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A theory is presented for nonradiative plasmon-excitons propagating in atomically thin metal and semiconductor

layers placed nearby. For the waves of dielectric polarization of two-dimensional plasmon-excitons, the equations

of motion are derived in the form to be characteristic of damped coupled oscillators excited by an external dipole.

The obtained dispersion relations and optical spectra reveal the presence of pronounced anticrossing effect in the

range of plasmon-exciton resonance. The transient regimes in exciting 2D plasmon-excitons by a pulse of near field

and in their relaxation are discussed in terms of forced and concomitant damped oscillations with the beats.
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1. Introduction

Nanostructures with plasmon-exciton interactions possess

a distinctive spectrum due to easy tuning the resonant states.

Many papers were devoted to optical spectroscopy of radia-

tive plasmon-excitons (PE) and the related polaritons [1].
However, the properties of nonradiative PE unexcitable by

photons stay insufficiantly explored [2,3].
This paper develops a theory of two-dimensional (2D)

coupled PE propagating in neighboring semiconductor and

metal layers. Properties of 2D PE are investigated using

the equations of motion derived for coupled harmonic oscil-

lators from the material relatiopnships for the polarization

fields of 2D plasmons and excitons with taking account of

their Coulomb interaction. The 2D PE of our interest can

not be excited by light waves, but those are excited by the

near field of a subwavelength probe. In conformity with

the near-field optics, this work investigates the processes of

pulse excitation of 2D PE and their relaxation.

2. Model and statement of the problem

Consider the waves of dielectric polarization P(ν) for

2D plasmons (ν = 1) and excitons (ν = 2) coupled owing

to Coulomb interaction. Dealing with the 2D Fourier

transforms P(ν)(z , κ, t) having wavevector κ = (κx , κy ), we
apply the classical equations of motion derived in [2,3]
from the material relationships between 2D polarizations

P(ν)(κ, ω) and electric field E(κ, ω). Given κ = κex , the

equations of motion dependent on time t are [3]

(

d2

dt2
+ Ŵν

d
dt

+ ω2
νν(κ)

)

P(ν)
α (z , κ, t)

= �2
ν lν δ(z − z ν)

∑

ν′( 6=ν)

E(ν′)
α (z , κ, t), (1)

E(ν′)
α (z , κ, t) =

∑

β

∫

gαβ(z − z ′, κ)P(ν′)
β (z ′, κ, t)dz ′. (2)

Here, ωνν(κ) are the frequencies of 2D plasmons (ν = 1)
and excitons (ν = 2), Ŵν are the related decay rates,

Ŵν ≪ ωνν , lν is the effective width of polarization con-

finement region near the plane z = z ν , lν ≪ 1/k0 = c/ω,
and c is the velocity of light. Electric field (2) induced

by polarization P(ν′) in an isotropic background medium

is described by quasi-static (c → ∞) tensorial Green’s

function with components gαβ(z , κ). Parameters �ν define

the efficiency of exciting 2D polarizations P(ν) by electric

field.

In equations (1), expression ν ′(6= ν) in sums means

the absence of contribution with number ν ′ coinsiding the

numder ν of equation. On the other hand, the sums

include field (2) of external polarization P(ν′) with ν ′ = 0,

which generates 2D PE with wavevector |κ| ≫ k0. The

polarization P(0)(r, t) = µ f (t)δ(z −z 0)8(ρ) is assumed to

be related with the dipole moment µ f (t), having distribu-

tion 8(ρ) in a nanoarea of the plane z = z 0. Its Fourier

transform

P(0)(z , κ, t) = µ f (t) δ(z − z 0)8̃(κ). (3)

enter Eqs. (1) and (2). In them, 8̃ = 1, if 8 = δ(ρ) or

8̃ = 2J1(κR)/(κR) ≈ 1, if 8 = 1/(πR2) within a circle of

radius R . 1/κ .

In the above model with background dielectric constant

εb, Eqs. (1)−(3) consider further the longitudinal waves

of polarization P(ν) ‖ κ with P(ν)
α = δαx P(ν)(z , κ, t). The

related induced field (2) is polarized in the xz -plane, and

its components E(ν)
x , E(ν)

z just as

gxβ(z , κ) = −(2πκ/εb) exp(−κ|z |)[δβx + iδβz sgn(z )],

are of the zeroth order of magnitude in k0/κ ≪ 1.
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Substituting Eq. (2) into (1), we guess the solutions of

integro-differential equations to have the form

P(ν)(z , κ, t) = wν(κ, t)lν δ(z − z ν). (4)

Here, wν(κ, t) is the required time-dependent polarization

of plasmons (ν = 1) or excitons (ν = 2) making up 2D EP

with wavenumber κ, being a parameter of the problem.

