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1. Introduction

Kinetics of transitions of many extended linear systems

between degenerate multistable states in potential profiles

plays an important role in numerous problems in physics,

chemistry, biology, etc.: in step motion on growing

crystal surface, in biological macromolecules, nanowires,

magnetization switching in spin chains and molecular

chain-structure magnetic materials and many other one–
dimensional and quasi-one-dimensional structures [1–3]. In
particular, the study of dislocation glide in a periodic poten-

tial profile of lattices known as the Peierls barriers has a long

history [4–6]. Due to the extension of the range of promising

materials, having high crystal profile, for high temperature

and microelectronic applications, investigation of dislocation

kinetics in the Peierls barriers has been increasingly im-

portant and the number of corresponding studies is quickly

growing. Here are just a few reviews as an example [7–15].
Decay of metastable states of extended systems, disloca-

tion is chosen as a prototype in this work for clarity, occurs

through the fluctuation formation of energetically preferable

state nuclei that are transformed into kink pairs at later

stages. Kinks are boundaries between various states, or

domains. Many studies use various approaches to calculate

the kink pair formation kinetics; due to countless number

of such studies, only references to monographs and reviews

will be given. A continual approach, that describes kinks

as topological solitons, is popular [16–20]. Capability of

obtaining precise analytical descriptions of kink properties in

some cases serves as an incentive [21,22]. At the same time,

continual approaches with regard to solid bodies are approx-

imate due to lattice discreteness and need a special justifica-

tion. This often reduces to the selection of a special param-

eter range. Extension of the parameter range is achieved by

considering the discreteness effect according to the pertur-

bation theory at the limit where its effect is low [23,24].
However, there are situations where discreteness has

a significant effect on the kink properties [25,26]. For

example, kinks on dislocations in silicon or germanium type

semiconductors, that have been a subject of experimental

and theoretical investigations for many years [27–31], have
a short length in the order of a lattice period and perceive

the lattice discreteness to a full extent. Translation invariance

discontinuity is an evident medium discreteness effect. Kink

energy varies on a periodic basis as the kink moves

along a system with a lattice constant. Energy difference

between potential maxima Emax and minima Emin for kinks

1EP2 = Emax − Emin is called the Peierls barriers of the

second kind, as opposed to the Peierls barriers of the

first kind for a dislocation as a whole. Periodic energy

potential profile of the first kind is often described as will be

used below by the harmonic law EP(y) = E0 cos(2πy/h),
where E0 = σPbh/2π is the typical energy per dislocation

length unit; σP is the Peierls stress, which, when exceeded,

leads to removal of the barriers against the dislocation

motion; b is the Burgers vector value; h is the kink height

equal to a distance between the potential minima; y is the

coordinate in the dislocation motion direction. When an

external driving force does not exist or is relatively low,

kinks get a static configuration corresponding to the energy

minimum. Kink may move only when the activation barriers

are overcome using thermal and quantum fluctuations.

There is a theory of thermally activated dislocation

motion according to the Lothe and Hirth mechanism. This

theory is opposed to continual models [32]. This theory

treats kinks as a structureless sharp boundaries of system

domains being in various states, in particular, in various

crystal valleys. The Lothe-Hirth model was successfully

used to describe the dislocation dynamics in silicon or

germanium type semiconductors [33]. This theory neglects

the modification of kink and barrier configurations at kink

migration under the driving force. Due to its simplicity,

this theory served as a convenient reference point for

describing additional effects, for example, those related to

quantum tunneling [34] and point defect effect [35–38].
However, non-consideration of the external load effect on
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kink parameters limits the applicability of this ultradiscrete

approach by a low driving force region where the energy

difference between various degenerate states is low. In

a more general case, it should be considered that, when

an external driving force is applied, degeneracy of states is

removed and the potential profile takes a form of an inclined

”
washboard“, as it is often called for clarity.

In continuous medium, any external force is sufficient

to set the kink in motion, but in the discrete case this

is not true. When the external force is relatively low, a

kink changes its configuration a little, but is still static at

minimum of the potential. However, the potential maximum

and minimum energies vary, the distance between them de-

creases with decreasing driving force and vanishes at some

critical value. With a high driving force, there are no static

kink confgurations, and dynamic mode is implemented.

