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Principles of the structural design of photonic quasicrystals
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A theory of the structure of icosahedral quasicrystals is being developed based on the tiling theory and the

concept of unit cells. An algorithm is proposed that includes filling several types of unit cells with atoms according

to the local matching rules and filling the space with unit cells through inflations and deflations. The theory makes it

possible to design the structures of icosahedral quasicrystals of all the three types within both groups of icosahedral

symmetry, including the right-handed and left-handed enantiomorphic forms..
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Aperiodic ordering opens up prospects for the production

of new materials and structures with unusual properties.

Extensive research efforts aimed at creating new types of

quasicrystalline alloys, metamaterials, materials from non-

atom building blocks, and aperiodic deterministic structures

are currently underway [1,2]. Photonic quasicrystals [3–5]
belong to a special class of structures with aperiodic order.

The design of possible photonic crystal structures has long

relied on analogies with periodic crystal lattices. Aperiodic

photonic materials may offer fundamentally new possibilities

for control and management of light fluxes, potentially even

fulfilling the dream of an
”
invisibility cloak“ [6]. Since

the produced materials have no natural counterparts, the

development of theoretical principles of targeted design

of their structures becomes important [7]. The higher-

dimensional approach [8,9] has limited applicability for

designing photonic quasicrystal structures, which is why

alternative techniques [10–12] become relevant.

We are developing a theory of the structure of icosahedral

quasicrystals based on the tiling theory and the concept of

unit cells [13–17]. The structural design of photonic qua-

sicrystals involves two subproblems: filling the space with

cells and filling the cells with atoms. An iterative inflation

and deflation algorithm is used instead of translations to fill

the space with cells, and copies of several types of unit cells

should be used instead of a single one. Unit cells must

satisfy local matching rules. The method of filling a cell

with specific atoms should be defined uniquely by its type.

The following two tilings obtained by projection from

6D space and consistent with the concept of unit cells

are known: the Socolar−Steinhardt tiling into four types

of zonohedra [18] and the ABCK Danzer tiling into four

types of tetrahedra [19]. They are characterized by different

inflation factors, although Danzer himself has pointed out

their complete equivalence in the sense of mutual local

derivability [20]; i.e., polyhedra of one of them may be

dissected into smaller parts, which may then be regrouped

into polyhedra of the second tiling (see [21], p. 235). Thus,

there should exist a certain tiling into smaller subunits from

which both tilings may be constructed.

Three types of icosahedral quasicrystals (P , I , F) may

be obtained by projecting six-dimensional counterparts

of the primitive, body-centered and face-centered cubic

lattices, respectively [22]. The Socolar−Steinhardt tiling is

constructed on six basis vectors and corresponds to type

P . The Danzer tiling is derived from the D6 root lattice

and, consequently, should correspond to type F . The F -

type polytope centering scheme is obtained by combining a

primitive six-dimensional hypercubic lattice with several of

its translations and includes types P (one original sublattice)
and I (a combination of two sublattices) as subsets (see [9],
p. 177). Therefore, there should exist three types of

mutually consistent tilings that could form the basis for

structural characterization of all three types of icosahedral

quasicrystals.

The first one is the Socolar−Steinhardt tiling into golden

zonohedra. The second one is the Danzer tiling [19], but,
instead of the four Danzer tetrahedra (A, B , C, K), we

use their copies reduced in size by a factor of τ (a , b,
c , k), where τ is the golden ratio. The basis set of cells

in the third tiling of interest to us is (a , c , k , K). It

is formed by three Danzer tetrahedra A, C, K reduced

in size by a factor of τ and one tetrahedron K of the

original size. Note that the basis set of tetrahedra of

the ackK tiling is also derived from the D6 root lattice

by projecting its Voronoi polyhedron [23]. An equivalent

(up to inflation) tiling was mentioned by Danzer [19] in

the section titled
”
Unsolved Problems.“ The primary issue

was whether the two tetrahedral tilings mentioned above

are in some sense isomorphic to each other and, if not,

what is the fundamental difference between them. The

problem has remained unsolved for several decades, and the

second tetrahedral tiling mentioned by Danzer has remained

virtually unexplored. The present paper fills this gap to a

certain extent.
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Substitution rules for the ackK tiling. The edges of tetrahedra are oriented along the corresponding axes of symmetry of an icosahedron.

Vertices of different types are colored differently: A (white), B (black), C (magenta), and F (blue). The inflation factor is τ . A color

version of the figure is provided in the online version of the paper.