After integration in Eq. (1) with taking into account Eq. (4)
and the conditions z 1 = 0, z 2 = h, |z 1 − z 2| = h ≪ 1/k0,

one gets the system of time-dependent differential equations

(

d2

dt2
+ Ŵν

d
dt

+ ω2
νν

)

wν(κ, t) + ω2
νν′ wν′(κ, t) = Cν f (t),

(5)
ν ′ 6= ν in ν -th equation. Eqs. (5) describe the forced

oscillations of coupled harmonic oscillators whose role is

played by the waves of 2D polarization (4) with ν = 1, 2.

Entering the left-hand-side of Eqs. (5) is the frequency

matrix with elements

ω2
11(κ) = 2πe2n2Dκ/(mεb) ≡ ω2

2D(κ),

ω2
12(κ) = ω2

2D(l2/l1) exp(−κh),

ω2
21(κ) = �2(2π/εb)κl1 exp(−κh),

ω2
22(κ) = ω2

0 + �2(2π/εb)κl2,



































(6)

where � = �2. In the right-hand-side of Eqs. (5), function
f (t) from (3) stands with coefficients

C1(κ) = −ω2
2Dl−1

1 exp(−κ|z 0|)[µx − iµz sgn(z 0)]8̃,

C2(κ) = −�2(2πκ/εb) exp(−κ|z 0 − h|)

× [µx − iµz sgn(z 0 − h)]8̃.















(7)

These coefficients define the efficiencies of near-field exci-

tation of 2D plasmons and excitons by the dipole µ from

Eq. (3) whose components lye in the xz -plane.
In Eqs. (1) and (5), the diagonal matrix elements ω11(κ)

and ω22(κ) given by (6) express the dispersion relations

of 2D plasmons and excitons, respectively. The κ-dependent

contribution to ωνν is due to proper electric field (2)
induced by polarization P(ν). Thus, the dispersion relation

ω11(κ) = ω2D(κ) of 2D plasmons is conditioned by the

collective field of electrons having 2D density n2D , effective

mass m and charge e. Another term ω22 contains a

small κ-dependent Coulomb correction ∼ (�/ω0)
2 ≪ 1 in

addition to frequency ω0 of exciton (bound electron-hole

pair). Parameter � is expressed through the interband

dipole matrix element for the Wannier excitons [3], and

through the oscillator strength of molecular transition for

the Frenkel excitons.

The non-diagonal elements ω12 and ω21 from (6) express,
respectively, the efficiency of plasmonic polarization exci-

tation by the electric field of exciton and vice versa. The

asymmetry ω12 6= ω21 reveals the difference between the

two mutual effects. To add, in the region of κ near PE

resonance the elements ωνν′ slightly depend on κ [3].

3. Solution of the problem
and discussion

The problem of excitation and relaxation of 2D PE is

solved using the Laplace transform [4]

Wν(p) =

∞
∫

0

wν(t)e
−pt dt, (8)

which gives the image function Wν(p) of complex variable p
for a function wν(t) given for t > 0. Transform (8)
of Eqs. (5) with initial conditions wν(0) = w ′

ν(0) = 0

results in the system of algebraic equations for Wν(p)
of form (5) with the formal replacements d/dt → p,
wν(t) → Wν(p) and f (t) → F(p).
Suppose that 2D PE are excited by the rectangular pulse

f (t) = sin(ωt){ϑ(t) − ϑ(t − τ )} (9)

of duration τ = πm/ω (m is an integer); the unit function

equals ϑ(t) = 0 for t < 0 and ϑ(t) = 1 for t > 0. Then,

the system of equations obtained from Eq. (5) using

transform (8) has the solution

(

W1(p)

W2(p)

)

=
ω[1 − (−1)m exp(−pτ )]

(p2 + ω2)D(p)

×

(

p2 + pŴ2 + ω2
22 −ω2

12

−ω2
21 p2 + pŴ1 + ω2

11

)(

C1

C2

)

, (10)

D(p) = (p2 + pŴ1 + ω2
11)(p2 + pŴ2 + ω2

22) − ω2
12ω

2
21.

