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Introduction

Today, micro-ring resonators (MRR) are the key elements
of photonic integrated circuit. Such elements are used as
various passive devices, as well as compact and broadband
electrooptic modulators [1]. It should be noted that due to
lowering the thresholds of nonlinear effects [2] MRR are
used in fabrication of various nonlinear devices [3]. One
of the key characteristics of MRR is its quality factor (Q-
factor), which is determined by both the light decay in the
waveguide and the losses caused by the coupling of the
MRR modes and the input waveguides. Irom the light
attenuation coefficient in the waveguide, it is possible to
calculate the intrinsic Q-factor of MRR with a given geom-
etry [4]. The coupling-induced losses are determined by the
energy exchange between the longitudinal modes of MRR
and the modes of the nearby waveguides [5]. To evaluate
the loaded Q-factor of MRR, first of all, it is necessary to
calculate the characteristics of the longitudinal modes of the
waveguides. These characteristics are calculated, as a rule,
using well-known approaches (see, for example, [6]) based
on solving the two-dimensional Helmholtz equation [7].

At the same time, the calculation of energy exchange
between modes in the coupling region, which is a more
complex task, can be performed based on a coupled-
mode theory [8-12] by analogy with a similar task in
the microwave range [13] or within the model with
3-dimensional wave equation [14,15]. Efficient numerical
calculation methods within the framework of the latest
model, such as FDTD, are implemented in commercial

software [6]. In this regard, it should be noted that in
the literature there is no comparison of the results of such
calculations with experimental data for the high-Q MRR.
Because the software is inaccessible, it can only be assumed
that errors in calculation of optical losses and coupling of
the waveguide modes may occur during sampling of the
model.

In this paper, we propose a simplified model for
calculating the loaded Q-factor of the high-Q MRR. The
model is based on multipath interference of partial waves
circulating in the MRR. At that, at each transition the
energy exchange is considered within the coupled-mode
theory. Due to the latter theory the calculation may be
reduced to a one-dimensional analysis. The adequacy of
this approach is verified by comparing it with experimentally
obtained transmission spectra of four MRR samples. The
data obtained allowed us to conclude that within each
resonance, the MRR transmission spectrum has the same
profile as the Fabry-Perot interferometer.

1. Eigen longitudinal modes of MRR
and straight waveguide

MRR with a near coupling element — section of the
straight waveguide — shown in Fig. 1. The table below
shows the values of the geometric parameters of the
samples. The refractive index of the core (SizN4) and
cladding (SiO,) materials of the rectangular waveguide were
obtained from the manufacturer of the photonic integrated
circuit.
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0

Figure 1. Geometry of the studied MRR and coupling element —
section of the straight waveguide.

Values of the parameters used in the calculation model

R WR Ws h d
250.18 1 1 0.8

0.4-0.6

Note. All values are given in ym.

Due to the symmetry and uniformity of geometry, the
electric field components of the longitudinal eigenmodes Er
of MRR and Eyg of the straight waveguide are generally
represented by the product of amplitudes Az and Bwg, real
valued transverse field distributions eg and eyc and phase
multipliers:

Dry. ¢.1) = A(9) e (r.y)
xexp{ (o8 +0t—meo) } a=r.y.9,

Eqa(X. Y. 2.1) = Buo(2) - € (x. Y) (1)
xexp{i~(q>\(,\‘,‘23+a)t—ﬂwez)},q:x,y,z.

The values Mg, fwe and &g, 8yc in (1) are found as
eigen values and eigen functions of the wave equation for
the purpose of which in this paper the solver ARPACK is
used as a part of module Electromagnetic Waves, Frequency
Domain (software ,,COMSOL Multiphysics®).

