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The study addressed the problem of improvement of the quality of the transmitted optical signal which is

measured by the magnitude of the excess of the signal-to-noise ratio over its critical value. It boils down to finding

the extremum of a function of many variables unique to each fiber-optic communication line. Various optimization

algorithms are compared for finding the most suitable one for this family of functions. The applicability of algorithms

based on Bayesian optimization to this problem was demonstrated. The time spent on finding a solution using the

proposed algorithms is less than when using deterministic global optimization algorithms, and the deviation from

the absolute optimum remains at an acceptable level.
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Introduction

The demand for the capacity and bandwidth of fiber-

optic communication lines (fiber optic lines) underlying

the Internet backbone networks increases with the growing

number of Internet users, IoT (Internet of Things) devices

and the rapid development of cloud technologies. It is

necessary to develop infrastructure, build new FOCL and

modernize existing ones. All this requires preliminary

modeling and selection of the optimal set of equipment and

its settings (designing) [1].

The accurate consideration of the effects that affect the

signal in an optical fiber, including nonlinear effects, is

one of the most difficult tasks that arise when designing

communication lines. It is necessary to solve the nonlinear

Schrodinger equation (NSE) for assessment of their impact

on the quality of signal transmission. It should be noted

that there is no analytical solution to the problem, and

the complexity of the numerical solution increases rapidly

with the increase of the accuracy, so this approach is not

applicable in practice due to limitations of computing power.

Various approximate methods for estimating nonlinear

effects are used to speed up calculations, but the GN model

obtained from the first order of perturbation theory [3] is

still most commonly used for the assessment [2]. As it was
shown in Ref. [4], all components of the electromagnetic

field acquire the same statistically independent Gaussian

distribution for coherent communication channels without

dispersion compensation, as they propagate through the

fiber, therefore, the effect is considered as additive Gaussian

noise in the GN model.

The reception signal-to-noise ratio (SNR) and therefore

the quality of signal transmission is affected by other factors

depending on various parameters of the fiber optic cable

apart from nonlinear effects: the total power at the input

of the cable sections and the characteristics of the optical

fiber used in them, the types of amplifiers used, their

gain factors (GF), frequency equalizer settings and the

used signal spectrum pre-distortion. The design process

can be represented as finding the global extremum of the

signal transmission quality function, which depends on all

these parameters. The designing task is simplified by the

truncation of the parameters of the objective function when

some of them are fixed and their values are replaced by

a preliminary estimate. This reduces the number of inde-

pendent variables and narrows the scope of the optimum

search. Various methods of truncating function parameters

are used. For example, a method for evaluating the amplifier

GF is provided in Ref. [5] which reduces the transmission

quality function to a function of one variable — output

power of the first amplifier, which significantly simplifies

the task of finding the optimal point of operation of the

line. But an analysis of the results of optimizing the signal

transmission quality function with truncation of parameters

to one showed that the deviation of the achieved quality

from the global maximum can reach 1 dB [6]. The use

of this truncation method could, according to calculations,

lead to a degradation to up to 1 dB of reception SNR due

to finding a local extremum instead of a global extremum
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Figure 1. General diagram of the considered FOCL. The spans are marked with curly brackets.

in case of optimization. Thus, the choice of an appropriate

truncation of the parameters of the objective function of

signal transmission quality is an important part of the fiber

optic network designing task.

A new method for truncating the parameters of the

objective function is proposed in this paper. The power

at the input of each cable section was taken as the main

parameters. The amplifier GF was calculated for calculating

the quality of signal transmission based on the selected

capacities and the amplifiers optimal in terms of noise factor

were selected, taking into account the limitations on input

and output capacities. This allows finding the best overall

noise factor for each individual case for a given general set

of amplifier types. Formulas for calculating the quality of

signal transmission are given in section 1.

The resulting objective function of signal transmission

quality does not have a general analytical form and is

essentially piecewise due to a limited set of amplifier

types. Its gradient is not defined at all points, so methods

based on gradient descent are not applicable to find the

extremum of this function. A comparison of various

optimization methods is presented in Ref. [7], including

a comparison of global and local optimization in relation

to the FOCL parameters and it is shown that heuristic

and stochastic algorithms, machine learning, analytical and

other approaches will be used to solve this problem. The

choice of the algorithm determines the truncation and allows

considering the task either as a global optimization of input

power profiles in fiber sections, or as a search for the

optimal configuration of the operating points of amplifiers.

