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1. Introduction

The problem of multilevel description of plastic flow pro-

cesses arises from the need to align the microscopic scales

of traditional dislocation process models with macroscopic

features such as Luders bands and fracture necks. The

variety of approaches used for these purposes has given

rise to many attempts to find a relation between scales.

For example, the analysis of multiple scales in the case of

impacts on materials is well known [1]. Successful attempts

to solve such problems within the framework of the gradient

theory of plasticity were made in Ref. [2], and the author of

Ref. [3] considered the structural aspects of the multiscale

plastic flow process. In most cases, it was possible to

establish the necessary relations between the scales of the

process only on the basis of sufficiently strong assumptions

about the nature of the flow processes.

The autowave mechanics of inhomogeneous plastic

strain [4] makes it possible to explain the main patterns of

plastic flow. It is based on the idea that the deformable

medium is active, that is, it contains energy sources

distributed over the volume [5]. For this reason, the medium

becomes capable of generating a variety of autowave defor-

mation processes (autowave deformation modes) [6], which

serve as mechanisms for its self-organization. The modes are

characterized by experimentally determined spatial (length λ

and time period ϑ) scales and are closely related to the

stages of strain hardening based on the dependence of

deforming stress on deformation σ (ε) [7]. The existing

one-to-one correspondence between the stages of strain

hardening and autowave modes of localized plasticity, called

the Conformity Principle, was introduced and analyzed

earlier [4]. The Principle is based on changes in the structure

and properties of the deformable medium that generates

these autowaves.

Together with the Conformance Principle, the most

important laws of the autowave theory of plasticity are

the Elastoplastic Invariant and the Dispersion Relation

for autowave modes [4]. Both of these laws have so far

been studied only for the stage of linear strain hardening.

The purpose of this work is to clarify the possibilities of

their use at other stages and scales of the plastic flow

process, taking into account the properties and structure

of deformable media and the ability to generate autowave

modes of localized plastic strain.

2. Elastoplastic invariant of autowave
deformation

The Elastoplastic Invariant has the role of the basic

equation in the autowave plasticity model [4]. For the stages
of linear strain hardening and light sliding in single crystals,

when σ ∼ ε, the invariant is defined as the ratio

λVaw

χVt
= Ẑ ≈ 1

2
. (1)

which relates the characteristics of elastic waves (interplane
distance λ and the velocity of transverse sound Vt) to

the characteristics of autowaves of plastic flow localization

(length λ and propagation velocity Vaw). The consequences

of the invariant describe the basic patterns of plastic

flow. The importance of the invariant (1) necessitates the

discussion of the possibility of its application for other stages

of the deformation process, in particular, for parabolic strain

hardening and pre-fracture.

The main difficulty of applying the invariant (1) for

the stage of parabolic strain hardening, where σ ∼ εn,

n = 1/2 consists in the fact that the autowave mode

characteristic of this stage is a stationary dissipative structure
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Figure 1. Checking of the invariance for the stage of parabolic

strain hardening.

for which Vaw = 0 [4]. The effective velocity V (e f )
aw 6= 0

can be introduced in this case to use the ratio (1). For

that end let us write down the right side of the equa-

tion (1) as 1/2 χVt = χ2ωD using the relations Vt ≈ 2χωD

and ~ωD = kBθD, in which kB is the Boltzmann constant,

and θD is the Debye parameter (Debye temperature),
and ωD is the Debye frequency and we obtain

λVaw ≈ 1

2
χVt ≈

χ2kBθD

~
, (2)

where the effective velocity is

V (e f )
aw =

(λVaw)

λ
≈ kBθD

2~

χ2

λ
≈ ωD

χ2

λ
. (3)

It describes an increase of deformation inside the focus of

active plastic flow for the stage of parabolic strain hardening

and the formation of a stationary dissipative structure due

to an increase of the density of defects in it without

macroscopic displacement of the boundaries of the focus.

V (e f )
aw ≈ 2 · 10−3 m/s follows from the equation (3),

which, after substitution in expression (1) gives

Ẑ = λV (e f )
aw /χVt ≈ 1.2. The coincidence of this value with

the value of the invariant (1) indicates the possibility of

its application, including for the stage of parabolic strain

hardening. The values of the elastoplastic invariant for

several metals studied earlier are listed in Table 1 [4]. The
results shown in Figure 1 lead (after excluding the drop-out

data for Zn and Mg) to the value Ẑ = λV (e f )
aw /χVt ≈ 0.4,

which is close to the value Ẑ ≈ 1/2 discussed above.

