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Tunable standing-wave field in layered photonic structures
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In this paper we consider the tuning of the configuration of the optical field in a dielectric layer bordering a

homogeneous media or a photonic crystal when changing the wavelength. Analytical consideration of the problem

is carried out. It is shown that the most optimal configuration for effective tuning of the position of optical standing

wave antinodes is the use of a photonic crystal as a substrate. In this case, the phase of the optical field inside

the thin film strongly depends on the radiation wavelength (3.8 rad/µm) compared to the film without a photonic

crystal (0.4 rad/µm). The results obtained are useful for applications in such areas as excitonics and magnonics, as

well as for the development of methods for calculating photonic structures.
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The task of creation of a given spatial distribution of the

optical field is practically important for many applications.

In particular, the localization of electromagnetic field energy

in the semiconductor layers of the structure is required

for the creation of efficient solar cells [1,2]. Medical

applications include the thermal destruction of infected cells,

which also requires localization of the field in a specific

spatial area [3,4]. Nonlinear optics is an extensive field

of application [5,6]. Surface-enhanced Raman scattering

is an example of a nonlinear optical effect requiring the

concentration of the pump field in a small spatial region [7].
Thermomagnetic recording of information is an important

area of application of the concentrated field, which requires

local heating of the magnetic material in the area of

magnetization reversal [8]. Another area of application

requiring spatial localization of the optical field is the

problem of optical magnetization reversal and generation

of spin waves, which requires concentration of the field in

magnetic materials in the required region of magnetization

reversal. In this case, magnetization reversal is carried out,

for example, by the inverse magneto-optical Faraday effect,

the magnitude of which depends on the intensity of the

pumping field [9–11].
Generation of a standing wave is one of the methods of

creation of an inhomogeneous optical field. It may be useful

to rearrange the positions of the antinodes of the standing

wave for practical purposes, thus creating nanometer areas

of concentration of electric field energy. In particular, it can

be applied for the efficient binding of photons and excitons

in semiconductor structures [12,13]. The optomagnetic

generation of standing spin waves in a magnetic material

is another possible application [14].

This paper describes the distribution of the optical field

in a dielectric layer bordering a dielectric substrate, metal,

or photonic crystal. A fully analytical approach is proposed,

which can be used to obtain the required distribution.

Let us consider a dielectric layer with a refractive index n2

and thickness h. Let it border on one side with a medium

with a refractive index n1, and with a medium with a

refractive index n3 on the other side. The light falls normally

from the first medium (Figure 1, a).
It can be obtained from Fresnel’s formulas [15] that the

electric field in the layer is expressed by the formula:

E(z ) = A
{

n2 cos
(

k0n2(z − h)
)

+ in3 sin
(

k0n2(z − h)
)

}

,

(1)
where k0 = 2π/λ is vacuum wavenumber, λ is vacuum

wavelength,

A =
2n1

n2(n1 + n3) cos(k0n2h) − i(n2
2 + n1n3) sin(k0n2h)

,

(2)
Here, the z axis is directed perpendicular to the boundary

of the layers, the points z = 0 and z = h correspond to

the boundaries with the first and with the third media,

respectively. If absorption is neglected, the field intensity

distribution in the layer can be expressed as follows:

|E(z )|2 = |A|2
{

n2
3 + (n2

2 − n2
3) cos

2
(

k0n2(z − h)
)

}

. (3)

It can be seen from Eq. (3) that the optical field inside

the layer does not become zero, and the field is always

maximal at the boundary with the third medium. Only the

distance between the antinodes of the optical field in the
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Figure 1. The considered structure is a dielectric layer bordering

(a) with a homogeneous medium, (b) with a photonic crystal.

layer changes when the wavelength changes. However, it

may be important for practical applications to obtain the

optical field distribution in the form of a standing wave, and

it is desirable to make the position of nodes and antinodes

easily tunable. This can be achieved if the refractive index

of the third medium is imaginary:

n3 = iκ3. (4)

In particular, this is true for metals, which are cha-

racterized by negative values of dielectric constant in the

optical range. In this case, the field intensity distribution has

the form:

|E(z )|2 = |A|2{n2
2 + κ23} cos

2
(

k0n2(z − h) + φ
)

, (5)

where

φ = atan

(

κ3

n2

)

. (6)

The value φ, determined according to Eq. (5), is called

the phase of the field. It characterizes the standing wave

field in the considered layer of finite thickness, taking into

account the incidence of light from the first medium. The

phase of the field turns out to be important for rearranging

the configuration of the field distribution inside the layer,

since the change of the wavelength only changes the

distance between the antinodes of the standing wave, and

the change of the phase of the field changes their position.

