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Changing in electroencephalography betweenness centrality with

cognitive load
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A method for calculating the betweenness centrality of EEG based on wavelet bicoherence is considered. It has

been established that, in the presence of cognitive load, significant betweenness centrality variations independent of

the load type occur in some frequency bands.
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Investigation into the possibilities of monitoring and de-

tecting the processes occurring in the brain under cognitive

load is extremely important both for understanding the

fundamental aspects of the brain functioning [1–3] and

for developing the
”
brain−computer“interfaces [4,5]. At

present, one of the most accessible tools for studying

characteristics of the human brain activity is multichannel

electroencephalography (EEG). EEG signals exhibit a rather

complex and chaotic behavior, and their analysis typically

employs various methods stemming from radiophysics and

nonlinear dynamics [3,6–8], as well as artificial intelligence

methods [9]. Despite significant progress in the techniques

of machine learning and deep artificial intelligence, methods

of radiophysics and nonlinear dynamics do not give up

their positions; this is primarily caused by that they are

able to explain the mechanisms of evolution of the observed

regularities and their violations in patients.

One of the classes of methods actively used at present

is the network analysis allowing assessment of structures

emerging in the cerebral cortex activity reflected in EEG.

For instance, among those methods there may be distin-

guished a method for assessing the betweenness centrality

of EEG channels in the brain network structure simulated

based on calculating wavelet bicoherence [3] in order

to determine the levels of interaction between different

channels. By applying this approach to processing EEG

records, it is possible to quite accurately identify differences

in peculiar features of the brain network structure in

the state of solving cognitive problems and at rest [3].

Nevertheless, the question still remains open whether the

differences in the brain network structures manifested under

cognitive loads of different types will be different. This is

just the issue to be solved in this work. The results obtained

may be interesting both fundamentally for understanding the

brain functioning in solving problems of various types and

practically for assessing stability of techniques used in the

”
brain−computer“neural interfaces.

In this study we used EEGs recorded from clinical trial

participants during various cognitive tests. The age of

the volunteers ranged from 19 to 25 years; among the

exclusion criteria there were obesity (body mass index

> 28), chronic pain for more than six months, preexisting

serious neurological disorders, psychiatric diagnoses, and

also anxiety and depressive disorders (HADS (hospital
anxiety and depression scale [10] > 2).

All the volunteers underwent single-type neuropsycho-

logical tests whose duration was divided into six phases

(Fig 1, a). The first phase is resting before and after the

experiment active part; the second, third and fourth phases

correspond to the slow, medium and fast time of finding the

Schulte matrix numbers [11]; the fifth phase is passing the

test for memorizing and reproducing the points arrangement

in the matrix [12]; the sixth phase is reading the test

instructions to the trial subjects. All the tests were carried

out using a touch monitor and special software previously

created by the authors. The test protocol was generated

automatically and synchronously with recording biomedical

monitoring data for the trial participants. Multichannel

surface EEGsignals were recorded using electroencephalo-

graph Encephalan-EEGR-19/26 (Medicom MTD, Russia)
with the sampling frequency of 250 Hz; the procedure

was based on the standard monopolar recording method

with two reference points and 19 active electrodes [13];
schematic diagram of the EEG electrodes arrangement is

given in Fig. 1, b. Prior to digital processing, all the

electroencephalography signals passed the preprocessing

stages, namely, Gram−Schmidt filtering supplemented with

electrooculography [14] for removing oculomotor artifacts

and filtering based on decomposing into basic empirical

modes in order to remove artificial noise and muscle

artifacts [15].
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Figure 1. a — time-scale schedule of cognitive tests in neuropsychological experiments; b — arrangement of EEG electrodes.

The obtained EEG data was analyzed based on the

concept described in [3]. At the first stage of analyzing

the records, the method of continuous wavelet trans-

form [14] was applied to calculate for each EEG channel

xi (t), i = 1, 2, . . . , N complex coefficients

ai ( f , t) + jbi ( f , t) = Wi ( f , t)

=
√

f

t+4/ f
∫

t−4/ f

xi (t)
(
√

f π1/4ejω0 f (t−t0)ef (t−t0)
2

/2
)∗

dt, (1)

where j is the imaginary unit; based on coefficients (1), real
and imaginary parts of wavelet bicoherence σi , j ( f , t) [16]
were calculated as
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(2)
The modulus of the degree of coherence between two

EEG leads at each experiment phase (k) was averaged

over various frequency ranges under consideration and time

intervals Tk corresponding to the phases of cognitive load

and rest:

σi , j ,k(1 f )=
1

Tk

×

∫

1 f

√
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√
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(3)
In this work, seven frequency ranges were chosen

for analyzing the EEG signals: 1 f 1 ∈ [0.5; 1.5]Hz,
1 f 2 ∈ [1.0; 4.0] Hz, 1 f 3 ∈ [4.0; 8.0] Hz,

