03,05

Мёссбауэровские исследования гексагональных изотропных поликристаллических ферритов SrFe₁₂O₁₉, полученных методом радиационно-термического спекания

© В.Г. Костишин¹, А.В. Труханов¹, А.А. Алексеев², С.В. Щербаков², И.М. Исаев¹, А.Ю. Миронович¹, М.А. Михайленко³, М.А. Сысоев¹, Г.А. Скорлупин¹, Г.М. Токин^{1,2}

¹ Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСИС",

Москва, Россия

² Акционерное общество "Научно-производственное предприятие "Исток" им. А.И. Шокина",

Фрязино, Россия

³ Институт химии твердого тела и механохимии СО РАН,

Новосибирск, Россия

E-mail: drvgkostishyn@mail.ru

Поступила в Редакцию 30 ноября 2024 г. В окончательной редакции 3 декабря 2024 г. Принята к публикации 5 декабря 2024 г.

> Гексагональный феррит стронция (SrFe₁₂O₁₉) широко используется в качестве постоянных магнитов и в CBЧ-электронике. Его функциональные характеристики зависят от технологии производства. В данной работе впервые применен метод радиационно-термического спекания (PTC) в пучке быстрых электронов на ускорителе ИЛУ-6 для получения образцов SrFe₁₂O₁₉. Температура процесса варьировалась от 1200 до 1400°C, а время спекания — от 10 до 90 min. Фазовый состав и параметры кристаллической решетки образцов исследовались с методами мёссбауэровской спектроскопии и рентгеновской дифракции. Мёссбауэровские спектры фиксировались на спектрометре MC1104E, а рентгеновские — на дифрактометре ДРОН-8. Плотность образцов определялась методом Архимеда на электронных весах UW620H. Результаты показали, что все образцы являются однофазными и имеют пространственную группу P63/mmc (N194), что соответствует структуре гексагонального феррита. Оптимальные параметры для синтеза изотропных гексаферритов составляют 1250–1300°C и время спекания 30–60 min. Таким образом, РТС может служить альтернативной технологией для получения поликристаллического изотропного гексагонального феррита SrFe₁₂O₁₉, демонстрируя высокую энергоэффективность и экономичность по сравнению с традиционными методами

> Ключевые слова: радиационно-термическое спекание, изотропные поликристаллические гексагональные ферриты SrFe₁₂O₁₉, кристаллическая структура, мёссбауэровская спектроскопия, элементарная ячейка, керамическая технология, быстрые электроны, электронный ускоритель.

DOI: 10.61011/FTT.2024.12.59604.333

1. Введение

Гексагональный феррит стронция М-типа $SrFe_{12}O_{19}$ (SrM) имеет кристаллическую структуру, изоморфную магнетоплюмбиту PbFe₁₂O₁₉ [1]. Вследствие различия в значениях ионных радиусов бария и стронция, замена первого иона на второй в кристаллической решетке гексагонального феррита приводит к увеличению константы магнитной кристаллографической анизотропии K₁ на 10% [2]. Кроме этого, гексаферриты SrM обладают лучшей технологичностью по сравнению с гексаферритами BaM [2].

Благодаря комплексу своих магнитных свойств и эксплуатационных параметров, феррит SrM нашел широкое применение в качестве постоянных магнитов [1,2], активных сред приборов СВЧ-электроники мм-диапазона длин волн [3] и в терагерцовой фотонике [4]. В научных и инженерных кругах не утихает также интерес к разработке устройств СВЧ-электроники на основе толстых пленок гексагональных ферритов [5,6].

На сегодняшний день промышленным методом получения указанных материалов является керамическая технология [1,2,5]. Характерная технологическая схема получения изотропных поликристаллических гексагональных ферритов SrM при использовании керамической технологии представлена на рис. 1. Наряду с рядом общепризнанных преимуществ, керамическая технология обладает целым рядом недостатков. Основной из главных недостатков — высокая энергоемкость данной технологии.

Альтернативной технологией при получении гексаферритов SrM может стать технология радиационнотермического спекания (РТС), хорошо опробованная на целом ряде типов ферритов [7–9], включая гексаферрит бария BaM [7]. Отличие технологии РТС от традиционной керамической технологии (рис. 1) состоит в том, что операцию термического спекания сырых заготовок заменяют на операцию спекания в пучке быстрых электронов в электронном ускорителе [7–9].