Figure 2,a shows the calculated distribution of Umov-
Poynting vector component P la=1.55 um for the waveguide
longitudinal modes of MRR. The numbers of the longitu-
dinal modes are given by mg. In the considered case, the
geometry of the waveguide provides propagation of only
4 waveguide modes (the black arrows define the vector
€r(r, y) in the plane of the figure). The modes with j = 1, 2
are further referred to as fundamental (lower-order modes),
while the remaining modes are — non-fundamental (higher-
order modes). The two fundamental modes correspond to
two orthogonal polarizations.
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Figure 2,b shows the dispersion of the propagation
constant Sr = Mr/Rer of the longitudinal MRR modes in
the wavelength range 1520—1620 nm. Here

R JJrP@ drdy
T [P@drdy

— effective MRR radius, which at relatively small values R

coincides with the distance from the MRR center to the
middle point of the MRR waveguide Ry~ R+ wgr/2
(see Fig. 1).

It is convenient to call as quasi-TE modes such of
the listed modes, the vector & of which in cross-section
is directed mainly along the largest of the sides of the
waveguide (in this case — along the horizontal axis r).
While quasi-TM modes — are such that the magnetic field
strength vector his directed predominantly along the largest
of the sides of the waveguide (in this case, the vector & is
directed predominantly along the smallest of the sides of the
waveguide — along the axis y). In this case the quasi-TE
modes — are the modes with j = 1, 4, quasi-TM modes —
are the modes with | = 2, 3.

Calculations show that with the selected radius of
MRR and the cross section of the waveguides, the field
distributions and propagation constants of the corresponding
quasi-TE and TM modes of MRR and straight waveguide
are approximate in magnitude. Note that as the radius of the
ring decreases, the difference between them will be greater.

Next, the results shown in Fig. 2 will be used to calculate
the energy exchange between the longitudinal modes of
MRR and the nearby straight waveguide.

2. Coupling of the longitudinal modes of
MRR and straight waveguide

The interaction of the longitudinal modes leads to the
transfer of optical energy from MRR to the straight
waveguide and back [5,9], accompanied by a change in the

1520 1 570 1620
Wavelength, nm

Figure 2. Numerical modeling results. (a) Intensity distribution
and (b) dispersion of the propagation constant Sr of the eigen
longitudinal modes of MRR.
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amplitude of the fields Er(r, y, ¢) and Ewg (X, Y, Z) along z
axis. In case of weak coupling, which is typical for high-
Q MRR, we describe the phenomenon of energy exchange
by equations obtained within the coupled-mode theory [9].
According to this theory, the interaction is considered
to change only the amplitudes of the coupled modes
Ar(p) and Bwg(z), leaving unchanged their transverse
distributions of field er(r,y), ewc(X,y) and propagation
constants Br and Pws. The use of a large bending
radius of MRR allows for a one-to-one correspondence of
the interacting wavefronts of the longitudinal modes [16].
The existence of non-fundamental modes is not taken into
account, since these modes decay much faster than the
fundamental ones due to their greater overlap with the
roughness of the dielectric waveguide boundaries. The
equations for complex amplitudes Ag and Bwg are used
to describe the coupling of identical single-mode parallel
waveguides without attenuation [16,17]:

$AR(2) = —ifg(2) - Ar(2) +1C(2) - Bue(2),
Bwo(2) = —iBwe - Bwa(2) +1C*(2) - Ar(2),
Pe(z) = Ar(z) - D7,

Buwo (2) = Buo(z) - e e,

(2)

Here C(z) — the overlap integral of the transverse distribu-
tions of the longitudinal mode of MRR and the mode of the
straight waveguide; i — imaginary unit; * — complex con-
jugation; ,B,(;) (z) — projection onto z axis of the propagation
constant Sr of MRR longitudinal mode. In the absence
of coupling (C(z) = 0), these equations describe the phase
change of the complex amplitude along z axis. Because
the modes are coupled it leads to a periodic change in the
complex amplitudes of the interacting modes. The complex-
valued coefficient C(z) characterizes the rate of energy
exchange. The above system of equations describes the
relationship between the identically polarized fundamental
longitudinal modes of MRR and the waveguide and is
similar in form to the equations of coupled modes for two
identical straight waveguides. The above equations differ
from [16,17] in that the parameters C(z) and ﬂéf)(z) clearly
depend on z. This allows us to describe the connection of
non-parallel waveguides in a simplified formalism of parallel
waveguides.

