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Barometric distribution of gas density obeying the Lorentz equation

of state
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An exact explicit barometric formula is obtained for a non-ideal gas obeying the Lorentz equation of state. The

formula describes the density distribution of such a gas in a homogeneous gravitational field. The formula can be

useful, for example, when testing codes of molecular dynamics. An example of the application of the formula in

deriving the Einstein-Smoluchowski-type relation for a gas with the Lorentz equation of state in a gravitational field

is given..
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Introduction

Barometric law for some gas is itself a dependence of

gas concentration n(x) (or its density ρ(x) = mn(x)) in

the gravitational field U(x) on the height x at some con-

centration of n(x = 0) = n0 specified in some cross-section

and temperature of T . In homogeneous and stationary

gravitational fields, the barometric law is expressed as [1,2]:

n(x) = n0 exp
(

−

mgx
kT

)

= n0 exp
(

−

x
3

)

, (1)

where m — mass of gas particles, g — acceleration

of free fall (acceleration in the gravitational field), k —
the Boltzmann constant, 3 = kT/mg — the characteristic

length at which the concentration decreases in e times. The

formula (1) is valid only for a gas with the equation of state

P = nkT at a fixed temperature (isothermal case), where

P is the gas pressure. It is widely used to describe various

processes of the dynamics of gases, liquids, and plasmas [3–
6], as well as in chemistry [7,8], planetary sciences [9,10],
and astrophysical sciences [11].
Barometric laws and distributions of concentration and

density in the potential field are known for some other

gases. For example, in [6,12–14] to describe the non-

linear processes in plasma a similar formula is used for

the adiabatic and polytropic equations of state of an ideal

gas, and in [15,16] the distributions of a model gas of

hard spheres in a gravitational field is considered [17]
presents a relativistic generalization of the barometric law

for a number of equations of state, which is applied to

the polytropic equation of state of a gas, the equation

of state of a degenerate electron gas in the presence

of atomic nuclei, the equation of state of a degenerate

neutron gas, and the equation of state of a photonic

gas.

The barometric laws for quantum gases are known.

Thus, in [18,19] the barometric distributions of the bosonic

gas are derived, and in [20] the exact barometric law

for the fermionic gas under partial quantum degeneracy

is derived. The barometric law for fermions has been

used, for example, in the theories of ion-sound [21,22]
and Langmuir waves [23,24] in plasma with quantum

degenerate electrons. A barometric formula was also

derived for an ultrarelativistic degenerate gas (in which

the Fermi energy is much greater than the rest mass

of the particles) obeying the Chandrasekhar equation of

state [25].
Barometric laws for real (non-ideal) gases are of great

practical importance. The analysis of barometric distri-

butions for gases described by Van der Waals and Wohl

polynomial equations of state was performed in [26,27],
and in recent paper [28] the barometric law for Dieterici

transcendental equation of state was derived.

For further development of this direction in the theory

of equilibrium and dynamics of gases, it is necessary to

replenish the list of accurate barometric formulas for other

equations of state of real (non-ideal) gases.

In 1881 H.A. Lorenz suggested the polynomial equation

of state [29] (see also [30,31]):

(

P +
a

V 2

)

V = RT
(

1 +
b
V

)

, (2)

where P — gas pressure, V —molar volume, R — the

universal gas constant, a, b — parameters having the

same sense as is in the Van der Waals equation: these
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constants take into account the attraction and repulsion of

gas particles. Despite the fact that the Lorentz equation of

state has been known for a long time and is mathematically

simpler than the Van der Waals equation, the barometric

law for a gas obeying the equation (2) has so far been

unknown. The aim of this work was to mathematically

derive an accurate and explicit barometric law for a non-

ideal gas from the Lorentz equation of state(2). Note that

explicit representations of barometric laws for real Van der

Waals gases in [26,27] and Diterici gases in [28] could not

be obtained. It is very inconvenient to use implicit formulas

in the form of inverse functions from [26–28] in theoretical

calculations.

1. Derivation of barometric law

First, rewrite the equation (2) in variables
”
pressure–

concentration“

P = nkT (1 +
=

bn) −
=
an2. (3)

Here
=
a , [J·m3] = a/N2

A and
=

b, [m3] = b/NA — the given

parameters of the Lorentz equation of state, NA — the

Avogadro constant. It is evident that in the limit

lim
=
a,

=

b→0

nkT (1 +
=

bn) −
=
an2 = nkT, (4)

in other words, the Lorentz equation transforms in this limit

into the equation of state of an ideal gas.

