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Maximum eigenfrequency of axisymmetric disturbancies of rotating fluid
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The stability of ideal incompressible rotating fluid is considered in linear approximation. It is shown, that

eigenfrequency square for axisymmetric disturbances is restricted above by module as for stable so unstable

flow. The eigenfrequencies can be enumerate by module reduction from zero for maximum eigenfrequency. The

eigenfunction numbers by radius are equal (according to Sturm theory) to eigenfrequency number. As illustration,

we calculate eigenfrequencies and eigenfunctions for Taylor-Couette flow with different stability properties..
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Introduction

The problem of the flow stability of an ideal incom-

pressible rotating fluid is a classical problem of hydro-

dynamics [1–3]. The stability condition for an ideal

incompressible rotating fluid with uniform density with

respect to axisymmetric perturbations (see expression (8)
of sec. 1 herein) was obtained by Rayleigh [4]. It has been
demonstrated later in [5] that condition (8) is necessary and

sufficient for stability.

It is well known (see, for example, [1,3]) that the square

of the natural frequency for axisymmetric perturbations

of a rotating fluid is a real number, and accordingly for

normal modes (5) the flow is stable if all the squares of the

natural frequencies are positive (if condition (8) is fulfilled

at all points of the flow), or unstable if at least one value

of the square of the natural frequency is negative (when

condition (8) is not fulfilled at any point of the flow).

In this paper, it is shown for the first time that the

frequency spectrum of a rotating fluid for axisymmetric

disturbances is modulo limited for both positive and

negative values of the squares of the natural frequencies.

As an example, the natural frequencies and the eigen

functions of the cylindrical Couette flow are calculated

for three cases: 1) the flows, at each point of which the

condition (8) is not fulfilled; 2) the flows, at each point of

which the condition (8) is fulfilled; 3) the flows, in part

of which the condition (8) is not fulfilled, but in the other

part it is fulfilled. It is shown that for both positive and

negative values of the squares of the natural frequency,

they can be numbered (separately for positive and negative

values) as the modulus decreases, starting from zero for the

maximum modulo natural frequency. In accordance with

Sturm’s theory, the number of nodes of the corresponding

eigen function along the radius will be equal to the number

of the natural frequency.

1. Main equations and problem setting

The motion of an incompressible ideal fluid with uniform

density ρ is characterized by the Euler and continuity

equations:
∂U

∂t
+ (U∇)U = −

1

ρ
∇P,

divU = 0, (1)

where U — velocity, P — pressure. A cylindrical coordinate

system (r , φ, z ) is convenient for use for a rotating fluid,

where axisymmetric velocity is written as

U = (0, r�(r), 0), (2)

where �(r) is the angular rotation velocity which for an

ideal fluid is an arbitrary (sufficiently smooth) function

of radius that satisfies the equation (1). For a stationary

case, the equation (1) for the velocity (2) takes the form

of the equation of hydrostatic equilibrium between the

centrifugal force and the force generated by the radial

pressure gradient [3]:

�2r =
1

ρ

dP(r)

dr
. (3)

To avoid misunderstandings, we emphasize that we use an

inertial coordinate system in which there is no Coriolis force

(see, for example, [6]). Additionally, boundary conditions

are needed to complete the formulation of the problem. In

the present study, we consider a region that is not limited

in vertical axis coordinate z , extending from inner radius

r in ≥ 0 to the outer radius rout < ∞ and covering the entire

angular sector 0 ≤ φ ≤ 2π.

The method of small perturbations is used to study

stability in the linear approximation. The solution is then

presented as follows:

U+u=(ur(t, r, φ, z ), r�(r)+uφ(t, r, φ, z ), uz (t, r, φ, z )),

P + p = P(R) + p(t, r, φ, z ), (4)
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where the values ur , uφ, uz are small compared to

the typical value of the azimuthal velocity r�0, where

�0 = 0.5(�(r in) + �(rout)), and the pressure perturbation

gradients p are small compared to the radial gradient of

the unperturbed pressure P . Putting expressions (4) into

system (1) and retaining only the terms linear in perturbed

quantities, one obtains a linear system of equations for

perturbed quantities with coefficients that depend on radial

coordinate r . only. The solution may then be presented as

a sum of normal modes:

F = Fmk(r) exp[i(mφ + kz + ωt)], (5)

where F(r) is an arbitrary sought-for function. Given the

geometry of the problem, axial number k may assume arbi-

trary real values, azimuthal number m may be an arbitrary

integer, and increment ω may be an arbitrary complex

number. The expansion in normal modes (5) transforms

a three-dimensional problem into a one-dimensional one. If

natural frequencies ω for the velocity (2) have only positive

imaginary parts, the flow is linearly stable. If at least one

natural frequency with a negative imaginary part is present,

the flow is unstable.