For the pre-fracture stage (σ ∼ εn, n < 1/2), where

the autowave of localized plasticity collapses, the analy-

sis of X−t diagrams also confirmed the validity of the

elastoplastic invariant and its applicability at this stage of

the process. This is confirmed by the data in Table 2,

from which it follows that for this stage the value is

Ẑ = λVaw/χVt = 0.49± 0.16 ≈ 1/2, which coincides with

the value set for the stage of linear strain hardening.

Table 1. Checking of the applicability of an invariant (1) at

the parabolic stage of strain hardening

Metal
λ ϑ λ2ϑ−1 χVt

λ2ϑ−1/χVt
×103, m s ×107 m2/s

V 7.5 250 2.25 6.2 0.36

γ-Fe 5 100 2.5 6.5 0.38

α-Fe 4 170 0.94 4.7 0.2

Cu 5 200 1.25 4.8 0.26

Al 7 140 3.5 7.5 0.46

Table 2. Checking the invariant for the pre-destruction stage

Characteristics Metals

of invariant Mg D1 Al∗ Zr Ti V Al∗∗ α-Fe

λVaw
×107 m2/s

7.0 11.3 5.5 3.2 1.1 2.4 9.8 1.7

χVt 15.8 7.5 7.5 11.9 7.9 6.2 7.5 4.7

λVsw/χVt 0.45 1.5 0.7 0.25 0.15 0.4 0.1 0.35

No t e. Al∗ — coarse-grained, Al∗∗ — fine-grained, D1 — duralumin.

The described results expanded the field of application

of the elastoplastic invariant, as the basic equation of the

autowave theory of plasticity, to other stages of plastic flow.

The physical nature of the invariant is discussed in detail in

Ref. [4] and will not be considered here, but it is interesting

to focus on another version of the explanation initiated by

study in Ref. [8]. It was shown that the extreme values

of the physical characteristics of materials can be estimated

using the scales of the natural system of units of D. Hartree.

This allows expressing the coefficients of the basic equations

in a physically meaningful way. So, for example, using the

Bohr radius of a hydrogen atom, which serves as a natural

length scale in the Hartree system

a0 =
~
2

me2
= 5.291 · 10−11 m, (4)

It is possible to associate such important characteristics of

a solid body as the limit speed of sound with universal

constants

Vs =
e2

~

(

m
2M

)1/2

(5)

and the Debye frequency

ωD ≈ E
~

(

m
M

)1/2

. (6)

~ = h/2π is reduced Planck’s constant in equa-

tions (2), (3) and (4), e and m are the charge and mass

of the electron. The atomic mass M and the bond energy E
characterize the deformed medium.
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Table 3. Stages of plastic strain (according to data from Figure 2)

� Stage of the strain process
Dependence of

strain stress on the strain

I Yield plateau (Luders deformation) σ = const

II Linear strain hardening σ ≈ θIIε ∼ ε

III Parabolic strain hardening σ ≈ θIIIε
1/2 ∼

√
ε

IV Pre-fracture σ ≈ θIVε
n ∼ εn; n < 1/2

V Ductile fracture σ → 0

This opened the way to expressing many characteristics

of continuous media through universal physical constants.

So, in case of replacement χ → a0 and Vt → Vs in the

equation (1) the minimum value of the characteristic of the

autowave λVaw , called the plasticity parameter in Ref. [4]
and included in the elastoplastic invariant (1), will be

λVaw =
χVt

2
≈ ~

2(mM)1/2
. (7)

The value λVaw ≈ 10−6 m2/s calculated using the for-

mula (7) is close to the experimentally found values of

this value for the materials studied so far [4] and can

be interpreted as the minimum value of the kinematic

viscosity of a plastically deformable medium. The ratio (7)
is promising for further analysis of the nature of the

elastoplastic invariant.

3. Dispersion of autowaves of localized
plasticity

It is natural to expect that each autowave mode of

plastic flow that occurs during the deformation process

will correspond to a specific dispersion law ω(k), that

is, a certain form of dependence of the frequency of the

autowave ω = 2π/ϑ on the wavenumber k = 2π/λ. The

autowave modes occurring in case of deformation can be

experimentally identified on X−t diagrams that determine

the dependence of the position of localized plasticity foci

on time, as shown in Figure 2 [9], which demonstrates

the alternation of five different stages of plastic flow in

accordance with the change of the acting law of strain

hardening, which is illustrated in Table 3. The values of

frequencies and wavenumbers necessary for constructing

dispersion equations are found from vertical and horizontal

sections of X−t diagrams.

