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Barometric distribution of gas density obeying the Lorentz equation

of state
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An exact explicit barometric formula is obtained for a non-ideal gas obeying the Lorentz equation of state. The
formula describes the density distribution of such a gas in a homogeneous gravitational field. The formula can be
useful, for example, when testing codes of molecular dynamics. An example of the application of the formula in
deriving the Einstein-Smoluchowski-type relation for a gas with the Lorentz equation of state in a gravitational field

is given..
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Introduction

Barometric law for some gas is itself a dependence of
gas concentration n(x) (or its density p(Xx) = mn(x)) in
the gravitational field U(x) on the height X at some con-
centration of n(x = 0) = ny specified in some cross-section
and temperature of T. In homogeneous and stationary
gravitational fields, the barometric law is expressed as [1,2]:

n(x) = noexp(—%) = noexp(—%), (1)

where m — mass of gas particles, g — acceleration
of free fall (acceleration in the gravitational field), k —
the Boltzmann constant, A = kT/mg — the characteristic
length at which the concentration decreases in etimes. The
formula (1) is valid only for a gas with the equation of state
P =nkT at a fixed temperature (isothermal case), where
P is the gas pressure. It is widely used to describe various
processes of the dynamics of gases, liquids, and plasmas [3—
6], as well as in chemistry [7,8], planetary sciences [9,10],
and astrophysical sciences [11].

Barometric laws and distributions of concentration and
density in the potential field are known for some other
gases. For example, in [6,12-14] to describe the non-
linear processes in plasma a similar formula is used for
the adiabatic and polytropic equations of state of an ideal
gas, and in [15,16] the distributions of a model gas of
hard spheres in a gravitational field is considered [17]
presents a relativistic generalization of the barometric law
for a number of equations of state, which is applied to
the polytropic equation of state of a gas, the equation
of state of a degenerate electron gas in the presence
of atomic nuclei, the equation of state of a degenerate

neutron gas, and the equation of state of a photonic
gas.

The barometric laws for quantum gases are known.
Thus, in [18,19] the barometric distributions of the bosonic
gas are derived, and in [20] the exact barometric law
for the fermionic gas under partial quantum degeneracy
is derived. The barometric law for fermions has been
used, for example, in the theories of ion-sound [21,22]
and Langmuir waves [23,24] in plasma with quantum
degenerate electrons. A barometric formula was also
derived for an ultrarelativistic degenerate gas (in which
the Fermi energy is much greater than the rest mass
of the particles) obeying the Chandrasekhar equation of
state [25].

Barometric laws for real (non-ideal) gases are of great
practical importance. The analysis of barometric distri-
butions for gases described by Van der Waals and Wohl
polynomial equations of state was performed in [26,27],
and in recent paper [28] the barometric law for Dieterici
transcendental equation of state was derived.

For further development of this direction in the theory
of equilibrium and dynamics of gases, it is necessary to
replenish the list of accurate barometric formulas for other
equations of state of real (non-ideal) gases.

In 1881 H.A. Lorenz suggested the polynomial equation
of state [29] (see also [30,31]):

a b
P+ o5 )V =RT(1+2), 2
(P+i TV @)
where P — gas pressure, V —molar volume, R — the
universal gas constant, a, b — parameters having the

same sense as is in the Van der Waals equation: these
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constants take into account the attraction and repulsion of
gas particles. Despite the fact that the Lorentz equation of
state has been known for a long time and is mathematically
simpler than the Van der Waals equation, the barometric
law for a gas obeying the equation (2) has so far been
unknown. The aim of this work was to mathematically
derive an accurate and explicit barometric law for a non-
ideal gas from the Lorentz equation of state(2). Note that
explicit representations of barometric laws for real Van der
Waals gases in [26,27] and Diterici gases in [28] could not
be obtained. It is very inconvenient to use implicit formulas
in the form of inverse functions from [26-28] in theoretical
calculations.

1. Derivation of barometric law

First, rewrite the equation (2) in variables ,pressure—
concentration®

P = nkT(1 + bn) — an’. (3)

Here a, [J-m’] = a/N3 and b, [m?] = b/Na — the given
parameters of the Lorentz equation of state, Na — the
Avogadro constant. It is evident that in the limit

lim nkT(1+ bn) — an® = nkT, 4)

,BHO

Dl

in other words, the Lorentz equation transforms in this limit
into the equation of state of an ideal gas.