Parameter [3,(;)(2) may be approximated by the expres-
sion [16,17):

2
@Dy p |y et [ Z 2
B (2) ~ e [1 . <2Reﬁ>]. ®

Here d.x is the distance between the centers of the
transverse field distributions of the longitudinal MRR mode
and the straight waveguide mode. For a relatively large
radius R, the parameter d.r coincides with the distance
between the centers of the waveguides, as shown in Fig. 1.

The calculation of the overlap integral C(z) in case of
weak coupling of the bending and straight waveguides is
simplified by two assumptions.

First, in z = 0 plane, the wavefronts of the longitudinal
modes are strictly parallel to each other, therefore, within
the framework of the well-known formalism for two coupled
identical single-mode parallel waveguides [9]:

%\/%4‘[ (ngore - nglad) ’ (élg> %23 +
G

« 2 .
vl e+ (R) e e ) as

C(0) =
VTP drdy /[ P dxdy
(4)
Here ko =2m/2 — wavenumber at wavelength 1 in
vacuum; €y, ggp — eclectric and magnetic constants in

vacuum; Neore, Nelad — core and cladding refractive indices
at wavelength of 1; Syg — the core region of the straight
waveguide.

Secondly, it is assumed that MRR’s coupling region
consists of separate pieces parallel to the straight waveg-
uide and located at different distances from the straight
waveguide. Therefore, at z # 0 (¢ # 0), the coefficient
C(z #0) decreases in comparison with C(0) only due
to an increase in the gap between the interacting re-
gions of MRR and straight waveguide. Since the field
decays outside the core of the waveguide according to
the law E(r) o €7 ~ e 72/2Ra [9,17,18], approximate
expressions can be written for C(z) [17,18]:

C(z) = C(0) - e 72"/ 2R,

y = VR+2VWG’ (5)

YRWG = \/.Bé,we — (Nclad - kO)z-

Figure 3 shows the results of solving the system of equa-
tions (2) for a quasi-TE mode with parameters described in
the ratios (3)—(5), at a wavelength of 1 = 1.55um at a gap
of d = 0.5 um and with the following conditions on the left
border of the coupling region (2L = 80 um — the length of
the calculated area and the estimated length of the coupling
region)

(6)
Bwa(—L) = 0.

From the graphs we may see that the coupling region of
longitudinal modes doesn’t exceed 60 um (= 5% of MRR
length) for the given geometry.

When substituting the analytical expressions for the coef-
ficients ﬂéf)(z) and C(z) into equations (3) and (5), respec-
tively, the effective values of the parameters deg = 1.48 um
and Rey = 250.69 um are used. The difference between the
effective and geometric values is negligible compared to the
selected radius of MRR, but it rises with the lower radius
of MRR.

Technical Physics, 2025, Vol. 70, No. 6
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Figure 3. Distribution of the normalized powers of the

fundamental quasi-TE mode of MRR (continuous line) and straight
waveguide (dashed line) along the coupling region. z axis is shown
in Fig. 1.

The result of calculations (2)—(6) is the amplitude
transmission coefficient t of the coupling region.

Ar(L)
Ar(-L)

=), ™)

The calculated value of t is further used in the analysis of
multipath interference in MRR.