The substitution rules for the ackK tiling are shown in the

figure. Substitutions are characterized by the substitution

matrix or the composition matrix transposed to it. In the

latter case, one may use a formal matrix equation with the

usual row-by-column multiplication rule:
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There are four types of vertices in the tiling. We use

Roman letters to denote vertices (A, B, C, F) and italic

letters for tetrahedra (as a reminder, capital letters A, B , C,

K are traditionally used to denote Danzer tetrahedra, and

their copies reduced in size by a factor of τ are designated

here with lowercase letters a , b, c , k). Vertices A, B, C

in the resulting tilings correspond to three types of nodes

with local icosahedral symmetry. They cyclically replace

each other after each iteration: C→B→A→C. Therefore,

the inflation factor is equal to golden ratio τ , and the self-

similarity factor of the packing as a whole is τ
3. There

are two types of edges [AB] of the same length that differ

in the local matching rules. Edges of the second type

are highlighted in light red in the figure (a color version

is provided online) to emphasize the analogy with the

corresponding edges of the zonohedral tiling [13–17].

There is an exact mutual correspondence between the

ackK tiling and the Socolar−Steinhardt tiling. Nodes C

were lacking initially in the zonohedral tiling [18]. We

added them [13]. If one also adds nodes F to the centers

of the triacontahedron faces and to equivalent positions, all

nodes in both tilings will match completely. Zonohedra

(prolate rhombohedron (GR), rhombic dodecahedron (RD),
rhombic icosahedron (RI), and rhombic triacontahedron

(RT )) are composed of tetrahedra in accordance with

equation
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If nodes C in different types of zonohedra are regarded as

different ones, zonohedra may be used as unit cells in the

description of P-type quasicrystals.

If nodes C are added into zonohedra, the zonohedra are

broken down into tetrahedra in the manner described above,

and all tetrahedra of the same type are equivalent to each

other, the packing corresponds to I-type quasicrystals. The

tetrahedra of the resulting ackK tiling may be used as unit

cells. When decorating them with specific atoms, one needs

to take into account the following possible non-equivalent

positions: four types of nodes (three of which have local

icosahedral symmetry), 10 positions on different edges, 12

positions on different faces, and four positions within each

tetrahedron.

The ackK tiling needs to be converted into the abck
Danzer tiling to obtain F-type icosahedral packing. This

may be achieved by presenting all tetrahedra K as the unions

of two tetrahedra b and k (one additional node C then

emerges on edge [CF] of each tetrahedron K):
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Thus, any icosahedral quasicrystal may be regarded as

a packing of unit cells. Three types of quasicrystals (P ,
I , F) correspond to three types of tilings, each with its

own basis set of unit cells. All three tilings are consistent

with the higher-dimensional approach, and the procedure

of projecting from six-dimensional space is unambiguous.
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All nodes of the P-type quasilattice are a subset of nodes

of the I-type quasilattice, which, in turn, are a subset of

nodes of the F-type quasilattice. A complete agreement

with the theoretically derived values of the inflation factor

is achieved: this factor is τ
3 for type P and τ for types I

and F [24].

Three versions of packing with global icosahedral sym-

metry, which are locally isomorphic to each other and are

generated according to uniform rules depending on the

choice of the initial configuration, exist for each of the three

types of quasicrystals. Let us clarify this using type I as

an example. If one takes tetrahedron k , multiplies it by the

Ih icosahedron group, and groups the resulting 120 copies

around vertex A, the first initial configuration is obtained.

Two more configurations are obtained in a similar manner

(by grouping 120 copies of tetrahedron c around vertex

B or 120 copies of tetrahedron K around vertex C). The
initial configurations for types P and F are chosen in an

equivalent way from similar polyhedra. Therefore, there are

always exactly three types of nodes with local icosahedral

symmetry (A, B, C) and, as a consequence, three types

of characteristic icosahedral clusters both in the zonohedral

tiling with inflation factor τ 3 and in two Danzer tilings into

different sets of tetrahedra with inflation factor τ .

If all 120 copies of each of the basis tetrahedra (the
complete orbit of the cell in group Ih) are filled with atoms

in the same way, the resulting structure is centrosymmetric

and corresponds to the Ih symmetry group. If, however,

at least one of the basis tetrahedra and its mirror copy are

considered different, the structure lacks an inversion center

and corresponds to the I symmetry group. This type of cell

decoration naturally induces the emergence of right and left

enantiomorphic forms.

Thus, the theory based on the use of three types of

tilings with their unit cells decorated with specific atoms

in accordance with the local matching rules is efficient in

solving almost all problems of structural design of icosahe-

dral quasicrystals. The concept of unit cells allows one to

characterize the structures of icosahedral quasicrystals of all

three types (P , I , F) within both symmetry groups (Ih, I);
notably, the phenomenon of enantiomorphism may be taken

into account in the case of non-centrosymmetric structures.

The tiling into zonohedra and two tilings into tetrahedra

are fully consistent with each other and with the higher-

dimensional approach and, consequently, may be used to

refine the structures of quasicrystalline alloys.
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