Thus, the Lothe–Hirth theory requires generalization both

to consider the dependence of activation parameters on the

driving force and to describe the transition between the

static and dynamic kink behavior. This work develops a

more general theory that offers a more in-depth study of

kink energy at various kink formation process stages.

2. Kink generation

The Lothe-Hirth model defines the kink pair nucleus as a

dislocation segment that has moved from the initial potential

minimum extended along a crystallographic direction to a

neighboring minimum limited by sharp inflections (the kink

and its twin antikink). The force F = σ b acts per unit

dislocation length in a uniform stress field σ . Kink pair

energy is written as EkpHL = 2Ek − Fhx , where Ek is the

single kink or antikink energy in the absence of a driving

force, x is the size of the transferred segment. With a

low driving force, the size of nuclei, that are substantial for

thermally activated transitions, is large and the interaction

between the limiting them kink and antikink is neglected.

The kink pair is considered as a stable formation, if the

energy reduction on the pair size exceeds the thermal

energy kBT , which takes place at x > kBT/Fh, and a

sufficient barrier is opposed to thermal fluctuations that can

collapse the pair, i. e. lead to twin kinks annihilation. The

Lothe-Hirth theory is, in fact, one-dimensional and considers

only one degree of freedom — coordinate of an invariant-

shape kink along the dislocation line. This is not sufficient

to fully describe the dependence of activation parameters

on the driving force.

Let’s describe kink formation in the improved model

compared with the model used in the Lothe–Hirth theory.

The classical Frenkel–Kontorova model serves as a suitable

tool to describe the discrete kink energy [39]. This model

addresses a chain of particles or links that is periodic

along one direction, e. g. x . These particles or links are

hereinafter also referred to as
”
atoms“ for brevity. The

period is denoted as a . Atoms are interconnected by elastic

forces and are in the orthogonal direction y in a potential

profile hereinafter referred to as the substrate potential. For

illustrative calculations, a harmonic profile deformed by a

uniform stress field will be taken as the substrate potential

in this study. Various chain configurations are given by a set

of atomic displacements along the y — {yn} axis counted

from the ground state in the substrate potential minimum.

Chain energy at any atom configuration using dimension-

less parameters is written as

EFK =
∑

n

[

β

2
(un+1 − un)

2 + 1− cos(un) − Eun − Em

]

,

(1)
where n is the sequence number of atoms along the

chain, β sets the scale of elastic interaction between atoms,

un = 2πyn/h, yn is the displacement of the n-th atom from

the ground state of the chain at um = arcsin(E) (here, m de-

fines a minimum, not to be confused with a sequence num-

ber), 1− cos(un) − Eun is the substrate potential normalized

(as EFK) to the typical energy E0 = σPabh/2π, E = σ/σP
characterizes the driving force, Em = 1− cos(um) — Eum

is the ground state energy falling on one period and also

normalized to E0.

Expression (1) sets the energy landscape in the config-

uration space, whose dimension is equal to an unlimitedly

large number of atoms in the chain. With E < 1, there are

minima and minima in this landscape; chain positions along

the maxima are metastable states at 1 > E > 0. Energet-

ically favorable chain configurations defined by extremum

conditions are of principal interest

dEFK/dun = −β(un+1 + un−1 − 2un) + sin(un) − E = 0.

(2)
At high β > 1, i. e. at high bond rigidity, relative

displacements of neighboring atoms are small, and system of

equations (2) changes to its continual equivalent describing

an elastic string:

βa2 ·
d2y
dx2

− sin(u) + E = 0. (3)