In this paper, we will consider only axisymmetric pertur-

bations with m = 0 and fixed boundaries. In this case, the

linear system is reduced to a single second-order equation

for radial velocity ur (indexes m and k (see (5)) are omitted

here)

d2ur

dr2
+

1

r
dur

dr
−

ur

r2
− k2ur +

k2

ω2

1

r3
d

dr

(

r2�
)2

ur = 0,

(6)
and the boundary conditions in this case are expressed as

follows:

ur(r in) = ur(rout) = 0. (7)

The equation (6) is absolutely accurate and takes into

account all the effects that occur and, together with

the boundary conditions (7) compiles the classic Sturm-

Liouville problem on the eigen values of a quantityk2/ω2 [1].
It is well known that given the boundary conditions (7) the

value ω2 — is real (e.g., see, [1]) and sign ω2 coincides

with sign k2/ω2. According to the general theory (see, for
example, [1]), all eigen values are positive (which means

that the flow is stable) if and only if

1

r3
d

dr

(

r2�
)

> 0 (8)

for any point of the considered interval. If condition (8) is

not fulfilled in some point the flow is considered as unstable.

Condition (8) was proved by Rayleigh [4] and bears his

name.

2. Results

To prove the limitation of the natural frequency

square ω2, it is sufficient to use the theory of oscillation

of solutions of the second degree linear ordinary differ-

ential equations with real coefficients. By definition, the

solution is non-oscillating on the interval (a, b), where

−∞ < a < b < ∞, if it has at most one zero in (a, b).
For a general second-order equation

d2ur

dr2
+ a1(r)

dur

dr
+ a0(r)ur = 0 (9)

the simplest sufficient condition for non-oscillation of the

solution on the interval (a, b) is the condition a0(r) < 0

on this interval (see, for example, [7]). Accordingly, the

solutions of the equation (6) are non-oscillating and cannot

satisfy the boundary conditions (7) if

|ω2| > max

(

k2 1
r 3 |

d
dr

(

r2�
)2

|
1
r 2 + k2

)

(10)

in the interval (r in, rout). According to the classical Sturm

comparison theorem (see, for example, [8]), the oscillation

frequency (i.e., the number of nodes along the radius) eigen
functions of the equation (6) increases with increasing eigen

value k2/ω2 . Accordingly, the number of nodes of the

eigen function increases with decreasing natural frequency

modulus. By numbering the natural frequencies as the

modulus decreases, starting from zero for the maximum

modulo natural frequency, we obtain that the number of

nodes of the corresponding eigen function along the radius

in the interval (r in, rout) will be equal to the number of the

natural frequency.

As an example, we find the natural frequencies and eigen

functions of axisymmetric perturbations for a flow between

two coaxial infinitely long rotating cylinders (cylindrical
Couette flow). Recall that for an ideal fluid, any sufficiently

smooth radius function satisfying the boundary conditions

can be chosen as the angular velocity. As such a function,

we choose a function that satisfies the equations of motion

of a viscous fluid and, accordingly, has a fixed functional

form (see, for example, [1])

uφ(r) = r�(r) = Ar +
B
r
, (11)

where constants A and B are defined by the boundary

conditions:

A = �in
µ − η2

1− η2
, B = �inR2

in
1− µ

1− η2
, (12)

η =
r in

rout
, µ =

�out

�in
, (13)

r in and rout — radii, �in and �out — angular velocities of

internal and external cylinders.

Let’s note that Rayleigh condition (8) for the flow (11) is
expressed as:

µ > η2. (14)

Accordingly, for flows with µ > 0 (i.e., if the cylinders rotate
in the same direction), the flow will be stable at each point
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Figure 1. Normalized eigen functions of Couette flow with η = 0.5 for perturbations with k = 3, m = 0 (axisymmetric perturbations)
for the steady flow (in the left) with µ = 0.5 (see (14)) and ω2 = 0.1556 (solid curve), ω2 = 0.04679 (dashed curve), ω2 = 0.02161

(dotted curve) and unstable flow (in the right) with µ = 0 (non-rotating external cylinder) with ω2 = −0.07678 (solid curve),
ω2 = −0.02085 (dashed curve), ω2 = −0.009359 (dotted curve).