3. Multi-beam interference in MRR

The amplitude E;, of the transmitted wave is formed as a
result of multipath interference of partial waves inside MRR
when continuous radiation is injected into a waveguide
with an amplitude of Ej, (Fig. 4). The initial (n=0,
where n is a number of the wave circulations) wave
Eg = iKEj, propagating in MRR is the result of energy
flowing in the coupling region from the longitudinal mode
Ein of the straight waveguide into the longitudinal mode
of MRR. After a single round trip over the MRR, the
initial wave transforms into a wave with index n = 1 and an
amplitude E} = E - exp{—aLr/2 — ifrLr} - t, determined
by the attenuation @ (in power), phase incursion SrlLg
of the longitudinal mode in MRR with the lenght of Lg
and the amplitude transmission ratio t of the coupling
region. As a result, there are two waves in MRR at
the output of the coupling region after the first wave
transmission - E} and EJ (the existence of Ej is provided
by continuous pumping). After n=0...00 transmissions
n+ 1 partial longitudinal modes of MRR are propagat-
ing in MRR with the same transverse distribution, the
complex amplitude E] = E}~" - exp{—aLr/2 —ifirLr} - t
of which

EN=EJ-[t-a-e ", a=e "2 6 =pgLr.

The resulting field E inside MRR is the sum of partial
waves, the existence of which is ensured by continuous
pumping of the wave Ep:

0
Ep

E®) = Z &= 1 —ate—i¢”
n=0
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Ey Coupling region

Figure 4. The coupling of the complex amplitudes of the
longitudinal mode in different regions of MRR.

The intensity of field | inside MRR is determined by the
square of the amplitude modulus of the resulting field

10) = P n = B
= = N m=— .

1+ (£)%sin> ¢ (1-at)?
In resonance (6 =27m, m — integer), the intensity

[(60) = I is determined by the intensity of the initial partial
wave |E8|2 and the amplitude transmission coefficients a, t
of the ring and the coupling region. The product at deter-
mines the fraction of the amplitude remaining in MRR after
a single MRR transmission along with the coupling region.
Therefore, the value F = 71/at/(1 — at) may be called the
sharpness of MRR by analogy with the well-known Airy
formula for the Fabry-Perot interferometer (FPI) [5], where
instead of at the amplitude coefficient R is used. The
amplitude Eg is formed when optical energy is transferred
from all longitudinal modes of the straight waveguide to the
micro-ring resonator. It should be pointed out that in
case when both waveguides are single-mode and the light
attenuation in the coupling region is negligible, the ratios
Eg = ikEp=1iv1—t2Ep and I = lin- (1 —t?)/(1 —at)?
are valid [9]. Calculation of k and I for the multi-mode
waveguides requires taking into account the interaction of
all longitudinal modes [12,14,19).

As noted above, the expression (8) in its physical
meaning and structure corresponds to a similar expression
for FPI. This allows us to use the formula for the loaded
Q-factor of MRR at the wavelength A, use the formula

aNgr (Am)Lr . (1—at
Qairy = ngA:_/ arcsin (—2\/a > . 9)
Here Ngr (Am) = Ner — Amdgjl‘f (Am) — the group refractive

index (neg = ﬁR/kO)
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Thus, it is shown that for high-Q MRR with a given
geometry and known optical parameters, the loaded Q-
factor can be calculated by analogy with the formulas
for FPI. If MRR is coupled with several waveguides, its Q-
factor may also be calculated using formula (9) by replacing
t with []ti, where tj — amplitude transmission coefficient

|
of the i-th coupling section. To calculate the loaded Q-
factor of MRR as part of the photonic integrated circuits,
it is necessary to know the attenuation coefficient a(1)
in MRR or calculate a(1) in terms of MRR transmission
spectrum.