β is related to the linear string tension coefficient κ

by β = κh/2πσPba2. In the absence of the driving force

E = 0, equation (3) is a well known static sine-Gordon

equation [40] whose exact solution is a kink soliton with

Ek = 8β1/2. Equation (3) is also easily solved when there

is a driving force, thus, allowing the calculation of, in

particular, saddle-point configurations at the barrier top for

system transition between the potential valleys [41]. Energy
of such configuration is the kink pair activation energy

equal to

Ekp = 2

uMax
∫

um

√

2β[cos(um) − cos(u)+E(um − u)] du, (4)

where uMax is the maximum displacement in the saddle-

point configuration that corresponds to the integrand

positivity boundary in (4) and is defined by con-

dition cos(um) − cos(uMax) + E(um − uMax) = 0. Equa-

tion (4) may be approximated by a simple equation
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Ekp ≈ 2Ek(1− E)1.3. Analytical study of the asymptotic
dependence of activation energy (4) at high driving forces
was carried out in [42].
There are numerous studies that approximately describe

discrete kinks as perturbed kink solitons of the sine-Gordon
equation [23,24]. Perturbation may be considered as low,
when a kink length is long compared with the chain
period. When the kink size is comparable with the period,
discreteness is perceived to a full extent and cannot be
considered as low perturbation. In this case, another
approach shall be used to solve system of equations (2)
and describe kink configurations. Such effective and
extremely vivid approach, which is more flexible than
the Lothe−Hirth theory, was proposed in [43–46] and
used primarily to study the properties and dynamics of
individual kinks. This work will use the same approach to
describe the kink pair formation kinetics. In the framework
of this approach, some idea about the energy landscape
arrangement may be get by examining landscape projections
with arbitrarily given displacements of some atoms, and
considering the displacements of the rest atoms as adapting
to them with fulfillment of relations (2). Thus, the
configuration space dimension may be reduced effectively
by considering partly equilibrium chain states. At low
values of β, elastic atom bonds are easily extendable and
relative atomic displacements may be quite large. As a
result, a kink between neighboring crystal profile valleys
will strain bonds only between few atoms. As it will be
confirmed by further calculation, only one or two boundary
atoms may be prone to considerable displacement, and
other atoms may be displaced from the ground state um or
um + 2π not too much and their equilibrium positions can
be easily calculated according to the perturbation theory.
Considerably displaced atoms will be referred to as active
centers. Consideration of their displacements, that vary with
the driving force variation, provides the model with a degree
of structure, which is absent in the Lothe−Hirth theory
and makes it possible to go beyond this theory and address
additional effects.
At high energy of elastic interaction between atoms in

the kink compared with the thermal energy kBT , low-
energy states of the chain contain straight-line portions
that are extended with respect to the period and are
located in the substrate potential minima. The study
will focus on fluctuationally formed chain configurations
that have such straight-line portion as an initial state.
Atoms that are slightly displaced from the equilibrium
positions um or um + 2π are in the neighborhood where
the substrate potential is close to the quadratic poten-
tial. Thus, system of equations (2) may be linearized
with respect to the displacements δun = un − arcsin(E):
−β(δun+1 + δun−1 − δun) + (1− E)1/2δun = 0. We find
solution in the form of δun ∝ Bλn; its substitution into the
linearized equations taking into account the finiteness at
n → ∞ gives

λ = 1/
{

1 + (1− E2)1/22β

+
[

(1− E2)/4β2 + (1− E2)1/2/β
]1/2

}

. (5)

Kinks are formed by pairs when passing through

symmetric saddle-point configurations, where only atomic

displacements at nucleus boundaries will be considered as

significantly displaced from equilibrium positions. Due to

the symmetry, the kink pair energy may be written as a

doubled sum over positive atom numbers:

Ekp = 2

N
∑

n=0

[

β

2
(δun+1 − δun)

2

+ (1− E2)1/2 − cos(un) − Eδun

]

. (6)

In the simplest case, only the first atom with number 0 is

considered as active and will be exactly addressed, the rest

atoms are considered to be in a quadratic neighborhood

of the potential profile and optimally adapted to δu0. By

substituting their equilibrium displacements δun = δu0λ
n

in (6), we obtain approximately

Ekp ≈ δu2
0

{

β(1− λ)2 + (1− E2)1/2λ2/(1− λ2)
}

+ 2(1− E2)1/2 [1− cos(δu0)] − 2E sin(δu0) − 2Eδu0.

