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Introduction

Today, micro-ring resonators (MRR) are the key elements

of photonic integrated circuit. Such elements are used as

various passive devices, as well as compact and broadband

electrooptic modulators [1]. It should be noted that due to

lowering the thresholds of nonlinear effects [2] MRR are

used in fabrication of various nonlinear devices [3]. One

of the key characteristics of MRR is its quality factor (Q-
factor), which is determined by both the light decay in the

waveguide and the losses caused by the coupling of the

MRR modes and the input waveguides. From the light

attenuation coefficient in the waveguide, it is possible to

calculate the intrinsic Q-factor of MRR with a given geom-

etry [4]. The coupling-induced losses are determined by the

energy exchange between the longitudinal modes of MRR

and the modes of the nearby waveguides [5]. To evaluate

the loaded Q-factor of MRR, first of all, it is necessary to

calculate the characteristics of the longitudinal modes of the

waveguides. These characteristics are calculated, as a rule,

using well-known approaches (see, for example, [6]) based

on solving the two-dimensional Helmholtz equation [7].

At the same time, the calculation of energy exchange

between modes in the coupling region, which is a more

complex task, can be performed based on a coupled-

mode theory [8–12] by analogy with a similar task in

the microwave range [13] or within the model with

3-dimensional wave equation [14,15]. Efficient numerical

calculation methods within the framework of the latest

model, such as FDTD, are implemented in commercial

software [6]. In this regard, it should be noted that in

the literature there is no comparison of the results of such

calculations with experimental data for the high-Q MRR.

Because the software is inaccessible, it can only be assumed

that errors in calculation of optical losses and coupling of

the waveguide modes may occur during sampling of the

model.

In this paper, we propose a simplified model for

calculating the loaded Q-factor of the high-Q MRR. The

model is based on multipath interference of partial waves

circulating in the MRR. At that, at each transition the

energy exchange is considered within the coupled-mode

theory. Due to the latter theory the calculation may be

reduced to a one-dimensional analysis. The adequacy of

this approach is verified by comparing it with experimentally

obtained transmission spectra of four MRR samples. The

data obtained allowed us to conclude that within each

resonance, the MRR transmission spectrum has the same

profile as the Fabry-Perot interferometer.

1. Eigen longitudinal modes of MRR
and straight waveguide

MRR with a near coupling element — section of the

straight waveguide — shown in Fig. 1. The table below

shows the values of the geometric parameters of the

samples. The refractive index of the core (Si3N4) and

cladding (SiO2) materials of the rectangular waveguide were

obtained from the manufacturer of the photonic integrated

circuit.
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Figure 1. Geometry of the studied MRR and coupling element —
section of the straight waveguide.

Values of the parameters used in the calculation model

R wR wS h d

250.18 1 1 0.8 0.4−0.6

Note. All values are given in µm.

Due to the symmetry and uniformity of geometry, the

electric field components of the longitudinal eigenmodes ~ER

of MRR and ~EWG of the straight waveguide are generally

represented by the product of amplitudes AR and BWG , real

valued transverse field distributions eR and eWG and phase

multipliers:






































E(q)
R (r, y, φ, t) = AR(ϕ) · e(q)

R (r, y)

× exp
{

i ·
(

ϕ
(q)
R + ωt − mRφ

)}

, q = r, y, φ,

E(q)
WG(x , y, z , t) = BWG(z ) · e(q)

WG(x , y)

× exp
{

i ·
(

ϕ
(q)
WG + ωt − βWGz

)}

, q = x , y, z .

(1)

The values mR, βWG and ~eR,~eWG in (1) are found as

eigen values and eigen functions of the wave equation for

the purpose of which in this paper the solver ARPACK is

used as a part of module Electromagnetic Waves, Frequency

Domain (software
”
COMSOL Multiphysics“).