There are several ways to derive a barometric law. We
will follow the simplest gas-static method, for example,
in [25,28,32]. To do this, consider the equation of gas-static
equilibrium J g

u 1dP
ax Thax =Y )

Let’s substitute the transformed equation of state (3)
into the equation (5) and we obtain the following ordinary
differential equation:

du kKT = =\ dn

— — 4 2bkT —2a)— =0.
dx+(n+ a)dx 0 ©)
The equation (6) is easily integrated, its general solution

with an arbitrary constant C is

U + kT Inn+ 2(bkT — a)n = C. (7)

Let's find the constant C from the condition
n(U =0) =ny. Then, substituting in (7) the expression
for the potential energy U = mgx and the expression for C,
we obtain

mgx + KT In nﬂ 42(bkT —a)(n—np) =0.  (8)
0

In fact, the equation (8) is an implicit barometric
expression. In it, the second term on the left corresponds to

n/ng

x/A

Barometric dependence (9) at various values of non-ideality
parameter G: I — at G =0 (ideal gas); 2 —at G=1; 3 —
at G =2

an ideal gas, and the third term corresponds to the Lorentz
corrections in the equation of state. Equation (8) can be
solved relative to n and the barometric law can be obtained
in a more convenient explicit way:

n=no exp{—Wo [G exp(G - %)} + (- %) } 9)

where the dimensionless parameter was introduced

~ 2n(bKT — )

G kT 9

(10)
which can be called the imperfection parameter of a
gas obeying the Lorentz equation of state, and the
function Wp[...] is the main (positive) branch of the
Lambert W function, which is the inverse of the function
X - exp(X) [6,33,34]. It can be easily found that in the limit
G — 0 the obtained barometric law (9) transits to (1).

2. Numerical example

The dependence (9) was calculated for several values of
parameter G. The calculation results are presented in the
figure.

The figure shows that the barometric dependence for an
imperfect gas obeying the Lorentz equation of state, as well
as for an ideal gas, is a decreasing function, and with an
increase in the imperfection parameter G, the gradient of
the function declines.

3. The ratio of diffusion constant
to mobility

Derived barometric law (9) can be used, for example,
to test molecular dynamics codes in which real gases are
modeled in one way or another.

Here is another example of using the resulting formula (9)
for analytical calculations. For example, the famous
Einstein-Smolukhovsky formula is known, expressing the
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ratio of the diffusion constant D to the mobility u of ideal
gas particles in a potential (electric) field [35-38]:
D
— =kT. (11)
u
It is noteworthy that this ratio does not depend on gas
concentration. We can derive the formula for the ratio D/u,
similar to (11), for a gas obeying the Lorentz equation of
state. For this, it is required to find
D nU)

4 dn(U)/dU’ (12)

Replacing the argument X/A in (9) with a new argument
U/KT and then calculating (12), we obtain

%:kT{l—i—Wo[Gexp(G—I:J—T)]}- (13)

Let’s substitute the previously derived expression for
U=mgx (8) in (13), and using the definition of the
Lambert W function, after simple transformations, we write
the following relation

b_ kT{l +Wo[eﬂeXp(ﬂG)H —kT(1+0 ﬂ),
u Ny Ny n)
(14)
in which the first term — kT — coincides with (11), and
the second term follows from the Lorentz corrections to
the equation of state. If the second term is positive, then
the ratio D/u in (13) will be greater than for an ideal gas.
Note that, unlike in the case of an ideal gas, the ratio D/u
depends on the gas concentration.

4. Conclusion

An exact explicit barometric law is derived for an imper-
fect gas obeying the Lorentz equation of state. The equation
of gas-static equilibrium was used for its mathematical
derivation.

The resulting formula describes the density distribution
of such a gas in a homogeneous gravitational field. A
numerical example is given showing the effect of the non-
ideality parameter on the concentration gradient. The
formula can be useful, for example, when testing molecular
dynamics codes. An example is given for the use of law in
derivation of the Einstein-Smoluchowski relation for a gas
with Lorentz equation of state in a potential field.
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