Целью настоящей работы являлось изучение возможности получения при использовании технологии РТС качественных изотропных гексаферритов SrFe₁₂O₁₉, а также изучение методом рентгеновской дифрактометрии и мёссбауэровской спектроскопии кристаллической и магнитной структуры полученных образцов.

2. Объекты и методы исследования

Исходные образцы готовились из оксида Fe₂O₃ марки MM-2 (ТУ6-09-4816-80; содержание примесей SiO₂, Al₂O₃, Cr₂O₃ и Na₂O составляет 0.01 wt.% для каждого соединения). В качестве сырья, содержащего стронций, был использован карбонат стронция кристаллический марки "Ч" (чистота 99.0%) Исфаринского химического завода. Подготовка сырых заготовок осуществлялась в соответствии со схемой, представленной на рис. 1.

Использовались все операции, кроме операции термического спекания. Операция термического спекания в печи (обжига) была заменена на РТС. Замена обычного термического спекания на РТС в пучке быстрых электронов обусловлена существенно низшей энергоемкостью последнего и более высоким качеством спекания [7–9].

РТС образцов проводилось с использованием быстрых электронов на линейном ускорителе ИЛУ-6 для радиационных технологий на энергию 2.5 MeV ИЯФ им. Г.И. Будкера СО РАН [10]. Схема данного ускорителя представлена на рис. 2.

Ниже представлены основные характеристики ускорителя ИЛУ-6:

- максимальная энергия электронов 2.5 MeV;
- рабочая частота резонатора 117 MHz;
- импульсная мощность ВЧ генератора до 2.5 MW;
- максимальный импульсный ток пучка 450 mA;
- максимальный средний ток пучка 8 mA;
- длительность импульса тока пучка 0.5 ms;
- частота повторения импульсов до 50 Hz;

• высота вакуумного бака ускорителя ИЛУ-6 вместе с ВЧ генератором — более 2 m;

- длина выпускного окна 980 mm;
- ширина зоны облучения 90 ст;

• выводимая в атмосферу мощность электронного пучка — до 16 kW.

Для спекания гексагональных ферритов в пучке быстрых электронов в работе была использована специально разработанная на кафедре Технологии Материалов Электроники университета МИСИС ячейка для РТС ферритовой керамики и ферритовых изделий [11].

Мессбауэровские спектры объектов исследования регистрировались на спектрометре MC-1104E с постоянным ускорением при комнатной температуре, источником γ -излучения служил Co⁵⁷ в матрице хрома. Изомерный (химический) сдвиг рассчитывался относительно

Рис. 1. Характерная технологическая схема получения изотропных поликристаллических гексагональных ферритов SrFe₁₂O₁₉ при использовании керамической технологии.

 α -Fe. Для измерения использовались порошковые пробы из измельченных изотропных гексаферритов стронция. Математическая обработка спектров проводилась по программе "Univem Ms".

Рис. 2. Схема линейного ускорителя ИЛУ-6: 1 — вакуумный бак; 2 — резонатор; 3 — магниторазрядный насос типа НМД; 4 — инжектор электронов; 5 — выпускное устройство; 6 — измерительная петля; 7 — анод лампы ВЧ генератора; 8 — опора петли ввода ВЧ мощности; 9 — петля ввода ВЧ мощности; 10 — катодный шлейф; 11 — ввод напряжения смещения –7 kV; 12 — опоры нижней половины резонатора.

Рентгенофазовый и рентгеноструктурный анализ объектов исследования проводился на рентгеновском дифрактометре ДРОН-8 (производство: Россия, АО НПП "Буревестник", г. Санкт-Петербург). При проведении рентгенофазового анализа использовалось Со K_{α_1} -излучение. Длина волны излучения $\lambda = 0.178897$ nm. Фокусировка осуществлялась по методу Брэгга–Брентано с двумя щелями Соллера. Измерения производились при комнатной температуре.