Figure 2, a shows the calculated distribution of Umov-

Poynting vector component P(φ)|λ=1.55 µm for the waveguide

longitudinal modes of MRR. The numbers of the longitu-

dinal modes are given by mR . In the considered case, the

geometry of the waveguide provides propagation of only

4 waveguide modes (the black arrows define the vector

~eR(r, y) in the plane of the figure). The modes with j = 1, 2

are further referred to as fundamental (lower-order modes),
while the remaining modes are — non-fundamental (higher-
order modes). The two fundamental modes correspond to

two orthogonal polarizations.

Figure 2, b shows the dispersion of the propagation

constant βR = mR/Reff of the longitudinal MRR modes in

the wavelength range 1520−1620 nm. Here

Reff =

s
rP(φ) drdy

s
P(φ) drdy

— effective MRR radius, which at relatively small values R
coincides with the distance from the MRR center to the

middle point of the MRR waveguide Reff ≈ R + wR/2

(see Fig. 1).
It is convenient to call as quasi-TE modes such of

the listed modes, the vector ~e of which in cross-section

is directed mainly along the largest of the sides of the

waveguide (in this case — along the horizontal axis r).
While quasi-TM modes — are such that the magnetic field

strength vector~h is directed predominantly along the largest

of the sides of the waveguide (in this case, the vector ~e is

directed predominantly along the smallest of the sides of the

waveguide — along the axis y). In this case the quasi-TE

modes — are the modes with j = 1, 4, quasi-TM modes —
are the modes with j = 2, 3.

Calculations show that with the selected radius of

MRR and the cross section of the waveguides, the field

distributions and propagation constants of the corresponding

quasi-TE and TM modes of MRR and straight waveguide

are approximate in magnitude. Note that as the radius of the

ring decreases, the difference between them will be greater.

Next, the results shown in Fig. 2 will be used to calculate

the energy exchange between the longitudinal modes of

MRR and the nearby straight waveguide.

2. Coupling of the longitudinal modes of
MRR and straight waveguide

The interaction of the longitudinal modes leads to the

transfer of optical energy from MRR to the straight

waveguide and back [5,9], accompanied by a change in the
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Figure 2. Numerical modeling results. (a) Intensity distribution

and (b) dispersion of the propagation constant βR of the eigen

longitudinal modes of MRR.
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amplitude of the fields ~ER(r, y, φ) and ~EWG(x , y, z ) along z
axis. In case of weak coupling, which is typical for high-

Q MRR, we describe the phenomenon of energy exchange

by equations obtained within the coupled-mode theory [9].
According to this theory, the interaction is considered

to change only the amplitudes of the coupled modes

AR(ϕ) and BWG(z ), leaving unchanged their transverse

distributions of field eR(r, y), eWG(x , y) and propagation

constants βR and βWG . The use of a large bending

radius of MRR allows for a one-to-one correspondence of

the interacting wavefronts of the longitudinal modes [16].
The existence of non-fundamental modes is not taken into

account, since these modes decay much faster than the

fundamental ones due to their greater overlap with the

roughness of the dielectric waveguide boundaries. The

equations for complex amplitudes ÃR and B̃WG are used

to describe the coupling of identical single-mode parallel

waveguides without attenuation [16,17]:































d
dz ÃR(z ) = −iβ(z )

R (z ) · ÃR(z ) + iC(z ) · B̃WG(z ),

d
dz B̃WG(z ) = −iβWG · B̃WG(z ) + iC∗(z ) · ÃR(z ),

ÃR(z ) ≡ AR(z ) · e−iβ(z )
R (z )·z ,

B̃WG(z ) ≡ BWG(z ) · e−iβW G·z .