4. Q-factor calculation based on MRR
transmission spectrum

The transmission spectrum of MRR samples in a pho-
tonic integrated circuit can be obtained using a radiation
source that provides smooth tuning over a wide frequency
range [20-22]. In this study, a high-resolution optical
component analyzer HDCA 400 C+L was used to measure
the Q-factor. (Fig. 5). The analyzer provides the ability
to scan the spectrum in the wavelength range from 1520
to 1630 nm (in the frequency range from 184 to 197
THz). The transmission spectra of the samples for the two
orthogonal polarizations were measured with a resolution of
0.0024 pm (0.3MHz), which made it possible to calculate
with high accuracy the Q-factor of the studied MRR
that had widths of resonance curves greater than 3 pm
(370 MHz). It shall be emphasized that the accuracy of
frequency determination (wavelength) using the analyzer is
+0.5pm (+62MHz). Standards such as frequency combs
[23,24], or high-precision calibration methods [25,26] may
be used to improve measurement accuracy. All MRR
samples are fabricated on one crystal [27] and have a
typical geometry (Fig. 1). The waveguides for investigated
photonic integrated circuit (PIC) have a S-shaped section

HDCA 400 C+L

T=Py/Pous

Figure 5. The scheme of the experimental setup for measurement
of the transmission spectrum of MRR. LD — laser diode, PD —
photodiode.

5 T ; T T
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m
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T —TE —TM
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1520 1540 1560 1580 1600 1620
Wavelength, nm

Figure 6. Experimentally measured transmission spectrum of a
MRR sample as part of the photonic integrated circuit.

(Fig. 5), which makes it possible to place the MRR samples
on one crystal more densely. The distance between adjacent
waveguides ensures that there is no coupling between
the MRR samples and, consequently, an independent
measurement of their transmission spectra. One of the
measured transmission spectrum T = Poy/Pin is shown
in Fig. 6 (TE graph lies higher than TM graph). Dips in
the transmission spectrum correspond to MRR resonances.
The width and depth of each dip are determined by the
values of the loaded and intrinsic Q-factor. The insert shows
the same transmission spectrum in a narrow wavelength
range.

An approximating formula for the transmission spectrum
is used to calculate the loaded Q-factor of MRR.

T=Tep - Tr,
a% — 2at - cos@ + t2 A= 2Am
Tr(1) = = .
R(4) 1 —2at-cos6 + (at)?’ T A
T
Tep(A) = ———— 7 (10)
l—i-msm (2JT-2_MFP>

Here Tr — transfer function of MRR [28]; Adlyn — the
free spectral range of the MRR; Tpp — transfer function
of the spurious FPI with the maximal value Ty, resonance
wavelength Agp, free spectral range Algp and reflectance
coefficient " (in power), characterizing the reflectance from
the edges of the photonic integrated circuit because of the
absence of the anti-reflective coating [29]. It is assumed
that the observed resonances correspond to the fundamental
longitudinal modes of MRR, which are characterized by
minimal attenuation in comparison with modes of higher
orders. Each observed MRR resonance is approximated
simultaneously with two neighboring resonances, assuming
that the characteristics of Ady, a, t are weakly dependent
on the wavelength in the approximated window.

Figure 7 shows the transmission spectra for one of the
MRR samples in two orthogonal polarizations in a window

Technical Physics, 2025, Vol. 70, No. 6
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Figure 7. Example of approximation of the transmission spectrum
T(4),dB.

with a width of ~ 1.5nm and the calculation results using
the approximating function (10) with selected values of all
parameters. The parameters are selected by minimizing the

deviation of the model function from the experimental data
using scipy.optimize (Python) software in two stages. First
the parameters of Tgp function are selected, and further —
values of parameters of Tg function.

Resonances at both polarizations are visible in each trans-
mission spectrum. This can be explained by the rotation
of the fiber tip, through which the laser diode radiation
is introduced into the waveguides in PIC, which leads to
the excitation of waveguide modes at both polarizations.
The superposition of resonances of both polarizations is
observed experimentally near the wavelength of 1560 nm
for all the studied samples and reduces the accuracy of the
approximation by the formula (10).