The nature of the dispersion of autowaves of localized

plasticity is related to the existence of its own spatial scales

in a deformable medium, determined by its defective mi-

crostructure. For this reason, the form of the dispersion law

is an important source of information about the structure of

the medium and the kinetics of deformation phenomena in

it. Taking into account the ability of a deformable medium
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Figure 2. X−t diagram of plastic strain of an hydrogen-saturated

polycrystalline alloy Cr−Ni austenite. Stages: I — Luders strain;

II — linear strain hardening stage; III — parabolic strain hardening

stage; IV — pre-fracture stage; V — ductile fracture stage.

to consistently generate autowave modes [6] in case of

deformation at a constant rate, it is very important for the

development of the autowave theory of plastic strain to find

dispersion ratios ω(k)corresponding to each stage of the

plastic flow.

At the stage of the elastoplastic transition, the process

of plastic flow is often realized through the development of

a Luders deformation, that is, a localized transition from

an elastic to a plastic state [10] on the Luders band front

moving with a constant velocity. In this case, it is possible to

assume that the phase Vph = ω/k and group Vgr = dω/dk
velocities are equal, and

Vaw =
ω

k
=

dω
dk

= const = a1. (8)

It follows thence that the simple linear law of dispersion

ω(k) = a1k is relevant for this stage of the process,

where a1 ≡ Vaw is the velocity of the Luders front.

The law of autowave dispersion of localized plasticity

follows for the stage of linear strain hardening from equa-

tion (7). Writing the plasticity parameter as λVaw = λ2/ϑ ,
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Figure 3. Dispersion in case of the collapse of autowave of localized plasticity. The initial data for V and Al (a). The same in functional

coordinates: 1 — D1, 2 — V, 3 — Ti, 4 — Mg, 5 — Al (coarse-grained), 6 —Zr, 7 —FeSi, 8 — Al (fine-grained) (b).

we obtain

λVaw =
λ2

ϑ
=

(2π/k)2

2π/ω
= 2π

ω

k2
≈ ~√

mM
, (9)

which leads to the quadratic dispersion equation for this

stage of the deformation process

ω(k) =
~

2π
√

mM
k2 ∼ k2. (10)

Experimental verification of the dispersion equation (10),
performed on polycrystalline Al and austenite Cr−Ni single

crystals [1], confirmed its validity. The same form of

dispersion dependence was demonstrated by FCC single

crystals at the stages of light sliding [4], for which σ ∼ ε,

too. The fulfillment of the quadratic dispersion law

was later confirmed under conditions of plastic strain of

Cr−Ni-austenite polycrystals at low temperatures [11]. The
experimentally obtained dispersion equation for the linear

stage of the process has the following form in all these

cases

ω(k) = a2k
2 + a1k + ω0 = α(k − k0)

2 + ω0, (11)

where ω0, k0 and a are empirical constants depending on

the grade of the material.

The stage of parabolic strain hardening is characterized

by similarity of the corresponding autowave structures of

localized plasticity with those observed at the stage of

linear strain hardening, but in this case Vaw = 0. The

dispersion relation for the parabolic stage is obtained from

equation (11) if k = k0 is used in it. In this case

ω = ω0, which reduces to the obvious condition ω = 0 if

the observed pattern is stationary. The same ratio can be

obtained by equating the phase and group velocity of the

autowave at this stage to zero, that is, by writing

dω
dk

=
ω

k
= 0. (12)

This equality holds if ω = 0, and then the condition ω = 0

can be considered the law of dispersion of the autowave

of localized plasticity at the stage of parabolic strain

hardening [12].
For the stages of collapse of the autowave of localized

plasticity at the pre-fracture stage, as well as for stepwise

plastic strain, the dispersion law acquires the most complex

cubic character, that is, ω(k) ∼ k3. In the case of collapse,

the data for the law of dispersion were obtained by graphical

processing of X−t diagrams for various metals and alloys

presented in Ref. [4,13] and shown in Figure 3, a, b.

The dispersion in case of serrated yielding deformation

was studied according to the data presented in Figure 4, a,

which shows the dependence of the periodicity of localiza-

tion fronts on the total deformation of polycrystalline Ni,

which has an exponential form. Since the width of the front

of the localized deformation bands is almost constant during

loading, the distance between the single fronts, equal to the

length of the working part of the sample, can be considered

the length of the autowave λ.