(2)

Here C(z ) — the overlap integral of the transverse distribu-

tions of the longitudinal mode of MRR and the mode of the

straight waveguide; i — imaginary unit; ∗ — complex con-

jugation; β
(z )
R (z ) — projection onto z axis of the propagation

constant βR of MRR longitudinal mode. In the absence

of coupling (C(z ) ≡ 0), these equations describe the phase

change of the complex amplitude along z axis. Because

the modes are coupled it leads to a periodic change in the

complex amplitudes of the interacting modes. The complex-

valued coefficient C(z ) characterizes the rate of energy

exchange. The above system of equations describes the

relationship between the identically polarized fundamental

longitudinal modes of MRR and the waveguide and is

similar in form to the equations of coupled modes for two

identical straight waveguides. The above equations differ

from [16,17] in that the parameters C(z ) and β
(z )
R (z ) clearly

depend on z . This allows us to describe the connection of

non-parallel waveguides in a simplified formalism of parallel

waveguides.

Parameter β
(z )
R (z ) may be approximated by the expres-

sion [16,17]:

β
(z )
R (z ) ≈ βR ·

[

1− deff

Reff

−
(

z
2Reff

)2
]2

. (3)

Here deff is the distance between the centers of the

transverse field distributions of the longitudinal MRR mode

and the straight waveguide mode. For a relatively large

radius R, the parameter deff coincides with the distance

between the centers of the waveguides, as shown in Fig. 1.

The calculation of the overlap integral C(z ) in case of

weak coupling of the bending and straight waveguides is

simplified by two assumptions.

First, in z = 0 plane, the wavefronts of the longitudinal

modes are strictly parallel to each other, therefore, within

the framework of the well-known formalism for two coupled

identical single-mode parallel waveguides [9]:

C(0) =

k0

4

√

ǫ0
µ0

s

SW G

(

n2
core − n2

clad

)

·
(

ẽ(r)∗

R · ẽ(x)
WG +

+ ẽ(y)∗

R · ẽ(y)
WG +

(

nclad
ncore

)2

ẽ(φ)∗

R · ẽ(z )
WG

)

dS
√s

P(ϕ)
R drdy ·

√s
P(z )

WG dxdy
.

(4)
Here k0 = 2π/λ — wavenumber at wavelength λ in

vacuum; ǫ0, µ0 — electric and magnetic constants in

vacuum; ncore, nclad — core and cladding refractive indices

at wavelength of λ; SWG — the core region of the straight

waveguide.

Secondly, it is assumed that MRR’s coupling region

consists of separate pieces parallel to the straight waveg-

uide and located at different distances from the straight

waveguide. Therefore, at z 6= 0 (ϕ 6= 0), the coefficient

C(z 6= 0) decreases in comparison with C(0) only due

to an increase in the gap between the interacting re-

gions of MRR and straight waveguide. Since the field

decays outside the core of the waveguide according to

the law E(r) ∝ e−γr ≈ e−γz 2/2Reff [9,17,18], approximate

expressions can be written for C(z ) [17,18]:



















C(z ) = C(0) · e−γz 2/2Reff ,

γ = γR+γW G

2
,

γR,WG =
√

β2
R,WG − (nclad · k0)

2
.

(5)

Figure 3 shows the results of solving the system of equa-

tions (2) for a quasi-TE mode with parameters described in

the ratios (3)–(5), at a wavelength of λ = 1.55 µm at a gap

of d = 0.5µm and with the following conditions on the left

border of the coupling region (2L = 80 µm — the length of

the calculated area and the estimated length of the coupling

region)






AR(−L) = 1,

BWG(−L) = 0.
(6)

From the graphs we may see that the coupling region of

longitudinal modes doesn’t exceed 60 µm (≈ 5% of MRR

length) for the given geometry.

When substituting the analytical expressions for the coef-

ficients β
(z )
R (z ) and C(z ) into equations (3) and (5), respec-

tively, the effective values of the parameters deff = 1.48µm

and Reff = 250.69 µm are used. The difference between the

effective and geometric values is negligible compared to the

selected radius of MRR, but it rises with the lower radius

of MRR.
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Figure 3. Distribution of the normalized powers of the

fundamental quasi-TE mode of MRR (continuous line) and straight

waveguide (dashed line) along the coupling region. z axis is shown

in Fig. 1.