(11)

If ω12ω21 = 0, 2D plasmons and excitons are uncoupled;

their dispersion relations ωνν(κ) at Ŵν = 0 are shown by

curves I and II in Figure 1, a. If ω12ω21 6= 0, appearan-

ce of mixed 2D PE becomes possible under condition

ω11(κ) = ω22(κ), which is satisfied at the intersection point

of curves I and II. Also, presented in Figures 1, a and b

are the dispersion relations u j(κ) and decay rates g j(κ)
of 2D plasmon-excitons with numbers j = 1, 2. Figure 1, a

demonstrates the effect of anticrossing (
”
repulsion“ of fre-

quencies), so that u1 < ω11, ω22 < u2.

Hereafter, used are the numerical parameters estimated

for pair Ag/CdTe [3]. For 2D plasmons n2D = 15 nm−2,

~Ŵ1 = 20meV, l1 = 0.7 nm, ~�1 = 2.7 eV are taken,

and for 2D excitons — ~ω0 = 1.6 eV, ~Ŵ2 = 0.3meV,

l2 = 2 nm = h, ~�2 = 200meV, εb = 10.

Inverse Laplace transform of functions Wν(p) from

Eq. (10) using the residue method [4] gives for solutions

of Eqs. (5) the following formula (t > 0):

wν(t) = 2Re
∑

p j

exp(p jt)
[

(p − p j)Wν(p)
]

p=p j

=
∑

j=0,1,2

w
( j)
ν (t). (12)
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Here, summation is performed over p j = −iu j−g j with

j = 0, 1, 2 for three pairs (p j , p∗
j ) of complex conjugated

poles of functions (10). In case of pulse (9), it follows

from (10)−(12) that

wν(t) = ϑ(t)
∑

j=0,1,2

w
( j)
ν (t) − (−1)m ϑ(t − τ )

×
∑

j=0,1,2

w
( j)
ν (t − τ ), (13)

where w
( j)
ν (t) denote the functions with j = 0, 1, 2 calcu-

lated from (12) at τ → ∞.

For p j=0 = −iω − 0 and τ → ∞, Eq. (12) gives ν -cont-

ributions into (13) of the form

w
(0)
ν (t) = |Qν(−iω)| sin{ωt − argQν(−iω)}. (14)

Here, Qν(−iω) = S0(ω)
∑

ν′ Mνν′(−iω)Cν′ , S0(ω) =
= 1/(1112), 1 j(ω) = u2

j − ω2 − 2iωg j ( j = 1, 2) with

u j(κ) and g j(κ) presented in Figures 1, a and b, and

Mνν′(p) are the elements of 2× 2 matrix from Eq. (10).
Formula (14) describes the contribution of ν -type

polarization to the forced oscillation of 2D PE with the

exciting frequency ω. Depending on ω, these oscillations

are resonantly enhanced near the frequencies u j(κ) of both

2D PE, as is shown in Figures 2, a and b by curves 1 for

spectral function S0(ω) entering Qν(−iω).
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Figure 1. (a) Dispersion relations ~ω11 of 2D plasmons (I), ~ω22

of 2D excitons (II) and ~u1 (1), ~u2 (2) of 2D plasmon-excitons

at Ŵ1 = Ŵ2 = 0. (b) Decay rates 2~g1 (1) and 2~g2 (2) of 2D PE

at ~Ŵ1 = 20meV (I) and ~Ŵ2 = 0.3meV (II). Parameters of

calculation are given in the text.
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Figure 2. Spectral functions 10−2 · S j/~
4 with j = 0 (1)

from (14), with j = 1 (2) and j = 2 (3) from (15) for 2D PE

with wavenumbers (a) κr = 0.832 nm−1 (at ω11 = ω22) and (b)
κ = 0.79 nm−1. Calculated with the same parameters as in Fi-

gure 1.