1 f 4 ∈ [8.0; 12.0]Hz, 1 f 5 ∈ [12.0; 20.0] Hz,

1 f 6 ∈ [15.0; 25.0] Hz and 1 f 7 ∈ [20.0; 30.0] Hz. As

a result, N × N matrices reflecting information on the

degree of phase coherence between all N = 19 EEG leads

were obtained for each phase of the experiment and each

frequency range. Quantity σi , j ,k(1 f ) takes values from
”
0“

to
”
1“ while

”
0“ designates the absence of phase coherence

and
”
1“ designates complete phase coherence; therewith,

σi ,i ,k(1 f ) = 1∀k, ∀1 f .
Then, in order to assess the connectivity structure in EEG

leads, the phase-coherent matrices obtained for each fre-

quency range were analyzed using a measure for assessing

the centrality of connections [3,17]. This measure created

on the basis on calculating the shortest paths between the

network nodes allows estimating centrality for each of them

as a value proportional to the number of shortest paths

passing through this node. To calculate the node centrality,

let us pass to considering a weighted plot whose N nodes

correspond to the EEG leads, while weights w i , j of edges

connecting the i th and j th nodes should be the lower,

the higher is the phase coherence between these edges:

w i , j ,k,1 f = 1− σi , j ,k(1 f ). Then the centrality for each i th
EEG lead can be calculated as

g̃i ,k,1 f =
∑

i 6= j 6=l

3i
j ,l/3 j ,l , (4)

where 3i
j ,l is the number of shortest paths between nodes

j and l passing through the i -th node, and 3 j ,l is the

total number of shortest paths between nodes j and l ; k
indicates the experiment phase, 1 f is the frequency range.

For each phase and each range, obtain N = 19 values of g̃i

and normalize them:

gi ,k,1 f =
g̃i ,k,1 f

∑

∀1 f

N
∑

i=1

g̃i ,k,1 f

. (5)

Centrality degrees gi ,k,1 f were calculated for all the trial

participants at all six phases of the experiment in the above-

specified frequency ranges. To continue the analysis, pa-

rameters gi ,k,1 f were grouped according to the experiment

phases and regions of EEG electrodes location (leads of the
right and left hemispheres, motor zone areas) and visualized

as standard range box plots [18] (Fig. 2, a−c).
Ranges 1 f 2, 1 f 3, 1 f 6 and 1 f 7 exhibit no significant

differences in centrality between different phases of the

experiment. In the 1 f 1 range (δ rhythm, Fig. 2, a),
centrality at the phases with cognitive load increases with

Technical Physics Letters, 2024, Vol. 50, No. 10



Changing in electroencephalography betweenness centrality... 61

0.01

0.02

0

0.04

Relax Schulte
slow medium fast

Instructions ImageSchulte Schulte

0.05

0.03

B
et

w
ee

n
n
es

s 
ce

n
tr

a
li

ty
Df1

Left

Motor cortex

Right

a

0.01

0.02

0

0.04

Relax Schulte
slow medium fast

Instructions ImageSchulte Schulte

0.03

B
et

w
ee

n
n
es

s 
ce

n
tr

a
li

ty

Df4

Left

Motor cortex

Right

b

Figure 2. Box plots of the range of betweenness centrality gi ,k for all the trial subjects at all the experiment phases in frequency ranges

1 f 1 ∈ [0.5; 1.5] Hz (a), 1 f 4 ∈ [8.0; 12.0] Hz (b) and 1 f 5 ∈ [12.0; 20.0] Hz (c). The median (orange line), lower and upper quartiles, and

confidence interval are shown. The horizontal axis represents phases of the experiment. Green color corresponds to the right hemisphere

EEG leads, red color is for the left hemisphere, violet color is for the motor cortex region. The colored figure is given in the electronic

version of the paper.
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Fig. 2 (continued).

respect to that at the phases of rest. This variation is

most pronounced when signals from the right and left

hemispheres are considered. When considering leads from

the motor cortex region only, the δ range does not exhibit

noticeable variations in centrality.

In the 1 f 4 (Fig. 2, b) and 1 f 5 (Fig. 2, c) ranges corre-

sponding to the α— and βrhythms, respectively, centrality

at the phases of cognitive load is considerably lower than

at the phase of rest. The difference in centralities is most

clearly manifested in the α range (Fig. 2, b) both in the

motor cortex area and in other leads.

Note that the type of cognitive load and speed of solving

the problem do not affect the degree of centrality: in all

the considered ranges, phases with cognitive load overlap

with the ranges of values of the first and third quartiles.

Thereat, the phase of rest intersects only with the confidence

intervals. Reliability of differences in centralities at the

rest stages (passive phase) and cognitiveload stages (active
phase) was high: p < 0.05 in the 1 f 4, 1 f 5 frequency

ranges and p < 0.01 in frequency range 1 f 1 in accordance

with the Mann−Whitney criterion [19]. However, since

multiple comparisons are to be performed (three zones

of brain activity), it is necessary to take into account the

Bonferroni correction [20], which reduces reliability of the

differences to frequency range 1 f 1 only.

Thus, the approach proposed here allows constructing

a classifier able to distinguish the state of rest from the

state of solving any cognitive task by assessing the degree

of centrality. Such a classifier may be used, for example,

in developing neural interfaces
”
brain−computer“ as a test

system determining whether a human is currently solving a

certain problem or is resting and ignoring the allotted task.

At the same time, it is impossible to distinguish the loads

from different human cognitive functions.
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