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Surface plasmon polaritons in double-walled carbon nanotubes
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The dispersion characteristics of surface plasmon polaritons in double-walled carbon nanotubes have been

studied, taking into account ohmic losses. A dispersion equation in matrix form is obtained for the surface

plasmon polaritons, taking into account the anisotropy of the electrical conductivity of nanotube walls. Its numerical

solutions are found for low-order plasmonic modes propagating over a wide frequency range (including THz and

visible range). It was found that for double-walled carbon nanotubes of sufficiently large radii, the surface plasmon

polaritons deceleration coefficient can exceed 300.
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1. Introduction

Surface plasmon polaritons (SPPs) are electromagnetic

excitations at the dielectric-conductor interface, confined

in the perpendicular direction and resulting from the

interaction of electromagnetic fields with fluctuations in

the electronic plasma of the conductor [1]. Carbon

nanotubes (CNTs) represent a promising class of structures

that can serve to excite SPPs [2]. CNTs can be single-

or multi-walled (MWCNTs) and exhibit both metallic and

semiconductor properties. When the phase velocity of the

slow SPPs and the drift velocity of the charge carriers on

the walls of the CNT are comparable in magnitude and

coincide in direction, then the drift current can amplify the

SPP wave [3]. It was proposed in paper [4] to use this effect

in a terahertz radiation generator circuit based on an array of

parallel double-walled CNTs (DWCNTs) with direct current

flow. In this regard, a critical task is to investigate the condi-

tions of excitation of slow high-quality SPPs on CNT walls.

The dispersion properties of SPPs in DWCNTs are

studied in this paper, taking into account the anisotropy of

the electrical conductivity of the walls and ohmic losses,

and the deceleration coefficient of SPP modes in CNTs

of different radii is analyzed. The plasmonic properties

of nanotubes are described within the framework of the

hydrodynamic approach [5,6].

2. DWCNT conductivity model

The DWCNT is modeled by a system of two coaxial cylin-

drical walls made of graphene with radii a1 and a2(a2 > a1)
separated by a typical interlayer distance of 0.34 nm within

the framework of the linearized hydrodynamic theory devel-

oped in relation to CNT [5]. The conductivity tensor CNT σ̂ j

( j = 1, 2 — wall number) was derived in the article [6], us-
ing the hydrodynamic model, which determines the surface

current density. The equations of motion of charge carriers

and the equation of continuity, were used for deriving it.

Including losses, the components of the conduction tensor

in cylindrical coordinates (r, ϕ, z ) are expressed as:

σ jm
z z = σ0�

−1
(
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αm2
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)

,

σ jm
zϕ = σ jm

ϕz = σ0�
−1 αqm

a j
,

σ jm
ϕϕ = σ0�

−1(ωω̃ − αq2), (1)

where σ0 = in0e2/(meffω̃), n0 is the equilibrium surface

electron density on the walls of the nanotube, e
and meff are the electron charge and effective mass,

� = ωω̃ − α
(

q2 + m2
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)

, ω̃ = ω + iτ −1, q is the SPP

propagation constant, τ is the electron relaxation time,

m is the azimuthal mode number for SPP-mode, parameter

α =
V 2
F

2
is related to spatial dispersion (the components of

the tensor σ̂ j depend on q), VF is Fermi velocity. A special

feature of this model is the inclusion of the azimuthal

components of the surface current density on the nanotube

walls, as well as the dependence of conductivity on the

azimuthal mode number.

3. The dispersion relation for SPP
in the DWCNT

Using Maxwell’s system of equations, in the general case

of hybrid modes (Ez , Hz 6= 0), the Helmholtz equation for

the longitudinal components of electric Ez and magnetic Hz

fields can be written as follows:
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Figure 1. Dispersion relations for SPPs in the DWCNT with parameters a1 = 0.5 nm, a2 = 0.84 nm (solid lines — LF branches, dotted

lines — HF branches). Relaxation time τ = 10−12 s [7], a0 = 1 nm, ω0 = 2.3 · 1015 c−1. (A color version of the figure is provided in the

online version of the paper).
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Figure 2. Frequency dependences of the deceleration coefficient