For p j = −iu j − g j with j = 1, 2, the contributions

in (13) at τ → ∞ are expressed by formulas

w
( j)
ν (t) = (−1) j exp(−g jt)|S j(ω)|

×
∑

ν′

|Mνν′(p j)| |Cν′ | sin(u jt − α
( j)
νν′). (15)

Here, S j(ω)=ω/(u j2 j 1̃ j) with 1̃ j(ω)=u2
j − ω2 − 2iu jg j ,

2 j = u2
2 − u2

1 − 2iu j(g2 − g1), Mνν′(p j) are the elements

of 2× 2 matrix entering Eq. (10), and α
( j)
νν′ = arg

(

S j(ω)

× Mνν′(p j)Cν′
)

.

Given κ, it follows from Eqs. (14) and (15) that the pola-

rization wν = 6w
( j)
ν , induced by a dipole from Eqs. (3), (9),

consists of three contributions: forced w
(0)
ν oscillation

with exciting frequency ω and two ( j = 1, 2) concomi-

tant w
( j)
ν oscillations with frequencies u j(κ) of 2D PE.

The latter oscillations decay for times ∼ 1/g j , therefore,

the transient processes under pulse excitation of 2D PE

have duration ∼ max(1/g j). Substituting Eqs. (14)

and (15) written as w(t) = A sin(̟t − α) into formula

p(x , t) = Re[exp(iκx)w(t)], one finds two waves of polari-

zation p∓(x , t) = A sin(̟t ∓ κx − α)/2, running in oppo-

site directions of the x -axis.
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Figure 3. Dependences on time ω0t of 2D PE polarization:

(a) 〈P(ν)〉 from (16) and (b) 〈P〉 from (17) excited at t = 0 by

pulse (9) with duration τ = 700π/ω. Calculated at exciting fre-

quency ω = uII(κr ), κr = 0.832 nm−1, and presented in arbitrary

units normalized by µx 8̃ at µz = 0 in Eq. (3).

Integrating expressions (4) over z , introduce the functions

〈P(ν)(κ, t)〉 =
∑

j=0,1,2

∫

P(ν)
j (z , κ, t)dz = lν

∑

j

w
( j)
ν (κ, t).

(16)

At t = 0 one has w
( j)
ν (κ, 0) 6= 0 at all j , but the

necessary initial zero condition is satisfied by superposed

polarization (16), i. e. 〈P(ν)(κ, 0)〉 = 0 [2,3]. This result

is clearly seen from Figure 3, a, showing the dependen-

cies of 〈P(ν)(κ, t)〉 on t in exciting by dipole µ = µex

from (3). For the two types of polarization with ν = 1, 2

these dependencies are similar: at first 〈P(ν)〉 grows

from zero, nonmonotonously because of beats, and at

t > 1/g j ( j = 1, 2) it passes to the regime of forced steady

oscillations 〈P(ν)
j=0〉 = lνw

(0)
ν .

Finally, let us discuss a process which includes excitation

of 2D PE by pulse (9) and subsequent relaxation after t > τ .

Figure 3, b shows the time dependence of superposition

〈P(κ, t)〉 =
∑

ν

〈P(ν)(κ, t)〉 = w1(κ, t)l1 + w2(κ, t)l2 (17)

under the same conditions as for 〈P(ν)〉 in Figure 3, a and

at τ = 700π/ω. For 0 < t < τ oscillations (17) have the

same features as 〈P(ν)〉 in Figure 3, a. In relaxation process

(t > τ ) the forced oscillations w
(0)
ν disappear in accordance

with (13), and decay of polarization is realized by transient

oscillations w
( j)
ν with j = 1, 2. As well, seen in Figures 3, a

and b are the beats related to energy transfer between

2D PE components complicated by weak dissipative losses.

To note, the beats in inital and final transient processes

predicted in two-oscillator model do not appear in one-

oscillator model [3].

4. Conclusions

This paper presents the theoretical study of two funda-

mental aspects for mixed-state 2D plasmons and excitons.

One concerns the properties of nonradiative coupled 2D PE

as such, independently of the way of their excitation.

Another aspect is near-field optical excitation of 2D PE by

pulses of any duration and relaxation of them. For the

model of coupled harmonic oscillations, it is shown that

2D PE excited under action of external oscillating dipole

include a forced and two damped oscillations. Predicted

are a considerable anticrossing effect and the presence

of beats in transient processes conditioned by Coulomb

interactions between components of 2D PE. Appearance

of the polarization beats in the two-oscillator model of

plasmon-excitons proves the existence of energy transfer

between the components of mixed-state 2D PE having close

frequencies.
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