The purpose of this work was to select the optimal method

for searching for the global extremum for the truncation of

the signal transmission quality function described above.

The derivation of the truncated transmission quality

function used is described in sec. 1 of this paper. The

optimization algorithms that were used to find the extremum

of this objective function are given in sec. 2. The tasks

used to compare the algorithms are described in sec. 3.

The results of the comparison and recommendations on the

choice of the algorithm are covered in sec. 4

1. FOCL model

The point-to-point topology of the fiber optic network

is considered, the scheme of which is shown in Fig.1. It

consists of receiving and transmitting devices and spans

containing cable sections and equipment between them —
amplifiers, equalizers.

The main effects that degrade the quality of signal

transmission in coherent FOCL are the noise of amplified

spontaneous emission of erbium-doped amplifiers (ASE)
and nonlinear signal distortion in the fiber due to the effects

of phase self-modulation and cross-modulation, which in

the GN model are considered as nonlinear noise. Both

types of noise are considered Gaussian and additive in the

framework of the GN model, [2], so that the total noise in

the line can be represented as the sum of two components:

P6 = PASE + PNL. (1)

Then the following inequality is the criterion of line

operability

P6 ≤ Pcr,

where Pcr is the critical noise level at reception in the

transceiver, at which demodulation of the received signal

is possible. If the left and right sides of the inequality is

divided by the signal strength, then it is possible to write

the expression (1) in terms of signal-to-noise ratio. It is

more convenient to calculate the performance criterion in

this form, since it does not require taking into account the

evolution of capacities along the communication line:

1

OSNRL
+

1

OSNRNL
≤

1

OSNRBtB
,

where OSNRL — ratio of signal power to ASE noise power

in the 0.1 nm band; OSNRNL — ratio of signal power to

nonlinear noise power in the 0.1 nm band; OSNRBtB —
the minimum allowable optical signal-to-noise ratio at which

demodulation of the signal with a given level of noise is

possible.

It is convenient [1] to introduce the concept of the

required optical signal-to-noise ratio OSNRR , which sets the

minimum optical ratio of signal power to ASE noise power

required for signal reception in the presence of nonlinear

line noise:

1

OSNRR
=

1

OSNRBTB
−

1

OSNRNL
. (2)

The OSNR margin (OSNRM) is used for characterizing

the excess of the signal transmission quality level over the

minimum required value which is defined by the formula

OSNRM =
OSNRL

OSNRR
. (3)
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Figure 2. Change of OSNRL and OSNRR as the signal propagates

over the spans. The difference between them in dB is the value

OSNRM .

Figure 2 shows the evolution of the required and linear

OSNR in the FOCL. The condition for the operability of the

communication line is the absence of intersection of these

curves, it can also be written as an inequality

OSNRM ≥ 1. (4)

Also, a transition to dB is used to determine OSNR then

the formula (4) is written as

osnrM = 10 log10(OSNRM) ≥ 0. (5)

Thus, the OSNR margin is a metric reflecting the quality

of signal transmission, and the optimization of the operation

of the fiber optic system can be represented as finding the

maximum OSNRM in case of variation of the parameters

of the optical line. It is necessary to know OSNRL,

OSNRNL and OSNRBtB to calculate the margin as follows

from formulas (2) and (3). Let’s take a closer look at the

calculation of linear and nonlinear OSNR, since OSNRBtB

is a characteristic of the transceiver and does not depend on

the FOCL parameters.

OSNRL of a signal for each channel that has passed

through several intermediate spans can be calculated using

the formula of inverse OSNR:

1

OSNR6
L

=
∑

i

1

OSNRi
L

,

where OSNR6
L — total OSNRL, and OSNRi

L — linear

OSNR of the ith span, which by definition is equal to the

ratio of signal power Ps and power PASE , or

OSNRi
L =

Ps

PASE
=

Gi P i
in

(F i
EQGi − 1)hν1ν

,

where Gi — full GF of span, hν1ν — quantum noise

power in the band 1ν , P i
in — span input power, F i

EQ —
equivalent noise-factor of the span. The Friis formula is

used to calculate the equivalent channel noise-factor of the

entire span

FEQ = F1 +

N
∑

i=2

Fi − 1

5i−1
j=1G j

,

where FEQ — the equivalent noise factor of the entire group

of elements, Fi — noise factor of each of the elements and

G j — GF of elements. The noise factor of the amplifier

was calculated in this paper using a piecewise function

depending on the input power P i
in , this allowed obtaining

the noise factor values close to those measured in the

experiment.

