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Maximum eigenfrequency of axisymmetric disturbancies of rotating fluid
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The stability of ideal incompressible rotating fluid is considered in linear approximation. It is shown, that
eigenfrequency square for axisymmetric disturbances is restricted above by module as for stable so unstable
flow. The eigenfrequencies can be enumerate by module reduction from zero for maximum eigenfrequency. The
eigenfunction numbers by radius are equal (according to Sturm theory) to eigenfrequency number. As illustration,
we calculate eigenfrequencies and eigenfunctions for Taylor-Couette flow with different stability properties..
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Introduction

The problem of the flow stability of an ideal incom-
pressible rotating fluid is a classical problem of hydro-
dynamics [1-3]. The stability condition for an ideal
incompressible rotating fluid with uniform density with
respect to axisymmetric perturbations (see expression (8)
of sec. 1 herein) was obtained by Rayleigh [4]. It has been
demonstrated later in [5] that condition (8) is necessary and
sufficient for stability.

It is well known (see, for example, [1,3]) that the square
of the natural frequency for axisymmetric perturbations
of a rotating fluid is a real number, and accordingly for
normal modes (5) the flow is stable if all the squares of the
natural frequencies are positive (if condition (8) is fulfilled
at all points of the flow), or unstable if at least one value
of the square of the natural frequency is negative (when
condition (8) is not fulfilled at any point of the flow).

In this paper, it is shown for the first time that the
frequency spectrum of a rotating fluid for axisymmetric
disturbances is modulo limited for both positive and
negative values of the squares of the natural frequencies.

As an example, the natural frequencies and the eigen
functions of the cylindrical Couette flow are calculated
for three cases: 1) the flows, at each point of which the
condition (8) is not fulfilled; 2) the flows, at each point of
which the condition (8) is fulfilled; 3) the flows, in part
of which the condition (8) is not fulfilled, but in the other
part it is fulfilled. It is shown that for both positive and
negative values of the squares of the natural frequency,
they can be numbered (separately for positive and negative
values) as the modulus decreases, starting from zero for the
maximum modulo natural frequency. In accordance with
Sturm’s theory, the number of nodes of the corresponding
eigen function along the radius will be equal to the number
of the natural frequency.

1. Main equations and problem setting

The motion of an incompressible ideal fluid with uniform
density p is characterized by the Euler and continuity

equations:

IU 1
4 (UV)U = ——VP,
or T (UY) p

divU =0, (1)
where U — velocity, P — pressure. A cylindrical coordinate

system (r, ¢, z) is convenient for use for a rotating fluid,
where axisymmetric velocity is written as

U=(0,rQ(r), 0), (2)

where Q(r) is the angular rotation velocity which for an
ideal fluid is an arbitrary (sufficiently smooth) function
of radius that satisfies the equation (1). For a stationary
case, the equation (1) for the velocity (2) takes the form
of the equation of hydrostatic equilibrium between the
centrifugal force and the force generated by the radial
pressure gradient [3]:

e - 1P
o dr

(3)

To avoid misunderstandings, we emphasize that we use an
inertial coordinate system in which there is no Coriolis force
(see, for example, [6]). Additionally, boundary conditions
are needed to complete the formulation of the problem. In
the present study, we consider a region that is not limited
in vertical axis coordinate z, extending from inner radius
lin > 0 to the outer radius o < oo and covering the entire
angular sector 0 < ¢ < 2.

The method of small perturbations is used to study
stability in the linear approximation. The solution is then
presented as follows:

Utu=(u(t,r,¢,2), rQ(r)+us(t, r, ¢, z), u(t, r, ¢, 2)),
P+p=PR)+pt,r,¢,z), (4)
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where the values Uy, Uy, U, are small compared to
the typical value of the azimuthal velocity r€2p, where
Qo = 0.5(Q(rin) + R2(row)), and the pressure perturbation
gradients p are small compared to the radial gradient of
the unperturbed pressure P. Putting expressions (4) into
system (1) and retaining only the terms linear in perturbed
quantities, one obtains a linear system of equations for
perturbed quantities with coefficients that depend on radial
coordinate r. only. The solution may then be presented as
a sum of normal modes:

F = Fok(r) exp[i(mg + kz + wt)], (5)

where F(r) is an arbitrary sought-for function. Given the
geometry of the problem, axial number k may assume arbi-
trary real values, azimuthal number m may be an arbitrary
integer, and increment @ may be an arbitrary complex
number. The expansion in normal modes (5) transforms
a three-dimensional problem into a one-dimensional one. If
natural frequencies w for the velocity (2) have only positive
imaginary parts, the flow is linearly stable. If at least one
natural frequency with a negative imaginary part is present,
the flow is unstable.