The field distribution obtained in this way is slightly

rearranged with a change of wavelength as calculations

show (Figure 2, a). SiO2 was used as the dielectric for

calculations, gold was used as the metal, and the thickness

of the dielectric layer was 500 nm. The permittivity values

are taken from Ref. [16] and [17] for SiO2 and gold,

respectively, and we do not take into account the imaginary

part of the permittivity of gold in order to consider the ideal

case of a purely imaginary refractive index. The distance

between the antinodes obviously changes, as the wavelength

of the standing wave changes, but there is always almost a

minimum field at the boundary with the third medium.

A photonic crystal as a third medium is another in-

teresting case. Since Eqs. (1)−(2) are derived from

Fresnel formulas, they remain valid for any inhomogeneous

medium, including a photonic crystal. In this case, the

refractive index is implied to be the inverse of the wave

impedance of the transmitted wave, that is, the ratio of

the complex amplitudes of the magnetic and electric fields

of the transmitted wave at the boundary of the photonic

crystal:

n3 =
H(z = h)

E(z = h)
. (7)

Let the photonic crystal be formed by alternating layers

with refractive indices n4 and n5 and thicknesses a and b,

respectively, while the considered dielectric layer n2 borders

the layer n4 (Figure 1, b). The following can be obtained

from the explicit form of the Bloch wave:

n3 = in4×

×

2n5 exp{iK(a + b)} − (n4 + n5) cos(k0n4a + k0n5b)+

+ (n4 − n5) cos(k0n4a − k0n5b)

(n4−n5) sin(k0n4a−k0n5b)−(n4+n5) sin(k0n4a+k0n5b)
,

(8)
where K is a Bloch wavenumber. Let’s denote

α = cos{K(a + b)}. Then the following equation is

valid [18]:

α = cos(k0n4a) cos(k0n5b)

−
1

2

(

n4

n5

+
n5

n4

)

sin(k0n4a) sin(k0n5b). (9)

Eq. (9) provides two solutions for K corresponding to

Bloch waves propagating in opposite directions along the

z axis. It is necessary to select a solution corresponding to

the transmitted wave.

The transmitted wave in the photonic band, where

|α| < 1, is a Bloch wave with a positive group velocity. Such

waves have a positive value of the Bloch wavenumber in the

first Brillouin zone in odd photonic bands, (while it should

be sin{K(a + b)} > 0), and they have a negative value of

the Bloch wavenumber in even bands (sin{K(a + b)} < 0).
Since the photonic band does not exceed the range of
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k0(m−1) < k0 < k0m, where k0m = πm/(n4a + n5b) are the

centers of the band gaps, the formula for the Bloch

wavenumber of the transmitted wave can have the following

form:

exp
{

iK(a +b)}=α + i{sign
(

sin(k0n4a +k0n5b)
)

}
√

1−α2.

(10)
The transmitted wave in the band gap (|α| > 1) is a Bloch

wave that decays in the positive direction of the z axis, that

is, it has a positive imaginary part of the Bloch wavenumber.

This is equivalent to the condition | exp{iK(a + b)}| < 1,

from which we obtain:

exp{iK(a + b)} = α − (sign α)
√

α2 − 1. (11)

Eqs. (8)−(11) fully determine the effective refractive in-

dex of a photonic crystal for calculating the reflectance from

it using Fresnel formulas and, as a result, for calculating the

optical field distribution according to Eq. (1). In case of the

photonic band the effective refractive index of a photonic

crystal is complex, therefore, generally speaking, the optical

field in the dielectric layer (the second medium) does not

vanish, while the phase of the field at the boundary with the
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Figure 2. Field distribution in the dielectric layer bordering (a)
with gold and (b) with a photonic crystal, at wavelengths of

710 nm (solid line) and 910 nm (dashed line).
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Figure 3. Dependence of the phase of the field φ, defined by

Eq. (5), on the wavelength for a photonic crystal (solid line) or

gold (dashed line) as a substrate.

photonic crystal is arbitrary. In the case of the band gap, as

can be seen from Eq. (11), the value exp{iK(a + b)} is real,

therefore the photonic crystal effective refractive index n3 is

purely imaginary. In this case, the distribution of the optical

field in the dielectric layer is described by the Eqs. (4)−(6).
The optical field becomes zero at the nodes of the standing

wave, and the phase of the field φ at the boundary with the

photonic crystal, defined by Eq. (5), significantly changes

with a change of wavelength.