There are several ways to derive a barometric law. We

will follow the simplest gas-static method, for example,

in [25,28,32]. To do this, consider the equation of gas-static

equilibrium
dU
dx

+
1

n
dP
dx

= 0. (5)

Let’s substitute the transformed equation of state (3)
into the equation (5) and we obtain the following ordinary

differential equation:

dU
dx

+
(kT

n
+ 2

=

bkT − 2
=
a
) dn

dx
= 0. (6)

The equation (6) is easily integrated, its general solution

with an arbitrary constant C is

U + kT ln n + 2(
=

bkT −

=
a)n = C. (7)

Let’s find the constant C from the condition

n(U = 0) = n0. Then, substituting in (7) the expression

for the potential energy U = mgx and the expression for C,

we obtain

mgx + kT ln
n
n0

+ 2(
=

bkT −

=
a)(n − n0) = 0. (8)

In fact, the equation (8) is an implicit barometric

expression. In it, the second term on the left corresponds to

0 1 2 3 4 5

n
/n
0

0
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0.4
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x/Λ

1 2 3

Barometric dependence (9) at various values of non-ideality

parameter G: 1 — at G = 0 (ideal gas); 2 — at G = 1; 3 —
at G = 2.

an ideal gas, and the third term corresponds to the Lorentz

corrections in the equation of state. Equation (8) can be

solved relative to n and the barometric law can be obtained

in a more convenient explicit way:

n = n0 exp

{

−W0

[

G exp
(

G −

x
3

)

]

+
(

G −

x
3

)

}

, (9)

where the dimensionless parameter was introduced

G =
2n0(

=

bkT −

=
a)

kT
, (10)

which can be called the imperfection parameter of a

gas obeying the Lorentz equation of state, and the

function W0[. . .] is the main (positive) branch of the

Lambert W function, which is the inverse of the function

x · exp(x) [6,33,34]. It can be easily found that in the limit

G → 0 the obtained barometric law (9) transits to (1).

2. Numerical example

The dependence (9) was calculated for several values of

parameter G. The calculation results are presented in the

figure.

The figure shows that the barometric dependence for an

imperfect gas obeying the Lorentz equation of state, as well

as for an ideal gas, is a decreasing function, and with an

increase in the imperfection parameter G, the gradient of

the function declines.

3. The ratio of diffusion constant
to mobility

Derived barometric law (9) can be used, for example,

to test molecular dynamics codes in which real gases are

modeled in one way or another.

Here is another example of using the resulting formula (9)
for analytical calculations. For example, the famous

Einstein-Smolukhovsky formula is known, expressing the

Technical Physics, 2025, Vol. 70, No. 6



Barometric distribution of gas density obeying the Lorentz equation of state 1051

ratio of the diffusion constant D to the mobility µ of ideal

gas particles in a potential (electric) field [35–38]:

D
µ

= kT. (11)

It is noteworthy that this ratio does not depend on gas

concentration. We can derive the formula for the ratio D/µ,

similar to (11), for a gas obeying the Lorentz equation of

state. For this, it is required to find

D
µ

= −

n(U)

dn(U)/dU
. (12)

Replacing the argument x/3 in (9) with a new argument

U/kT and then calculating (12), we obtain

D
µ

= kT

{

1 + W0

[

G exp
(

G −

U
kT

)

]}

. (13)

Let’s substitute the previously derived expression for

U = mgx (8) in (13), and using the definition of the

Lambert W function, after simple transformations, we write

the following relation

D
µ

= kT

{

1 + W0

[

G
n
n0

exp
( n

n0

G
)

]}

= kT
(

1 + G
n
n)

)

,

(14)
in which the first term — kT — coincides with (11), and
the second term follows from the Lorentz corrections to

the equation of state. If the second term is positive, then

the ratio D/µ in (13) will be greater than for an ideal gas.

Note that, unlike in the case of an ideal gas, the ratio D/µ

depends on the gas concentration.

4. Conclusion

An exact explicit barometric law is derived for an imper-

fect gas obeying the Lorentz equation of state. The equation

of gas-static equilibrium was used for its mathematical

derivation.

The resulting formula describes the density distribution

of such a gas in a homogeneous gravitational field. A

numerical example is given showing the effect of the non-

ideality parameter on the concentration gradient. The

formula can be useful, for example, when testing molecular

dynamics codes. An example is given for the use of law in

derivation of the Einstein-Smoluchowski relation for a gas

with Lorentz equation of state in a potential field.
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