In this paper, we will consider only axisymmetric pertur-
bations with m= 0 and fixed boundaries. In this case, the
linear system is reduced to a single second-order equation
for radial velocity u; (indexes mand K (see (5)) are omitted
here)

d*ue ldu U, k21d,, 2
— t+t-— - —-kKu+—5=5—(rQ) u =0,
dr2 " rdr 2 rJr(1)2r3r( )
(6)
and the boundary conditions in this case are expressed as
follows:

ur(rin) = ur(rout) =0. (7)

The equation (6) is absolutely accurate and takes into
account all the effects that occur and, together with
the boundary conditions (7) compiles the classic Sturm-
Liouville problem on the eigen values of a quantityk?/w? [1].
It is well known that given the boundary conditions (7) the
value w?> — is real (e.g., see, [1]) and sign w? coincides
with sign k?/w?. According to the general theory (see, for
example, [1]), all eigen values are positive (which means
that the flow is stable) if and only if

1d

r3a(ﬁ9)>o (8)

for any point of the considered interval. If condition (8) is
not fulfilled in some point the flow is considered as unstable.

Condition (8) was proved by Rayleigh [4] and bears his

name.

2. Results

To prove the limitation of the natural frequency
square w?, it is sufficient to use the theory of oscillation
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of solutions of the second degree linear ordinary differ-
ential equations with real coefficients. By definition, the
solution is non-oscillating on the interval (a, b), where
—o00 < a<b< oo, if it has at most one zero in (a,b).
For a general second-order equation

2

%4—51&)% +aop(r)uy =0 9)
the simplest sufficient condition for non-oscillation of the
solution on the interval (a, b) is the condition ag(r) <0
on this interval (see, for example, [7]). Accordingly, the
solutions of the equation (6) are non-oscillating and cannot
satisfy the boundary conditions (7) if

K2L|d (r2q)?
|a)2| > max (—r3|dr ( ) |> (10)

Lk

in the interval (Iin, rout). According to the classical Sturm
comparison theorem (see, for example, [8]), the oscillation
frequency (i.e., the number of nodes along the radius) eigen
functions of the equation (6) increases with increasing eigen
value k?/w?. Accordingly, the number of nodes of the
eigen function increases with decreasing natural frequency
modulus. By numbering the natural frequencies as the
modulus decreases, starting from zero for the maximum
modulo natural frequency, we obtain that the number of
nodes of the corresponding eigen function along the radius
in the interval (rin, I'out) Will be equal to the number of the
natural frequency.

As an example, we find the natural frequencies and eigen
functions of axisymmetric perturbations for a flow between
two coaxial infinitely long rotating cylinders (cylindrical
Couette flow). Recall that for an ideal fluid, any sufficiently
smooth radius function satisfying the boundary conditions
can be chosen as the angular velocity. As such a function,
we choose a function that satisfies the equations of motion
of a viscous fluid and, accordingly, has a fixed functional
form (see, for example, [1])

u¢(r)=rQ(r):Ar+$, (11)

where constants A and B are defined by the boundary
conditions:

2
B l—u
A= Qinl——nz’ B= QinRiznl — 772’ (12)
Fin Qout
— Jn g ot 13

rin and royx — radii, Qj, and Qg — angular velocities of
internal and external cylinders.
Let’s note that Rayleigh condition (8) for the flow (11) is
expressed as:
u>n. (14)

Accordingly, for flows with 4 > 0 (i.e., if the cylinders rotate
in the same direction), the flow will be stable at each point
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Figure 1. Normalized eigen functions of Couette flow with n = 0.5 for perturbations with k = 3, m = 0 (axisymmetric perturbations)
for the steady flow (in the left) with u = 0.5 (see (14)) and w? = 0.1556 (solid curve), ®? = 0.04679 (dashed curve), ©* = 0.02161
(dotted curve) and unstable flow (in the right) with u =0 (non-rotating external cylinder) with w? = —0.07678 (solid curve),

? = —0.02085 (dashed curve), ®* = —0.009359 (dotted curve).