(7)
Expression (7) gives an approximate one-dimensional

representation of the energy profile, in which the kink pair

nucleus evolves at the initial formation stage. Different

behavior of the initial stage and the barriers to be overcome

depending on the magnitude of the driving force are

illustrated in Figure 1. It shows the kink pair energy

variation along the adiabatic path, on which displacements

of all other chain atoms were adapted to the active atom

position, for various values of E . Rigidity parameter of

elastic atomic bonds is β = 0.05. Energy of a chain with

a kink pair in the first minimum is higher than the ground

state energy when E < Ecr = 0.1428 . . . and lower when

E > Ecr. In the latter case, the barrier height for inclusion

into the first minimum is the kink pair activation energy

because return to the initial state, i. e. annihilation, or kink

collapse, is unlikely. In the former case, the state in this

minimum is only intermediate and the next barriers shall

be overcome for irreversible formation of a kink pair before

the falling in a negative-energy minimum.

Calculation result of Ecr for any values of β

may be approximated by means of fitting by

Ecr ≈ 2.2637β0.9/(1 + 1.6β), as it is demonstrated in

Figure 2.

After overcoming the first barrier and falling in the

nearest minimum, a fork with various evolution options is

possible. To get a fuller picture, it is useful to generalize the

calculation a little and consider two atoms as active ones by

including also atom 1 in them. Atoms with large numbers

n > 1 are considered to be adapted to the displacement of

atom 1 — δu1 as δun = δu1λ
n−1. In this case, infinite-

dimensional energy landscape (1) or (6) reduces to a vivid

two-dimensional one, being a function of two variables δu0

and δu1.
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Figure 1. a) Dependence of the kink pair energy on the active atom position at various driving forces. Curve 1 corresponds to E = 0.1,

2 — E = Ecr = 0.1428 . . . , 3 — E = 0.3, 4 — E = 0.5. β = 0.05. b) Chain configurations in extreme points of the energy landscape.

Circles show atomic displacements in minima, crosses show atomic displacements in saddle points.

Without giving explicitly an analytical expression derived

apparently from (1), the situation will be illustrated by a

vivid picture. Such landscape with parameters β = 0.05

and E = 0.1 is illustrated in Figure 3 using energy level

lines. Energies, to which the shown level lines are related,

are defined primarily by the heights of saddle points

through which they pass. Dashed lines show the adiabatic

curves corresponding, with the set value of δu0, to the

energy minimum over the displacements of all other atoms,

including atom 1, and described by foregoing expression (7).
Descriptive-geometrical view of such line is represented by

the bottom of a valley going through a saddle point from

one profile minimum to another. Minima correspond to

stables or metastable chain states, and the energy difference
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Figure 2. Dependence of a boundary driving force, that

corresponds to the occurrence of a chain state with a lower

energy than the initial state, on the rigidity parameter of elastic

bonds β (circles). Solid line shows the result of fitting by the

analytical expression Ecr ≈ 2.2637β0.9/(1 + 1.6β).
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Figure 3. Two-dimensional energy landscape in the displacement

space of the first atoms δu0 and δu1 with β = 0.05 and E = 0.1

shown by the constant energy level lines. Circles show the

minima, triangles show the maxima, crosses show the saddle

points. Dashed lines show the valleys going between minima

through saddle points.

in a saddle point and minimum gives the barrier height for

transition from one state to another.

3. Initial propagation stage of kinks
composing in a pair

When the external driving force is present, all chains

are metastable, and thermal fluctuations give rise to chain

evolution in a direction determined by the driving force

to lower energy states. Basically, such evolution may

occur in various ways through different consecutive energy

minima. However, due to the abrupt Arrhenius dependence
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Figure 4. Dependence of the kink pair activation energy on the

driving force at different values of β marked by numbers at the

curves. The activation energy at higher driving forces is defined by

a barrier for transition from the ground state to the first potential

minimum, and at lower driving forces — by a barrier for transition

from the first minimum to the second one. For comparison, the

inset shows the dependence of dislocation motion activation energy

on stress in Ge [31].

of transition rates on barrier heights, a transition will most

probably take place through the lowest saddle point on the

profile. Thus, in the case illustrated in Figure 3, after the

initial transition to the minimum with the energy of 0.54,

predominant transitions to a minimum with the energy of

0.712 through a saddle point with the height of 3.08, rather

than to a minimum with the energy of 4.659 through a

saddle point with the height of 6.393, may be expected.