Оценка среднего размера (L_C) областей когерентного рассеяния для выявленных фаз всех изученных в работе образцов проводилась расчетным путем из параметров рентгеновских дифрактограмм с помощью формулы Дебая–Шеррера:

$$L_C = k\lambda/B\cos\theta,\tag{1}$$

где: L_C — средний размер области когерентного рассеяния, nm; k — константа, равная 0.89; B — полуширина дифракционной линии для угла отражения θ , соответствующего первому дифракционному максимуму из набора линий, присущих каждой из выявленных фаз, рад.; λ — длина волны рентгеновского Со K_{a_1} -излучения, nm; $\lambda = 0.178897$ nm.

Определение плотности объектов исследования в работе проводилось в соответствии с законом Архимеда

Таблица 1. Информация о полученных в настоящей работе методом РТС образцах SrFe₁₂O₁₉

№ п/п	№ сырой заготовки	№ образца	Температура РТС, °С	Время PTC, min	Плотность g/cm ³
1.	8-пб	ГСИ_№8	1200	60	4.52
2.	9-п6	ГСИ_№9	1250	60	4.92
3.	11-пб	ГСИ_№ 11	1300	10	4.95
4.	12-п6	ГСИ_№ 12	1300	30	4.96
5.	10-п6	ГСИ_№ 10	1300	60	4.93
6.	13-п6	ГСИ_№ 13	1300	90	4.93
7.	14-п6	ГСИ_№ 14	1350	40	4.97
8.	30-п6	ГСИ_№ 30	1400	304	4.94

на электронных весах UW620H с приспособлением для измерения плотности. Плотность образца вычислялась по следующей формуле:

$$\rho = \rho_0 \left(\frac{W_a}{W_a - W_l} \right),\tag{2}$$

где: ρ — плотность образца, g/cm³; ρ_0 — известная плотность жидкости, g/cm³; W_a — вес образца на воздухе, g; W_l — вес образца в жидкости, g.

Рентгеновская плотность гексаферритов вычислялась по данным рентгеноструктурного анализа и составляет в среднем 5.1 g/cm³:

$$\rho_{\rm peht.} = \frac{2M_A}{VN_A} = \frac{2M_A 2}{c a^2 3\sqrt{3}N_A},\tag{3}$$

где: M_A — молекулярная масса гексаферрита; c, a — параметры элементарной ячейки гексаферрита; N_A — число Авогадро, V — объем элементарной ячейки.

В табл. 1 представлена информация о полученных в настоящей работе методом РТС образцах SrM.

3. Результаты и их обсуждение

Мессбауэровские спектры изученных образцов в зависимости от температуры синтеза и времени ($T^{\circ}C/\tau$, min: 1200/60; 1250/60; 1300/60; 1350/40) приведены на рис. 3.

Все образцы были разложены на 5 секстетов, соответствующих пяти позициям ионов Fe³⁺ в структуре гексаферрита типа М: 12k, 4f₁, 4f₂, 2a и 2b [12]. Полученные мессбауэровские параметры секстетов после их математической обработки, изомерный сдвиг (δ , mm/s), квадрупольное расщепление (Δ , mm/s), магнитные поля на ядрах Fe⁵⁷ ($H_{\rm eff}$, kOe), ширина резонансных линий (Γ , mm/s), угол Θ , (degree°) и площади секстетов (S, rel.%) приведены в табл. 2.

Мессбауэровский спектр образца 1400/10 на рис. 3 не показан, но в табл. 2 приведены его параметры. Из табл. 2 видно, что при всех режимах обработки, все ионы железа соответствуют валентности 3+, согласно значениям изомерного сдвига, при этом все параметры

