simulation results

The results of numerical calculations are

given for structures with relative dimensions

RS : RM : RL : rS : rM : rL = 3 : 6 : 9 : 1 : 1 : 1. The graphs

show the charge distribution densities for the case when

the unit charge was applied only to the medium torus, and

there were no charges on the small and large tori. These

densities are measured in units equal to the ratio of the

charge applied to the medium torus to the square of the

radius of the tori forming the circles (all three radii were

the same in calculations).
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Figure 3 shows the charge distribution density qM at

the points of the medium toroidal surface depending on

the angle ψM . The left part of the graphs (ψM = 0)
corresponds to the points located further from the center

of the torus, and the right part (ψM = π) corresponds

to the points that are located closer to the center. The

uncharged large and small tori attract the charges of the

medium torus. Graph 1 corresponds to the cross-section

ϕM = π/2 which is maximally close to the large torus, while

graph 2 — to the cross-section ϕM = 0 maximally close to

the small torus . These results are quite expected, since

the
”
dipole“ is induced on an uncharged conductor, which

reciprocally attracts the charges that generated it. If there

were neither small nor large tori, but only one charged

medium one, then the tension graph would look like a

curve practically connecting the lower parts of the graphs

shown. This is completely consistent with the fact that the

charges, repelling each other, are distributed with greater

concentration on the outer parts of the charged body.

Figure 4 shows the charge distribution density qM at the

points of the medium toroidal surface depending on the

angle ϕM .

It is known from electrostatics that charges tend to

concentrate in areas with maximum positive curvature,

especially those located further from the center. The results

obtained fully correspond to it. Graph 4 corresponds to

”
external“ circumference of toroidal surface which is most

remote from the center, and graph 3 — to
”
internal“

0 30 60 90 120 150

q
M

0

0.010

0.006

0.002

0.008

0.004

ψ
M

180

2

1

Figure 3. Charge distribution density on the surface of the

medium torus versus
”
radial“ coordinate.

q
M

0

0.010

0.006

0.002

0.008

0.004

ϕ
M

4

3

0 15 30 45 60 75 90

Figure 4. Charge distribution density on the surface of a medium

torus versus
”
circumferential“ coordinate.
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180
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–3
–8·10
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–6·10

–3
–4·10

–3
–2·10

0

–3
2·10

Figure 5. Induced charge distribution density on the surface of

an uncharged large torus versus
”
radial“ coordinate.

0 30 60 90 120 150

q
S

ψ
S

180

7

8

–0.005

–0.004

–0.003

–0.002

0

0.003

–0.001

0.002

0.001

Figure 6. Induced charge distribution density on the surface of

an uncharged large torus versus
”
radial“ coordinate.

circumference. If there were no small and large tori, then

both of these lines would turn out to be horizontal lines

running at the minimum levels of the graphs shown. The

right part of the graph 4 turns out to be higher because

it approaches the large torus, which, although not charged,

is itself a dipole due to the redistribution of charges and

attracts the charges. For a similar reason, due to the

approach to the small torus, the graph 3 has an elevation

in the left part.

Figures 5–8 show the dependences of the charge distri-

bution density on uncharged (i.e., having total zero charges)
large and small tori. The results obtained fully correspond

to the physical concept. For example, in Fig. 5 and 6

the graphs 5 and 8, located below the graphs 6 and 7

correspond to the cross sections that are as close as possible

to the charged medium torus. Moreover, in both cases, the

maximum modulus charge of the opposite sign is induced

on the side (inner, where ψL = π, for the large torus, and

outer, where ψS = 0, — for the small torus), which turns

out to be closer to the charged medium torus.

In Figures 7 and 8, the graphs 10 and 11, which

differ little from the horizontal lines, correspond to the tori

circumferences maximally distant from the charged medium

torus, i.e., for the large torus — to the outer circumference,

and for the small torus — to the inner circumference. The

graphs 9 and 12 correspond to the circumferences of the

tori closest to the charged medium torus. And, of course,
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–0.004

–0.002

Figure 7. Induced charge distribution density on the surface of

an uncharged large torus versus
”
circumferential“ coordinate.
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Figure 8. Induced charge distribution density on the surface of

an uncharged small torus versus
”
circumferential“ coordinate.

the parts of these graphs where the charge takes on negative

values correspond to those parts of the circumferences that

are closer to the charged medium torus. For the large

torus these points lie in the vicinity of value ϕL = π/2, and

for the small torus — the points are located in the vicinity

of value ϕS = 0.

Fig. 9 for all of the three tori illustrates the side view.

For the large torus it corresponds to the view form the end

of Ox axis, for the medium torus — to the view from the

end of Oz axis, for the small torus — to the view from the

end of Oy axis.

The horizontal segments between the small and medium

tori correspond to the sections of the Ox axis, and the

vertical segments between the medium and large tori

correspond to Oy axis. The isolines on the tori, drawn

with a step of 0.001, correspond to the same values of

the charge distribution density. The isolines corresponding

to zero charge density are marked with pointers. Fig.9

demonstrates that on the medium torus, maximum density

of isolines occurs on its outer parts near Oy axis, i.e., near

the large torus, whereas minimum density occurs on the

inner part of the torus. The mutual influence of charges

located on the medium torus and induced on the large

torus is manifested in the fact that the density of isolines on

the large torus reaches the highest values near the medium

torus.

0

0

Figure 9. Isolines of the charge distribution density on the

surfaces of the tori.

Conclusion

The findings of the study allow us making a conclusion

on the possibility of solving the problems of electrostatic

charges distribution densities on one or a small number of

conducting bodies with smooth surfaces using an iterative

numerical method that minimizes the tangential components

of stresses on the surfaces of these bodies. The classical

gradient descent method was used in this study, which

does not claim competitive advantages in terms of speed

or resource intensity, but allowed us to obtain a solution

to a new relevant and quite sophisticated problem for the

first time. In the future, the authors plan to improve the

calculation methodology in order to reduce computational

costs. In particular, artificial intelligence is planned to be

used.
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