Figure 8 shows the values of the loaded Q-factor for
four MRR samples, differing only in the gap d between
the MRR and the straight waveguide. The values of the
parameters ae, te and Ny, found as a result of approximation
of experimental data are used to calculate the experimental
values of the loaded Q of MRR according to the formula (9).
The obtained values are shown by symbols in Fig. 8.
The model values of the loaded Q-factor (lines in Fig. 8)
are calculated using the values of parameter a. obtained
from the experiment, as well as the calculated frequency

T T T T T T T T T T T T
TE: d=0.44 um TM: d=0.44 um
L 3-10°F 1t i
2
S 2:10°F I .
QA x ’;j% % x
1-105 o WK&“?&M 4L * X »{g’(( g >><()‘R:())(( i
1 1 T 1 1 1 1 * X 1 1 1 1 1
T T T T T T T T T T T T
TE: d=0.48 um TM: d=0.48 um
L3100 HF ]
2
R 0S| 4L 4
S 210
oY
1:10° | 1
1 1 1 1 1 1 1 1 1 1 1 1
T T T T T T T T T T T T
TE: d=0.52 pm TM: d=0.52 pm
L 3-10°F 1t i
2 X
L 5L x % dL _
S 2-10 B x % X X
S ’“*2“ el X x XK KX
) xR X Pl )&& % : 0% X XX X
Lo | e s || MW s S
% X X
1 1 1 1 1 1 1 1 I’z 1 1 1
T T T T T T T T T T T T
TE: d=0.56 um TM: d=0.56 um
L 3-10°F 1t i
S "%’,‘2‘ % x
X -
S 2105 e i B Kt T 2 % x 2
QA X x xx% X &,@’(‘& x
1:10° 1 —= 1  x* 3 . 7

Wavelength, nm

1 1 1 1 1 1 1 1 1 1 1 1
1520 1540 1560 1580 1600 1620 1520 1540 1560 1580 1600 1620

Wavelength, nm

Figure 8. Experimental (crosses) and calculated (lines) of the loaded Q-factor of the studied MRR samples for TE- and TM-modes

Technical Physics, 2025, Vol. 70, No. 6



1118 D.E. Artemov, A.V. Buchinskii, A.P. Smirnov, A.A. Ershov, A.A. Nikitin, A.B. Ustinov, V.N. Treshikowv...

dependence of the transmission coefficient t.. The observed
spread of experimental values of Q is caused by both the
experimental error and the approximation inaccuracy.

It can be seen from the graphs that with increasing
wavelength, the loaded Q-factor decreases. This is due to an
increase in the size of the fundamental mode, the overlap
integral (4) and a monotonous increase in losses in the
coupling region — fraction of the power flowing from MRR
into the waveguide. And with an increase in the gap d, the
loaded Q-factor goes up, which is explained by lower losses
in the coupling region (growth of parameter t). We may also
see that the experimental and model values of the loaded
Q-factor are close for the studied MRR samples, which
indicates the proximity of the experimental and calculated
values of parameter t (see (7)) — te and t; respectively.

Conclusion

The sequence and methodology of simplified calculations
of MRR characteristics are proposed. At the first stage,
an easy-to-analyze description of the longitudinal modes
of MRR and the straight section of the waveguide is
presented. Then, based on the coupled-mode theory, the
coupled coefficient of the MRR and straight waveguide
is calculated. Obtained results and multipath interference
method are used to find equation for the MRR transfer
function. It is shown that MRR transmission spectrum can
be approximated using Airy formula. It paves the way to
calculate Q-factor in the same way as for the Fabry-Perot
interferometer. At the final stage of Q-factor calculations,
spectral dependences of the attenuation coefficient, obtained
after processing the measured transmission spectra of MRR,
are used. The loaded Q-factor of MRR as part of PIC
was measured in the experiment. The obtained values
are in good agreement with the calculated values. The
adequacy of calculations confirmed by experiment allows to
use the developed models for the design of high-Q MRR.
The results obtained can be useful in the development of
various linear and nonlinear devices based on the micro-
ring resonators, for example, frequency comb generators,
memory elements, etc. [4,30-34].
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