Transition from the initial state marked with 0 to the

nearest energy minimum 0.54 with configuration marked

with 1 may be considered as a metastable kink pair initiation

stage. Transition from this state to the minimum −0.712

through a saddle point with the height of 3.08 is the start of

expansion of the kink pair nucleus, which will be discussed

below.

Figure 4 shows the dependence of the kink pair activation

energy on the driving force at different values of β . This

dependence in different driving force regions (on different

sides of the dashed line in the figure) along the adiabatic

lines is defined by various transitions, due to which it is

represented by curves with kinks. The activation energy at

higher driving forces is defined by a barrier for transition

from the ground state to the first potential minimum; the

activation energy at lower driving forces is defined by a

barrier for transition from the first minimum to the second

one. As shown in Figure 4, the barrier for kink pair

formation in a wide region depends considerably from the

driving force and decreases as the driving force increases.

For qualitative comparison, the inset shows the dependence

of the activation energy on the driving force found from the

dislocation rate measurements in Ge [31].

4. Formation of kink pairs with various
sizes

To describe the kink pair nucleation stages that follow the

initiation stage, energies of wider nuclei, whose boundaries

are extended farther from the central atom, will be studied.

Transitions to them are energetically more favorable than

further movement of the central atom because such move-

ment is prevented by tension forces from two neighboring

atoms. Displacement of the boundary is prevented by

oppositely directed tension forces, that partially compensate

each other, from neighbors. Thus,the
”
activity“ baton

shall be passed to atoms adjacent to the central atom,

and atom 0 falls into a quadratic neighborhood of the

second substrate potential valley and the displacement of

this atom adapted to the displacement of atom 1 can be

easily found and excluded from the further calculation:

δu0 = 2π − λ(2π − δu1). We obtain an energy profile as

illustrated in Figure 5, that depends now on δu1 and δu2

and shall be studied identically to the previous profiles as

shown in Figure 3 on the basis of equation (7). The main

change from (7) is given by the energy difference between

the second and first substrate valleys −4πE introduced by

a chain-period displacement of the nucleus boundaries.

Repeated nuclei expansion steps lead to further energy

reduction in the minima mainly due to the contribu-

tions of the growing number of central atoms. We

consider the kink pair nuclei containing 2k0 of the

central atoms that have moved to the second substrate

potential valley neighborhood. Active atoms with num-

bers k = ±k0 at the nucleus boundaries are consid-

ered. Atoms within the boundaries are in the quadratic

neighborhood of the upper substrate potential mini-

mum and have displacements δuk0−1 = 2π − λ(2π − δuk0
),

δuk = 2π − λk0−k(2π − δuk0
), δuk′ = δu′

k0
· λk0−k . Groove

implies counting from the bottom of the upper substrate po-

tential valley. Atoms with numbers from k0 + 1 to ∞ are in
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Figure 5. Energy profile for the kink pair nucleus evolution

stage that follows the initiation stage with active atoms 1 and 2.

Parameters are the same as in Figure 3: β = 0.05 and E = 0.1.
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The inset shows the given values without considering the energy

reduction in the second substrate potential valley.

the quadratic neighborhood of the lower substrate potential

minimum and have displacements δuk = δuk0
λk−k0 .

Chain energy Ec is obtained by addition of the central

atom energy to expression (7):

Ec=2

k0−1
∑

n=0

[

β

2
(δun+1 − δun)

2 + cos(um) − cos(un) − Eδun

]

= βu′

k0

2[
β(1− λ)2 + (1− E2)1/2λ2

]

× λ2(1− λ2k0)/(1− λ2) − 2πEk0. (9)

The obtained expression makes it possible to calculate

the optimum energies of nuclei with various sizes on the

energy profile that correspond to lower barriers for kink

pair formation. Figure 6 illustrates the calculation data.