The result of calculations (2)−(6) is the amplitude

transmission coefficient t of the coupling region.

t =

∣

∣

∣

∣

AR(L)

AR(−L)

∣

∣

∣

∣

. (7)

The calculated value of t is further used in the analysis of

multipath interference in MRR.

3. Multi-beam interference in MRR

The amplitude Eth of the transmitted wave is formed as a

result of multipath interference of partial waves inside MRR

when continuous radiation is injected into a waveguide

with an amplitude of Ein (Fig. 4). The initial (n = 0,

where n is a number of the wave circulations) wave

E0
p = ikEin propagating in MRR is the result of energy

flowing in the coupling region from the longitudinal mode

Ein of the straight waveguide into the longitudinal mode

of MRR. After a single round trip over the MRR, the

initial wave transforms into a wave with index n = 1 and an

amplitude E1
p = E0

p · exp{−αLR/2− iβRLR} · t, determined

by the attenuation α (in power), phase incursion βRLR

of the longitudinal mode in MRR with the lenght of LR

and the amplitude transmission ratio t of the coupling

region. As a result, there are two waves in MRR at

the output of the coupling region after the first wave

transmission - E1
p and E0

p (the existence of E0
p is provided

by continuous pumping). After n = 0 . . .∞ transmissions

n + 1 partial longitudinal modes of MRR are propagat-

ing in MRR with the same transverse distribution, the

complex amplitude En
p = En−1

p · exp{−αLR/2− iβRLR} · t
of which

En
p = E0

p ·
[

t · a · e−iθ
]n
, a = e−αLR/2, θ = βRLR .

The resulting field E inside MRR is the sum of partial

waves, the existence of which is ensured by continuous

pumping of the wave E0
p :

E(θ) =

∞
∑

n=0

En
p =

E0
p

1− ate−iθ
.

Coupling region

nEp

0Ep

Ein

Er Eth

t

z

Figure 4. The coupling of the complex amplitudes of the

longitudinal mode in different regions of MRR.

The intensity of field I inside MRR is determined by the

square of the amplitude modulus of the resulting field

I(θ) = |E|2 =
Im

1 +
(

2F
π

)2
sin2 θ

2

, Im =

∣

∣E0
p

∣

∣

2

(1− at)2
. (8)

In resonance (θm = 2πm, m — integer), the intensity

I(θ) = Im is determined by the intensity of the initial partial

wave
∣

∣E0
p

∣

∣

2
and the amplitude transmission coefficients a , t

of the ring and the coupling region. The product at deter-

mines the fraction of the amplitude remaining in MRR after

a single MRR transmission along with the coupling region.

Therefore, the value F = π
√

at/(1− at) may be called the

sharpness of MRR by analogy with the well-known Airy

formula for the Fabry-Perot interferometer (FPI) [5], where

instead of at the amplitude coefficient R is used. The

amplitude E0
p is formed when optical energy is transferred

from all longitudinal modes of the straight waveguide to the

micro-ring resonator. It should be pointed out that in

case when both waveguides are single-mode and the light

attenuation in the coupling region is negligible, the ratios

E0
p = ikEin = i

√
1− t2Ein and Im = I in · (1− t2)/(1 − at)2

are valid [9]. Calculation of k and Im for the multi-mode

waveguides requires taking into account the interaction of

all longitudinal modes [12,14,19].

As noted above, the expression (8) in its physical

meaning and structure corresponds to a similar expression

for FPI. This allows us to use the formula for the loaded

Q-factor of MRR at the wavelength λm use the formula

QAiry =
πngr (λm)LR

2λm
/ arcsin

(

1− at

2
√

at

)

. (9)

Here ngr(λm) = neff − λm
dneff
dλ (λm) — the group refractive

index (neff = βR/k0).