A modified GNCFF model was used to calculate

OSNRNL [8]. The following formula was applied for each

span

OSNRi
NL =

1

ηi(P i
in)

2
,

where ηi — the nonlinearity coefficient of the corresponding

cable section. The total value for receiving a signal was

calculated using the coherent summation formula

1

OSNR6
NL

=

[

∑

i

(

1

OSNRi
NL

)
1

1+ε

]1+ε

,

where ε — noise coherence coefficient. This noise

calculation model was experimentally verified [9].

OSNR6
L , OSNR6

NL and OSNRM are functions of the input

powers in each span. A special case of the reserve function

of the input powers in the case of only two spans is shown

in Fig. 3. In general, the dimension of the function can be

higher, since it is determined by the number of spans.
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Figure 3. The OSNR margin function for a fiber optic cable

containing two fiber spans. P1 — input power of the first cable

section, P2 — input power of the second section. Gaps in function

are associated with the transition to other types of amplifiers due

to their limitations in input and output power.
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2. Extremum search algorithms

The considered target function of the OSNR margin,

depending on the input power in the spans, is multidimen-

sional. Each input power value is subject to a limitation

related to the permissible output power of the amplifiers.

The function gradient is not defined at all points due

to the presence of discontinuities in the function, which

means that it is desirable to use direct methods for its

optimization, that do not use a gradient in calculations. The

use of a predefined type of amplifier in each span may be

another optimization method, then there will be no gaps

in the function definition area. But such a method will

require additional iteration of the amplifiers and, in fact,

will introduce the need for additional optimization with the

amplifier types being the arguments. The first approach

allows finding the optimal amplifiers and settings in one

optimization, for this reason it was chosen in the study.

Thus, the algorithm of multidimensional, conditional, direct

optimization is suitable for the previously defined task of

optimizing the margin from the input powers of the spans.

Since the task of this study is to choose the optimal

optimization algorithm, rather than writing or modifying an

existing one, the available implementations of algorithms

were used for comparison that satisfied the necessary

conditions for the multidimensionality and non-smoothness

of the function, the presence of restrictions, as well as, if

possible, the search for a global minimum. Algorithms from

the SciPy, BayessOpt and HyperOpt, AX packages available

for Python were used. 4 algorithms were selected for a

more detailed comparison after preliminary comparison of

the results for one of the calculation tasks.

The first algorithm from the BayessOpt package is a

development of random search, which allows reducing the

number of iterations in the search for the optimum — this

is the Bayesian optimization algorithm [10]. It is based on

a probabilistic model and a data collection function. The

first one is used to approximate the optimized problem,

which allows reducing the number of calculations of the

initial function and, as a result, reducing the time to find the

optimum. The value of the calculated function is found at a

certain point at each optimization step, and the probabilistic

model is updated based on it. Then, the next point is

determined using the data collection function for calculating

the optimized function. Optimization is completed after

reaching the iteration limit, which is set by the user. Several

different modifications of the algorithm were used in this

paper that differed in the probabilistic model, one from the

AX package, and the second from the BayessOpt package.

TPE (Tree-structured Parzen Estimator) is the second

algorithm used in this paper [11]. It is also a stochastic direct

algorithm, but unlike the previous one, it performs several

additional iterations of random search before optimization.

They are necessary to form two distributions for
”
success-

ful“ and
”
unsuccessful“ points. Some percentage of the

best optimization metrics is considered as
”
successful“ for

example, 10% of the sets of capacities at the entrance to all

Table 1. List of test task parameters

� Length Lengths Number Format

FOCL, km of spans, km of spans of modulation

1 1000 100 10 DP-QPSK

2 1000 70−130 10 DP-QPSK

3 1000 70−130 10 DP-QPSK

4 500 55−115 5 DP-16QAM

spans for which the best OSNR margin is obtained. A new

point is chosen by maximizing the expected improvement

function, or the ratio of the probability of finding a new

point in each of the two distributions. The iteration limit is

also the completion criterion.

DIRECT algorithm was one of the last selected algo-

rithms [{]12İt is a deterministic optimization algorithm

based on Schubert optimization. The maximum slope

coefficient of the function is set, i.e. Lipschitz constant,

for the work of the Schubert algorithm, the point of the

minimum value of the function is determined using the

Lipschitz constant and the values of the function at the

boundaries, and the domain of definition is divided into two

parts and the algorithm is repeated for each of these parts.