The possibility of independent measurement of the elon-

gation of the sample and the time period during stretching

allowed finding the form of the law of dispersion of

autowaves of localized plasticity for this stage of plastic

strain. Figure 4, a, b shows a change of the period and

frequency of the localization fronts movement process with

an increase of the overall strain. The law of variance in

this case has the form ω(k) ∼ k3 as shown in Figure 4, c.

Experimental data obtained during studies of the defor-

mation of Ni polycrystals made it possible to construct

the dependences of the phase and group velocities of the

studied excitation autowaves on the wavenumber shown in

Figure 4, d. Vph > Vgr in the studied range of wavenumbers.

The deformation at the pre-fracture stage during the

collapse of an autowave of localized plasticity resembles in

some of its details what is observed in case of a stepwise

deformation. For example, it was possible to see a solitary

Physics of the Solid State, 2024, Vol. 66, No. 11
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zone of localized plasticity moving at a constant speed at

the end of this stage (Figure 2), which serves as an analog

of an individual moving front in case of a deformation step.

Thus, summing up the analysis of the dispersion laws for

possible autowave modes of localized plastic strain, it is

possible to say that a well-defined power law of dispersion

corresponds to each stage of the plastic shaping process. In

particular, ω(k) ∼ k at the stage of Luders strain, ω(k) ∼ k2

at the stage of linear strain hardening, ω(k) ∼ k3 at the

pre-fracture stage (collapse of an autowave of localized

plasticity). The same (cubic) dependence is characteristic

of a stepwise deformation. The exception here seems to be

the stage of parabolic strain hardening, for which ω(k) = 0.

4. Auto-wave dispersion and active
deformable media

Starting the discussion of the obtained results, it is

necessary to remind that the activity of the medium is

a condition for the generation of autowave processes in

it [14,15]. Let’s clarify the meaning of this concept using the

definition provided in Ref. [15], according to which
”
active

media are characterized by a continuous dispersed influx of

energy from an external source and its dissipation“. The

activity of deformable media is ensured by the formation of

dislocations and dislocation ensembles of varying degrees of

complexity [7] in case of plastic flow, which serve as stress

concentrators. The inhomogeneous elastic fields of these

concentrators, which evolve during deformation, provide the

medium with energy sources dispersed over the volume.

Two important circumstances should be borne in mind

when discussing the meaning of the laws of dispersion for

autowave plastic flow processes in an active deformable

medium. First, it comes to taking into account the role of

microscopic (dislocation) mechanisms of deformation pro-

cesses, which have been well studied to date [7]. Secondly,
it is necessary to take into account that deformation kinetics

can be adequately described only within the framework

of the theory of nonlinear processes in active media [15],
which, unfortunately, has so far found almost no direct

application in the physical theory of plasticity.

Physics of the Solid State, 2024, Vol. 66, No. 11
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Based on the analysis of the dispersion relations obtained

for different stages of the flow process, it is possible to

express the law of dispersion of macroscopic autowaves

of localized plasticity in the following generalized polyno-

mial form

ω(k) = ω0 + a1k + a2k
2 + a3k

3 =

i=3
∑

i=0

a ik
i, (13)

describing the dispersion at all stages of the plastic flow. In

the general case, the coefficients of the polynomial (13) can
be defined as

a i = λi−1Vaw =
λi

ϑ
, (14)

where Vaw = λ/ϑ , and i = 0, 1, 2, 3. These coeffi-

cients, judging by their experimentally estimated magnitude

and dimension, can be written at the first stage as

a1 ≈ Vaw ≈ 10−4 m/s, a2 ≈ λVaw ≈ ~/
√

mM ≈ 10−6 m2/s

and a3 ≈ λ2Vaw ≈ 10−8 m3/s. These data indicate that

each form of the law of dispersion for different stages

corresponds to the existence of active deformable media

of different nature at the corresponding stages of the

deformation process. It can be assumed that the latter is

determined by dislocation microscale mechanisms of plastic

strain [7].
Thus, the elastoplastic transition (Luders deformation) is

realized at the yield plateau stage (i = 1) as the transforma-

tion of an elastically deformable medium into a plastically

deformable medium. This transformation consists in a rapid

increase of the density of mobile dislocations, associated,

for example, with the massive release of dislocations from

blocking impurities. Together with the linear dispersion

ω(k) = ω0 + a1k , this allows considering the Luders front

a switching autowave [15], occurring in a bistable medium

from interconnected bistable elements with two stable states.