(if condition (14) is met) or unstable at each point (if
condition (14) is not fulfilled). For the flows with u < 0
(ie., for cylinders rotating in different directions), as can be
easily seen, the flow will be unstable near the inner cylinder
and stable near the outer one.

Before solving equation (6), it is convenient to reduce
it to a dimensionless form. Let’s take rqoy as the unit
length, and Qi, as a unit angular velocity. Equation (6)
with the boundary conditions (7) and dimensionless angular
velocity (11) was solved by Runge-Kutta method at fixed
parameters u, 17, k and m= 0. The shooting method was
used. One solution satisfying the left boundary condition
U (rin) =0, with some trial value of the first derivative
at r =ri, was consistent at some intermediate point
lin <o < o (usually near the center of the calculated
interval) with the second solution satisfying the right
boundary condition U (r o) = 0, with a different trial value
of the first derivative at r =ros. These solutions can
be connected only at certain values of the parameter o>
(there are generally infinitely many of these values), which
are called the eigen values of the problem, and their
corresponding eigen functions are the eigen functions of
the problem.

Numerous calculations have been carried out, which
have shown that solutions exist only for values |w?| that
do not exceed a certain limit value corresponding to
the condition (10). Fig. 1 and 2 show the normalized
dimensionless eigen functions. The functions are normalized
so that their maximum modulo value is one. In all cases, the
eigen functions for the three largest modulo squares of the

eigen frequencies are presented. It is also easy to verify that
in all cases the squares of the maximum natural frequencies
satisfy the condition (10).

Figure 1 shows the results for a flow with cylinders
rotating in one direction (i.e. 4 > 0). For stable flow with
u > n?, all squares of the natural frequencies are positive.
Naturally, they will change with the change of parameters.
For instance, with the change of the wave number k. The
following figure shows the eigen functions for the first three
(in magnitude) natural frequencies. It can be seen that the
number of nodes of the eigen functions along the radius,
according to the Sturm comparison theorem, corresponds
to the number of the natural frequency. Similarly, for the
unstable flow with 0 < u < n?, all squares of the natural
frequencies are negative. There is a modulo-limiting natural
frequency, and the number of nodes of the corresponding
eigen function increases with the decline of the natural
frequency modulus.

Figure 2 shows the results for a flow with cylinders
rotating in different directions (with u < 0). In this case,
the squares of the natural frequencies will be both positive
and negative, given that the flow is unstable near the inner
cylinder and stable near the outer one. This is clearly
noticeable by the nature of the eigen functions, which are
concentrated to the inner cylinder for the negative squares
of the natural frequencies and to the outer cylinder for
the positive squares of the natural frequencies. At the
same time, the behavior of the natural frequency spectrum
corresponds to the above: there is a modulo-limiting
frequency, and the number of nodes of the eigen functions
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Figure 2. Normalized eigen functions of Couette flow with n = 0.5 for perturbations with k = 3, m = 0 (axisymmetric perturbations)
for the cylinders rotating in different directions with 4 = —1 and with negative squares of the natural frequencies (in the left)
©? = —0.0674 (solid curve), w* = —0.0131 (dashed curve), ®* = —0.00536 (dotted curve) and with positive squares of the natural
frequencies (in the right) w? = 0.6 (solid curve), w* = 0.142 (dashed curve), w* = 0.0599 (dotted curve).

along the radius increases as the natural frequency modulus
declines.

Conclusion

Despite an over century-old history of studying the
stability of fluid rotation, the problem is still far from its
final solution. In this paper, even for the simplest case of a
homogeneous ideal fluid, it is shown for the first time that
the natural frequencies of axisymmetric perturbations are
limited in modulus.

In addition, the natural frequencies can be numbered
as their modulus decreases from the maximum modulo
frequency which has zero number assigned. In this case,
the numerator of the nodes of the eigen function along the
radius will correspond (in accordance with Sturm theory) to
the number of the natural frequency. The general results are
illustrated by calculations for the cylindrical Couette flow.

Note that the findings of this study are substantially based
on the results of the theory of oscillation of solutions of
second-order ordinary differential equations with real coef-
ficients. It should be emphasized that this theory cannot be
extended to both, second-order differential equations with
complex coefficients and higher-order differential equations.
Despite this, this theory may and has already found (see,
for example, [9]) a wide application in various problems of
hydrodynamics and magnetic hydrodynamics.
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