Образец SrFe ₁₂ O ₁₉ , $T^{\circ}C/\tau$ min	Компоненты спектра	δ , mm/s	Δ, mm/s	$H_{\rm eff}$, kOe	<i>S</i> , %	Γ, mm/s	Θ, °
1200/60	$\begin{array}{c} C1(12k)\\ C2(4f_2)\\ C3(4f_1)\\ C4(2a)\\ C5(2b) \end{array}$	0.35 0.37 0.26 0.34 0.28	0.39 0.30 0.17 -0.03 2.21	412 517 491 508 408	49.0 16.2 20.5 7.2 7.1	0.29 0.25 0.28 0.22 0.30	55.3
1250/60	$\begin{array}{c} C1(12k)\\ C2(4f_2)\\ C3(4f_1)\\ C4(2a)\\ C5(2b) \end{array}$	0.35 0.37 0.26 0.35 0.28	0.40 0.30 0.17 -0.04 2.22	412 517 491 508 408	49.4 15.5 20.5 7.8 6.8	0.30 0.24 0.29 0.24 0.29	55.1
1300/60	$\begin{array}{c} C1(12k)\\ C2(4f_2)\\ C3(4f_1)\\ C4(2a)\\ C5(2b) \end{array}$	0.35 0.37 0.26 0.35 0.29	0.40 0.32 0.17 -0.04 2.21	412 518 492 507 408	49.3 15.9 20.6 7.8 6.4	0.30 0.25 0.29 0.26 0.31	51.0
1350/40	$\begin{array}{c} C1(12k)\\ C2(4f_2)\\ C3(4f_1)\\ C4(2a)\\ C5(2b) \end{array}$	0.35 0.37 0.26 0.35 0.298	0.40 0.32 0.17 -0.05 2.22	412 517 491 508 408	49.1 16.7 20.7 7.2 6.3	0.30 0.26 0.29 0.22 0.29	49.3
1400/10	$\begin{array}{c} C1(12k)\\ C2(4f_2)\\ C3(4f_1)\\ C4(2a)\\ C5(2b) \end{array}$	0.35 0.37 0.26 0.35 0.29	0.40 0.31 0.17 -0.03 2.22	412 517 491 507 408	48.6 16.4 21.4 7.8 5.8	0.29 0.25 0.28 0.23 0.25	49.1

Таблица 2. Параметры мессбауэровских спектров изотропных гексаферритов SrFe₁₂O₁₉, полученных методом радиационнотермического спекания при различной температуре

Таблица 3. Параметры мессбауэровских спектров изотропных гексаферритов SrFe₁₂O₁₉, полученных методом РТС при различных значениях времени спекания

Образец SrFe ₁₂ O ₁₉ , T °C/ τ min	Компоненты спектра	δ , mm/s	Δ, mm/s	H _{eff} , kOe	<i>S</i> , %	Γ, mm/s	Θ, °
1300/10	$\begin{array}{c} C1(12k)\\ C2(4f_2)\\ C3(4f_1)\\ C4(2a)\\ C5(2b) \end{array}$	0.35 0.37 0.26 0.35 0.29	0.39 0.31 0.18 0.04 2.22	412 517 491 508 407	48.8 16.2 20.9 ,7.3 6.8	0.29 0.24 0.28 0.22 0.28	52.3
1300/30	$\begin{array}{c} C1(12k)\\ C2(4f_2)\\ C3(4f_1)\\ C4(2a)\\ C5(2b) \end{array}$	0.35 0.37 0.26 0.35 0.29	0.40 0.32 0.18 -0.02 2.21	412 517 492 508 408	49.0 16.5 20.9 7.8 5.8	0.28 0.24 0.27 0.23 0.25	49.3
1300/60	$\begin{array}{c} C1(12k)\\ C2(4f_2)\\ C3(4f_1)\\ C4(2a)\\ C5(2b) \end{array}$	0.35 0.37 0.26 0.35 0.29	0.40 0.32 0.17 -0.04 2.21	412 518 492 507 408	49.3 15.9 20.6 7.8 6.4	0.30 0.25 0.29 0.26 0.31	51.0
1300/90	$\begin{array}{c} C1(12k)\\ C2(4f_2)\\ C3(4f_1)\\ C4(2a)\\ C5(2b) \end{array}$	0.35 0.37 0.26 0.34 0.29	0.40 0.31 0.17 -0.03 2.23	411 517 491 508 408	49.5 17.0 20.6 7.2 5.7	0.29 0.25 0.28 0.22 0.26	49.2

Рис. 3. Мессбауэровские спектры изотропных гексаферритов SrFe₁₂O₁₉, полученных методом радиационно-термического спекания при различных значениях температуры и времени спекания ($T^{\circ}C/\tau$, min): a = 1200/60; b = 1250/60; c = 1300/60; d = 1350/40.