Technical Physics, 2025, Vol. 70, No. 6
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Thus, it is shown that for high-Q MRR with a given

geometry and known optical parameters, the loaded Q-

factor can be calculated by analogy with the formulas

for FPI. If MRR is coupled with several waveguides, its Q-

factor may also be calculated using formula (9) by replacing

t with
∏

i
ti , where ti — amplitude transmission coefficient

of the i-th coupling section. To calculate the loaded Q-

factor of MRR as part of the photonic integrated circuits,

it is necessary to know the attenuation coefficient α(λ)
in MRR or calculate α(λ) in terms of MRR transmission

spectrum.

4. Q-factor calculation based on MRR
transmission spectrum

The transmission spectrum of MRR samples in a pho-

tonic integrated circuit can be obtained using a radiation

source that provides smooth tuning over a wide frequency

range [20–22]. In this study, a high-resolution optical

component analyzer HDCA 400 C+L was used to measure

the Q-factor. (Fig. 5). The analyzer provides the ability

to scan the spectrum in the wavelength range from 1520

to 1630 nm (in the frequency range from 184 to 197

THz). The transmission spectra of the samples for the two

orthogonal polarizations were measured with a resolution of

0.0024 pm (0.3MHz), which made it possible to calculate

with high accuracy the Q-factor of the studied MRR

that had widths of resonance curves greater than 3 pm

(370MHz). It shall be emphasized that the accuracy of

frequency determination (wavelength) using the analyzer is

±0.5 pm (±62MHz). Standards such as frequency combs

[23,24], or high-precision calibration methods [25,26] may

be used to improve measurement accuracy. All MRR

samples are fabricated on one crystal [27] and have a

typical geometry (Fig. 1). The waveguides for investigated

photonic integrated circuit (PIC) have a S-shaped section

Pin

E

d

HDCA 400 C + L

LD PD

Pout

PM f iber

T = P /Pin out

E

TE

TM

Figure 5. The scheme of the experimental setup for measurement

of the transmission spectrum of MRR. LD — laser diode, PD —
photodiode.

Wavelength, nm

1520 1580 1620

T
, 
d
B

–10

–5

1560 16001540

TE TM

1538 1541

–10

–5

1540 15421539

Figure 6. Experimentally measured transmission spectrum of a

MRR sample as part of the photonic integrated circuit.

(Fig. 5), which makes it possible to place the MRR samples

on one crystal more densely. The distance between adjacent

waveguides ensures that there is no coupling between

the MRR samples and, consequently, an independent

measurement of their transmission spectra. One of the

measured transmission spectrum T = Pout/P in is shown

in Fig. 6 (TE graph lies higher than TM graph). Dips in

the transmission spectrum correspond to MRR resonances.

The width and depth of each dip are determined by the

values of the loaded and intrinsic Q-factor. The insert shows

the same transmission spectrum in a narrow wavelength

range.

An approximating formula for the transmission spectrum

is used to calculate the loaded Q-factor of MRR.

T = TFP · TR,

TR(λ) =
a2 − 2at · cos θ + t2

1− 2at · cos θ + (at)2
, θ = 2π · λ − λm

1λm
,

TFP(λ) =
T0

1 + 4Ŵ
(1−Ŵ)2

sin2
(

2π · λ−λFP
2·1λFP

) . (10)

Here TR — transfer function of MRR [28]; 1λm — the

free spectral range of the MRR; TFP — transfer function

of the spurious FPI with the maximal value T0, resonance

wavelength λFP , free spectral range 1λFP and reflectance

coefficient Ŵ (in power), characterizing the reflectance from

the edges of the photonic integrated circuit because of the

absence of the anti-reflective coating [29]. It is assumed

that the observed resonances correspond to the fundamental

longitudinal modes of MRR, which are characterized by

minimal attenuation in comparison with modes of higher

orders. Each observed MRR resonance is approximated

simultaneously with two neighboring resonances, assuming

that the characteristics of 1λm, a, t are weakly dependent

on the wavelength in the approximated window.