β = c
Vph

of the fundamental mode (m = 0) for DWCNTs of various

radii (solid lines — LH branches, dotted lines — HF branches).
Parameters are the same as in Figure 1.
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+
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r
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Hz = 0, (2)

where κ2 = q2 − ω2/c2 is the square of the transverse

wavenumber, c is the speed of light in a vacuum. The

values of q and κ are real in the absence of losses, while

q > ω/c , which indicates SPP mode deceleration. Solving

equations (2) with appropriate boundary conditions yields

the following dispersion relation for SPPs:
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where Im and Km are modified Bessel functions of m-th or-

der,
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It is known that the dispersion relation has N different

positive roots for each m for SPPs in MWCNT having

N walls [6]. In particular, the solution of the equation (3)
splits into two branches for DWCNT — high frequency

(HF) and low frequency (LF) branches.
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4. Numerical analysis and discussion

The dispersion equation (3) was solved numerically with

respect to the complex propagation constant q = q′ + iq′′.

Figure 1 shows the dependences of the values q′a0 and
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Figure 3. Distribution of the electric field modulus for HF

branches with m = 0 (a), 1 (b) and 2 (c) in the cross-section

of the DWCNT at the reduced frequency ω/ω0 = 2.5. The other

parameters are the same as in Figure 1. (A color version of the

figure is provided in the online version of the paper).

q′′a0 on the reduced frequency ω/ω0 for the four lower SPP

modes in the DWCNT based waveguide. The following nor-

malization factors are used: a0 = 1 nm, ω2
0 = e2n0/ε0meffa0.

The following estimate is obtained for the ratio of the

equilibrium surface electron density to the effective mass of

charge carriers in [8] which is a part of the last expression:
n0

meff
= 2VF

π2~a0
, where the value of the Fermi velocity for

metallic CNT is estimated as VF ≈ 106 m/s. This gives the

value 2.3 · 1015 c−1 for the parameter ω0.

In the spectral region ω < 0.74ω0, there is a weakly

attenuating mode with the index m = 0, while for its LF-

branch the dependence q′(ω) is close to linear. The

attenuation coefficient q′′ of the mode with the index m = 0

remains below 4 · 105 m−1 in the region ω < ω0, which

corresponds to a path length of the order of several µm.

Higher-order modes (m ≥ 1) exhibit significantly greater

attenuation than the fundamental mode in the frequencies

of the cutoff, where q′ ≪ q′′.

Figure 2 shows the frequency dependences of the de-

celeration coefficient β = c
Vph

(Vph is the phase velocity of

the SPP) of the fundamental mode in DWCNTs of varying

radii a j . It can be seen that the value β is higher for the

LF branch than for the HF branch, and this value increases

with the increase of the nanotube radius. The frequency

dependence of the parameter β is weakly expressed for

the LF branch. Values of β > 300 are achieved at all

frequencies for this branch, in the case of large-radius

nanotubes, which makes it possible to realize the phase

synchronism condition and amplify the surface wave due to

interaction with drift currents.

Figure 3 shows the electric field modules in the DWCNT

cross section for the first three modes (m = 0, 1, 2)
corresponding to the HF branches in Figure 1. It can be

seen from the figure that the electric field of the SPP mode

is localized mainly on the DWCNT wall of a smaller radius.

The field intensity decreases rapidly outside the outer wall

of the DWCNT. The maximum value of the modulus of the

SPP electric field in the DWCNT decreases with an increase

of the azimuthal mode number m.

5. Conclusion

This study demonstrates the existence of SPPs in a

DWCNT with a strong localization of radiation inside a

nanotube and with a wavelength of several micrometers.

The strong localization of the wave field is accompanied

by a significant decrease in the phase velocity of the

fundamental SPP mode: depending on the diameter of

DWCNT, the deceleration coefficient reaches values of 200

and higher. Such a high deceleration of surface waves can be

used to implement decelerating systems with high efficiency

of converting current pumping energy into SPP energy.

The results obtained in this work for a single nanotube

are applicable to sparse arrays of DWCNT. Indeed, for

frequencies of the order of 1015 c−1, the localization

region of the electric field can be estimated by the value

of κ−1 ≈ (q′)−1 ≈ 1 nm; this means that the considered
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DWCNT practically do not affect each other at a distance of

more than 4 nm between their walls. Therefore, the results

of the study can be useful for the design of deceleration

systems based on both single nanotubes and arrays of CNTs.
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