For the chosen parameters, the nuclei energies with k0 = 0

and 1 exceed the ground state energy and, therefore,

are instable with respect to collapse. Nuclei with many

central atoms k0 > 2 have a lower energy than the ground

state and tend to further expansion. A transition region

around the boundary quickly achieves a standard shape and

energy as the nucleus size increases, as demonstrated in the

inset in Figure 6 that shows the minimum nucleus energy

variation with the subtraction of the central part contribution

−4πk0E . The rest portion of the nucleus energy being set

may be assigned to two kinks, so the energy of a sufficiently

wide nucleus is described by expression

Ekp = 2Ek − 2k01E, (10)

where 1E = 2πE is the atom energy reduction in atom

displacement between the substrate potential valleys. Equa-

tion (10) is identical to the corresponding expression in the

Lothe−Hirth theory, but with the difference that the kink

shape is not absolutely abrupt now because it is described

by nonuniform displacements of the active and adjacent

atoms that vary additionally with the varying driving force,

on which the kink energy also depends.

5. Conclusion

The infinite-dimensional Frenkel−Kontorova model, that

is quite complex for the quantitative analysis of the model

behavior, is simplified drastically using two concepts. The

first of them is the utilization of partly equilibrium system

states where a small number of chain atoms occupy

arbitrary positions in the potential profile, and the rest

atoms are adiabatically adapted to them. As a result, the

infinite-dimensional energy profile is reduced to any desired

dimension. Approximation accuracy, that is generally

justified at low rigidity of the elastic bonds between chain

links, depends on the number of dimensions. The second

concept implies that an optimum sequence of system

transitions shall be chosen in the configuration space.

Such choice among numerous fluctuationally available ways

becomes almost unambiguous when the temperatures or,

rather, thermal energies kBT are small compared with the

typical barrier heights in the energy landscape. Though,

generally speaking, in a relatively high driving force region,

the probability of deviations from the main scenario with

transitions only to the nearest substrate potential valley

and of introduction of some fraction of more complex

transitions cannot be completely excluded. For example,

with formation of more energy-consuming
”
multilevel“

kinks.

Utilization of these two concepts results in comparatively

simple model described in [4,32] that makes it possible to

expand the Lothe-Hirth theory and describe the kink pair

formation kinetics in a much wider region of parameters

where there is a considerable dependence of the activation

energy on the driving force. Moreover, the model predicts

the dependence behavior modification. According to the

calculation as shown in Figure 3, the activation energy in a

relatively high driving force region is defined by transitions

from the system ground state to the nearest energy profile

minimum. In a lower driving force region, the activation

energy is defined by the initial expansion stage of a nucleus

whose boundaries later take a typical shape of isolated

kinks. As a result, large nuclei meet qualitatively the

Lothe-Hirth theory, though in a modified and generalized

form, because there is the dependence of the activation

parameters on the driving force. As the rigidity of elastic

bonds between the system links increases and more links

are involved in the kink pair formation, this dependence

gets smoothed and translates into continual limit (4). Thus,
the proposed theory fills the gap in the knowledge about

kink pair formation kinetics throwing a bridge between the

Lothe-Hirth abrupt domain wall model and continual elastic

string model.

Variation of the transition that controls the kink pair

formation process in different ranges of values of the
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driving force gives rise to a break in the dependence of

the activation energy on the driving force as illustrated in

Figure 4. A qualitatively similar break, which is reflected

in the inset to Figure 3, was observed in experiments for

dislocation motion rate measurement in Ge [31] and in other

semiconductor materials [47–49].

Experimental data for direct dislocation rate measure-

ments and activation parameters extracted from macroscopic

mechanical tests of materials with kink plastic deformation

mechanism demonstrates a wide variety. In metals with

body-centered cubic lattice with a relatively low Peierls

stress with respect to the shear modulus, there is a smooth

dependence of the activation energy on load described by

expression (4), though, often perturbed by the presence of

other defects. In materials featuring high Peierls stresses,

including semiconductors with covalent bonds between

atoms, there is often no dependence of the activation

energy on the external load in certain variation intervals

in accordance with the Lothe-Hirth theory. However, in

wider stress variation intervals, there are deviations from

the theory predictions, for example, in Ge, InP and other

semiconductors and materials with intermediate types of

chemical atomic bonds [27–31,47–49]. Activation energies

appear to be different in relatively higher and lower stress

intervals, which is in qualitative agreement with the findings

of this work.
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