Figure 7 shows the transmission spectra for one of the

MRR samples in two orthogonal polarizations in a window

Technical Physics, 2025, Vol. 70, No. 6
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Figure 7. Example of approximation of the transmission spectrum

T (λ), dB.

with a width of ≈ 1.5 nm and the calculation results using

the approximating function (10) with selected values of all

parameters. The parameters are selected by minimizing the

Q
 f

a
ct

o
r

Q
 f

a
ct

o
r

Q
 f

a
ct

o
r

Q
 f

a
ct

o
r

53 ·10

53 ·10

53 ·10

53 ·10

52 ·10

52 ·10

52 ·10

52 ·10

51 ·10

51 ·10

51 ·10

51 ·10

Wavelength, nm

1520 1580 16201560 16001540

TE: d = 0.56 µm

TE: d = 0.52 µm

TE: d = 0.48 µm

TE: d = 0.44 µm

Wavelength, nm

1520 1580 16201560 16001540

TM: d = 0.56 µm

TM: d = 0.52 µm

TM: d = 0.48 µm

TM: d = 0.44 µm

Figure 8. Experimental (crosses) and calculated (lines) of the loaded Q-factor of the studied MRR samples for TE- and TM-modes

deviation of the model function from the experimental data

using scipy.optimize (Python) software in two stages. First

the parameters of TFP function are selected, and further —
values of parameters of TR function.

Resonances at both polarizations are visible in each trans-

mission spectrum. This can be explained by the rotation

of the fiber tip, through which the laser diode radiation

is introduced into the waveguides in PIC, which leads to

the excitation of waveguide modes at both polarizations.

The superposition of resonances of both polarizations is

observed experimentally near the wavelength of 1560 nm

for all the studied samples and reduces the accuracy of the

approximation by the formula (10).
Figure 8 shows the values of the loaded Q-factor for

four MRR samples, differing only in the gap d between

the MRR and the straight waveguide. The values of the

parameters ae , te and ngr found as a result of approximation

of experimental data are used to calculate the experimental

values of the loaded Q of MRR according to the formula (9).
The obtained values are shown by symbols in Fig. 8.

The model values of the loaded Q-factor (lines in Fig. 8)
are calculated using the values of parameter ae obtained

from the experiment, as well as the calculated frequency

Technical Physics, 2025, Vol. 70, No. 6
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dependence of the transmission coefficient tc . The observed

spread of experimental values of Q is caused by both the

experimental error and the approximation inaccuracy.

It can be seen from the graphs that with increasing

wavelength, the loaded Q-factor decreases. This is due to an

increase in the size of the fundamental mode, the overlap

integral (4) and a monotonous increase in losses in the

coupling region — fraction of the power flowing from MRR

into the waveguide. And with an increase in the gap d, the
loaded Q-factor goes up, which is explained by lower losses

in the coupling region (growth of parameter t). We may also

see that the experimental and model values of the loaded

Q-factor are close for the studied MRR samples, which

indicates the proximity of the experimental and calculated

values of parameter t (see (7)) — te and tc respectively.

Conclusion

The sequence and methodology of simplified calculations

of MRR characteristics are proposed. At the first stage,

an easy-to-analyze description of the longitudinal modes

of MRR and the straight section of the waveguide is

presented. Then, based on the coupled-mode theory, the

coupled coefficient of the MRR and straight waveguide

is calculated. Obtained results and multipath interference

method are used to find equation for the MRR transfer

function. It is shown that MRR transmission spectrum can

be approximated using Airy formula. It paves the way to

calculate Q-factor in the same way as for the Fabry-Perot

interferometer. At the final stage of Q-factor calculations,

spectral dependences of the attenuation coefficient, obtained

after processing the measured transmission spectra of MRR,

are used. The loaded Q-factor of MRR as part of PIC

was measured in the experiment. The obtained values

are in good agreement with the calculated values. The

adequacy of calculations confirmed by experiment allows to

use the developed models for the design of high-Q MRR.

The results obtained can be useful in the development of

various linear and nonlinear devices based on the micro-

ring resonators, for example, frequency comb generators,

memory elements, etc. [4,30–34].
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