The algorithm stops when the area becomes less than the

specified value after the division, or the number of iterations

does not exceed the critical value.

3. Tasks for testing

It was decided to select several typical designing tasks

for multi-span fiber optic cables for comparing the speed

and accuracy of optimization algorithms and communication

lines with different span lengths, their number and mod-

ulation format were considered in these designing tasks.

Table 1 shows the parameters of the four tasks used for

calculations, the second and third tasks differ only in the

distribution of fiber lengths in the spans.

The first configuration is a model line containing

only 10 identical spans of 100 km with 20 dB atten-

uation. The second and third configurations are more

close to reality, they have the same total line length,

but a random distribution of length between spans, the

fiber attenuation coefficient matches the first configura-

tion — 0.2 dB/km. The latter configuration contains

five spans with randomly distributed length, but a dif-

ferent modulation format is modeled for the transceivers,

DP-16QAM.

Calculations in all tasks were performed for 80 coherent

DWDM channels. The maximum span length was 130 km,

it was limited by the amplifiers used in the calculation.

Equalizers were used to compensate for the effects of

waveform distortion due to power transfer and uneven fiber

8∗ Technical Physics, 2024, Vol. 69, No. 11
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Figure 4. Distribution by margins calculated using various stochastic algorithms for the first problem from Table. 2: a — hyperopt, b —
ax, c — bayes-opt.

Table 2. The OSNR margin in dB, mean and confidence interval

for stochastic algorithms, and value for DIRECT

Task/ Bayesian Bayesian TPE Direct

Algorithm optimization optimization (hyperopt)

(bayes-opt) (AX)

1 2.3± 1.1 2.9± 0.7 3± 1 3.7

2 0± 2.4 0.4± 0.6 0.6± 0.3 1.2

3 0.9± 1 1.4± 2.1 1.6± 0.8 2.2

4 0.1± 0.5 0.6± 0.1 0.4± 0.1 0.6

transmission spectrum, which were installed after every

third span.

4. Discussion of the results

For each task, the margin of acceptance was calculated by

different algorithms in order to compare their applicability

and accuracy for different tasks. The DIRECT algorithm is

deterministic, so the result of its work is one value of the

optimal value, and the rest of the algorithms are stochastic,

so the calculation of each of them was carried out 150 times

to form a sample of the results.

Table 2 shows the results of comparison of algorithms of

optimization of the OSNR margin in dB for four different

tasks which are described in section 3. Figure 4 shows the

probability distributions for the results of calculations of the

OSNR margin in a problem with 10 spans of equal length

using stochastic algorithms.

It can be seen that stochastic algorithms are always

inferior to deterministic algorithms on average, but an order

of magnitude higher speed of operation is their advantage.

The average calculation time by the DIRECT algorithm was

30min, while stochastic algorithms allowed obtaining result

in a minute due to a noticeable reduction of the total number

of calculations. The working time is directly related to the

total number of calculations of the optimized function, since

the calculation time of one iteration is weakly dependent on

the input parameters. The criterion for termination of the

stochastic algorithm is the completion of the calculation of

a fixed number of iterations, so that a flexible adjustment of

the required calculation accuracy is possible for them due

to the full working time.

The value of the confidence interval weakly depends on

the type of task, it was smaller for AX and Hyperopt

for tasks with spans of random length, but the largest

confidence interval for bayes-opt was obtained for such

particular a task. The confidence interval slightly decreases

with a decrease of the number of spans, which means

that the error of finding the optimum relative to the global

minimum for stochastic algorithms may increase with an

Technical Physics, 2024, Vol. 69, No. 11
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increase of the number of spans, i.e., an increase of the

number of iterations is required for designing longer lines.

Conclusion

Four most effective algorithms were selected and com-

pared for searching the extremum of a function of many

variables in the FOCL designing problem. Optimization of

the span input power using the DIRECT algorithm made

it possible to obtain the largest OSNR margin in all the

considered problems. The calculation time increases non-

linearly with an increase of the number of spans and is over

30min for 10 spans. Optimization of power using stochastic

algorithms allowed reaching a compromise by reducing the

calculation time by an order of magnitude to 1min, while

the degradation of the quality of margin determination was

no more than 0.7 dB when taking into account the average

value for the TPE algorithm. An increase of the confidence

interval of the results was observed with an increase of the

number of spans for stochastic algorithms, their applicability

for this class of problems is beyond the scope of this study.
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