(if condition (14) is met) or unstable at each point (if
condition (14) is not fulfilled). For the flows with µ < 0

(i.e., for cylinders rotating in different directions), as can be

easily seen, the flow will be unstable near the inner cylinder

and stable near the outer one.

Before solving equation (6), it is convenient to reduce

it to a dimensionless form. Let’s take rout as the unit

length, and �in as a unit angular velocity. Equation (6)
with the boundary conditions (7) and dimensionless angular

velocity (11) was solved by Runge-Kutta method at fixed

parameters µ, η, k and m = 0. The shooting method was

used. One solution satisfying the left boundary condition

ur (r in) = 0, with some trial value of the first derivative

at r = r in, was consistent at some intermediate point

r in < r0 < rout (usually near the center of the calculated

interval) with the second solution satisfying the right

boundary condition ur(rout) = 0, with a different trial value

of the first derivative at r = rout . These solutions can

be connected only at certain values of the parameter ω2

(there are generally infinitely many of these values), which

are called the eigen values of the problem, and their

corresponding eigen functions are the eigen functions of

the problem.

Numerous calculations have been carried out, which

have shown that solutions exist only for values |ω2| that

do not exceed a certain limit value corresponding to

the condition (10). Fig. 1 and 2 show the normalized

dimensionless eigen functions. The functions are normalized

so that their maximum modulo value is one. In all cases, the

eigen functions for the three largest modulo squares of the

eigen frequencies are presented. It is also easy to verify that

in all cases the squares of the maximum natural frequencies

satisfy the condition (10).
Figure 1 shows the results for a flow with cylinders

rotating in one direction (i.e. µ > 0). For stable flow with

µ > η2, all squares of the natural frequencies are positive.

Naturally, they will change with the change of parameters.

For instance, with the change of the wave number k . The

following figure shows the eigen functions for the first three

(in magnitude) natural frequencies. It can be seen that the

number of nodes of the eigen functions along the radius,

according to the Sturm comparison theorem, corresponds

to the number of the natural frequency. Similarly, for the

unstable flow with 0 < µ < η2, all squares of the natural

frequencies are negative. There is a modulo-limiting natural

frequency, and the number of nodes of the corresponding

eigen function increases with the decline of the natural

frequency modulus.

Figure 2 shows the results for a flow with cylinders

rotating in different directions (with µ < 0). In this case,

the squares of the natural frequencies will be both positive

and negative, given that the flow is unstable near the inner

cylinder and stable near the outer one. This is clearly

noticeable by the nature of the eigen functions, which are

concentrated to the inner cylinder for the negative squares

of the natural frequencies and to the outer cylinder for

the positive squares of the natural frequencies. At the

same time, the behavior of the natural frequency spectrum

corresponds to the above: there is a modulo-limiting

frequency, and the number of nodes of the eigen functions
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Figure 2. Normalized eigen functions of Couette flow with η = 0.5 for perturbations with k = 3, m = 0 (axisymmetric perturbations)
for the cylinders rotating in different directions with µ = −1 and with negative squares of the natural frequencies (in the left)
ω2 = −0.0674 (solid curve), ω2 = −0.0131 (dashed curve), ω2 = −0.00536 (dotted curve) and with positive squares of the natural

frequencies (in the right) ω2 = 0.6 (solid curve), ω2 = 0.142 (dashed curve), ω2 = 0.0599 (dotted curve).

along the radius increases as the natural frequency modulus

declines.

Conclusion

Despite an over century-old history of studying the

stability of fluid rotation, the problem is still far from its

final solution. In this paper, even for the simplest case of a

homogeneous ideal fluid, it is shown for the first time that

the natural frequencies of axisymmetric perturbations are

limited in modulus.

In addition, the natural frequencies can be numbered

as their modulus decreases from the maximum modulo

frequency which has zero number assigned. In this case,

the numerator of the nodes of the eigen function along the

radius will correspond (in accordance with Sturm theory) to
the number of the natural frequency. The general results are

illustrated by calculations for the cylindrical Couette flow.

Note that the findings of this study are substantially based

on the results of the theory of oscillation of solutions of

second-order ordinary differential equations with real coef-

ficients. It should be emphasized that this theory cannot be

extended to both, second-order differential equations with

complex coefficients and higher-order differential equations.

Despite this, this theory may and has already found (see,
for example, [9]) a wide application in various problems of

hydrodynamics and magnetic hydrodynamics.
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