A photonic crystal consisting of TiO2 and SiO2 layers

with thicknesses of 89 and 138 nm, respectively, was used

for calculations. The refractive index for TiO2 is taken

from Ref. [19]. The band gap ranges from 710 to 910 nm

with these parameters. The results of calculation for the

boundaries of the band gap are shown in Figure 2, b. It can

be seen that the phase of the field φ significantly varies.

Figure 3 shows the dependence of the phase of the field

φ on the wavelength for gold and for a photonic crystal

as a substrate. It can be seen from the figure that there

is a fairly strong dependence of the phase of the field at

the wavelength in the band gap in the case of a photonic

crystal: the change of the phase of the field is approximately

3.8 rad/µm for a photonic crystal, and 0.4 rad/µm for gold.

Moreover, this dependence of the phase of the field on the

wavelength can be changed by selecting the parameters of

the photonic crystal. Therefore, photonic crystals are much

preferable.

Negligible optical losses are another important advantage

of photonic crystals. The absorption is always present in

real metals, which leads to the fact that the refractive index

is not purely imaginary, and therefore the optical field does

not become zero at the nodes of the standing wave.

The phase of the field φ allows evaluating the far-field

optical properties of the structure, in the case when the

third medium has an imaginary effective refractive index, nd

therefore, an imaginary impedance. Since the phase of the
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Figure 4. Transmittance of a structure with a photonic crystal

(solid line) and a hypothetical structure with a photonic crystal

without taking into account the phase of the field (dashed line).

field determines the magnitude of the field at the boundary

of the second and third media, the total transmittance can

be estimated using the formula

T =
nout

n1

|E(h)|2 exp
(

−2 Im(k3z )d
)

=
nout

n1

|A|2{n2
2 + κ23} cos

2(φ) exp
(

−2 Im(k3z )d
)

, (12)

where d is the thickness of the third medium, nout is

the refractive index of the medium behind the structure

into which the transmitted wave propagates, k3z = K for a

photonic crystal and k3z = k0n3 = ik0κ3 for a metal. At the

same time, it is assumed that the third medium is thick

enough, and backward waves in it can be ignored.

It can be seen from Eq. (12) that the dependence of

the transmittance on the wavelength is attributable to the

imaginary part of the effective refractive index of the third

medium and directly to the phase of the field. Figure 4

shows the transmittance calculated using Eq. (12) for a

structure containing a photonic crystal with 5 pairs of

layers, as well as for a hypothetical structure with the

same photonic crystal, but without taking into account the

dependence of the phase of the field on the wavelength (the
phase of the field is assumed to be zero). It can be seen

that the phase of the field has a significant effect on both

the magnitude of the transmittance and the width of the

bandgap: the bandgap narrows without taking into account

the phase of the field.

It can be noted that the obtained Eqs. (8)−(11)
completely and unambiguously determine the input wave

impedance of a photonic crystal Zin = 1/n3. Similarly,

formulas for the output impedance can be obtained: the

difference is that it is necessary to consider a Bloch wave

incident on the boundary of a photonic crystal instead of

a transmitted Bloch wave for selecting the correct value of

the Bloch wavenumber K. This will lead to the fact that

the opposite sign should be taken before the second terms

in Eqs. (10) and (11). The resulting Eqs. (8)−(11) can be

used for the calculation and analysis of photonic structures,

in particular, when using the impedance method, in which

the photonic crystal is considered as a single layer [20,21].
It should be noted that a formula similar to Eq. (8) was

obtained in Ref. [21], but it is not unambiguous, and there

is no algorithm for identifying the correct solution.

Thus, it is shown that the configuration of the near field

is strongly rearranged in the band gap in the layer bordering

the photonic crystal, which directly affects the transmittance.

Analytical formulas for the distribution of the optical field

inside the layer bordering the photonic crystal are obtained.

It is shown that the use of a photonic crystal is the

most preferable in comparison with homogeneous reflective

materials (metals), since the phase of the field for a standing

wave has a significant dependence on the wavelength

(3.8 rad/µm) in this case, which makes it easy to adjust the

field configuration, and the field configuration is determined

by the selection of photonic crystal parameters (passive
control). The demonstrated approach makes it possible to

obtain a required distribution of the optical field inside the

dielectric layer, which is important in problems of excitonics,

nonlinear optics, photovoltaics, magnonics, etc.
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