This role is played by dislocations that initially have an

immobile (metastable) state that changes to a mobile

(stable) state after unblocking at the beginning of the plastic

flow. The kinetics of the deformation switching autowave

is characterized by a constant velocity of its front along the

sample and in this respect is similar to the kinetics of the

development of the front of the phase transformation of the

1st kind, as noted in Ref. [14].
The quadratic law of dispersion ω(k) = ω0 + a1k + a2k2,

which operates at the linear strain hardening stage (i = 2),
corresponds to the solutions of the nonlinear Schrodinger

equation [12]. The latter describes the course of the process

of self-organization in a deformable medium, and in this

case, a sequence of thermally activated elementary acts

of plasticity at this stage of the process can be used as a

microscopic basis [16]. The self-similarity of the emerging

deformation structures indicates the self-oscillatory nature of

the medium at this stage, and the corresponding autowave

mode is a phase autowave for which the condition of phase

constancy ωt−kx = const is valid.

The most complex cubic form of the law of dispersion

of autowave processes is found at the stages of collapse

of autowaves of localized plasticity (i = 3) or in case of

a stepwise deformation. The cubic law of dispersion (13)
corresponds to the well-known Korteweg−de Vries equa-

tion [12], which successfully describes the propagation of

solitary excitation pulses in active excitable media [15]. The
movement of the stepwise deformation front in case of a

plastic flow can be considered at the macroscopic scale

level of plastic flow as an equivalent of the propagation

of such an impulse. It is possible that the movement of

the deformation front formed towards the final stage of pre-

fracture, as shown in Figure 2 (Stage V), is an event of

this kind.

Finally, the parabolic strain hardening stage, when the

autowave of localized plastic strain takes the form of a

stationary dissipative structure, is characterized by a disper-

sion law of the form ω(k) = ω0 = 0 corresponding to i = 0,

which also satisfies the equation (13). It is clear from its

shape that there is no oscillatory component of the autowave

process. It can be explained at the dislocation level by the

fact that microscopic deformation mechanisms, comprising

the development of transverse sliding dislocations at this

stage, are capable of ensuring a local increase and spatial

alignment of defect density in deformable zones of the

material [7]. The growth of the total deformation in this

case does not require a contribution associated with the

macroscopic displacement of the boundaries of these zones,

as is necessary, for example, for the linear strain hardening

stage.

5. Conclusion

The study establishes a relation between dislocation and

autowave concepts of the nature of plastic flow. A thermally

activated nature of the plastic flow was the main feature

used for such a comparison [16]. For this reason the plastic

strain is usually considered as a sequence of relaxation

decays of local stress concentrators, accompanied by their

subsequent occurrence in case of the development of plastic

flow. In fact, this model, which is common for dislocation

approaches, ensures the activity of the deformable medium

due to the occurrence of distributed energy sources, which

serve as elastic fields of concentrators. The occurrence of

an active medium of one nature or another, in turn, makes

it possible to generate autowaves of localized plasticity in

it, and the evolution of autowaves determines the kinetics

and dynamics of the evolution of the deformable active

medium. The interconsistency of the processes of formation

of the active medium and the generation of autowaves

of localized plasticity in it explains the nature of the

Conformity Principle [4].
Thus, it is the activity of the deformable medium

caused by the existence of dislocation-type elastic stress

concentrators in it that becomes a significant feature of

the deformable medium. The activity of the deformable

medium makes it possible to align two alternative points of

view on the nature of plastic flow. The alignment procedure
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is based on the belief that dislocation and autowave views

on the nature of the plasticity phenomenon are mutually

complementary to each other. Mutual complementarity

forms a new view of the nature of plasticity, which consists

in the fact that dislocation mechanisms of deformation

ensure the occurrence of active elements of the deformable

medium. Their interaction results in the generation of

autowave processes in the medium, and autowaves of

localized plasticity, in turn, form macroscopic heterogeneity

in the spatial distribution and kinetics of deformation

processes.

It is clear that the same deformation process is visualized

in the form of well-known dislocation substructures [7] of
microscopic scale within the framework of such assump-

tions when observed by high-resolution electron microscopic

methods, and it is recorded as a macroscale autowave

structure — a pattern of localized plasticity when observed

by such methods as digital speckle photography [4,6]. The
stated point of view on the nature of the deformation

process makes it possible to align the micro- and macro-

scales of the process.
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