Таблица 4. Разности площадей секстетов ΔS с противоположными направлениями магнитных моментов ионов Fe³⁺ 12k, 2a, 2b и 4f₁, 4f₂

T/ au	1200/60	1250/60	1300/60	1350/40	1400/30	1300/10	1300/30	1300/90
ΔS	26.6	28.0	27.0	30.2	24.4	24.4	25.2	24.4

лежат в пределах значений, характерных для ионов Fe³⁺ соответствующих координаций: 12k, 4f₂, 2а — октаэдры, 4f₁ — тетраэдр, и 2b — бипирамида [12]. Однако, некоторые параметры несколько отличаются от теоретических. Это касается площадей от ионов Fe(4f₁), всех образцов, которые в отдельных образцах достигают значений до 20.7 rel.% по сравнению с теоретическим 16.7 rel.%. Это можно объяснить большей вероятностью резонансного эффекта тетраэдрических ионов Fe³⁺, по сравнению с октаэдрическими, как это было объяснено в работе [13]. С другой стороны, можно отметить уменьшении угла Θ , при увеличении температуры. Это особенно проявляется с уменьшением времени синтеза (обр. 1350/40, 1400/10). Следовательно, при этих режимах за счет уменьшения угла Θ от 55° происходит увеличение магнитной текстуры образцов.

Для выяснения влияния непосредственно времени синтеза были зарегистрированы мессбауэровские спектры гексаферритов SrFe₁₂O₁₉, полученных по технологии PTC при температуре 1300°C и временах синтеза 10, 30, 60 и 90 min (рис. 4). В табл. 3 приведены параметры полученных мессбауэровских спектров.

Из приведенных данных видно, что при увеличении времени синтеза наблюдается уменьшение угла Θ , но четкой зависимости влияния на него нет. При этом наименьшее влияние на угол Θ происходит при времени синтеза 10 min (образец 1300/10).

Для сопоставления удельной намагниченности образцов с данными мессбауэровских измерений были рассчитаны разности площадей секстетов ΔS с противоположными направлениями магнитных моментов ионов Fe³⁺ 12k, 2a, 2b и 4f₁, 4f₂. Разности ΔS пропорциональны

Рис. 4. Мессбауэровские спектры изотропных гексаферритов SrFe₁₂O₁₉, полученных методом РТС при 1300°С и различных значениях времени спекания (min): a = 10, b = 30, c = 60, d = 90.

удельной намагниченности в силу того, что она связана как с общим содержанием железа в образце, так и локализацией его по подрешеткам, что позволяет определять мессбауэровские измерения. Результаты расчета приведены в табл. 4.

Из приведенных данных табл. 4 следует ожидать максимальную удельную намагниченность образца 1350/40, а минимальную намагниченность образцов 1400/30, 1300/10 и 1300/90, показывающие минимум ΔS , а, следовательно, и наихудший режим синтеза. Полученное максимальное значение разности площадей от ионов железа, приведенных выше для образца 1250/60, указывает на то, что намагниченность для него следует ожидать максимальной.

На рис. 5 представлены рентгено-дифракционные спектры образцов изотропных поликристаллических гексаферитов SrFe₁₂O₁₉ ГСИ_8 (*a*), ГСИ_9 (*b*) и ГСИ_10 (*c*), полученные методом РТС при следующих значениях температуры и времени *T*°С/*τ* min: 1200/60; 1250/60 и 1300/60 соответственно. Детальный анализ спектров рентгеновской дифракции позволил установить, что для ряда образцов (ГСИ_№9, ГСИ_№10 и особенно ГСИ_№12) отмечено изменение соотношения

интенсивностей в дальних углах, что может свидетельствовать о некоторых особенностях микроструктуры. Такое поведение может являться результатом или дефектов кристаллитов, или некоторой ориентацией их роста.

При фиксированном времени спекания ($\tau = 60 \text{ min}$) при увеличении температуры от 1200 до 1300°С параметры и объем элементарной ячейки образцов SrFe₁₂O₁₉ изменяются нелинейно (рис. 6). Минимальные значения параметров и объема отмечены для образца ГСИ_№ 9 (1250°С), что может быть обусловлено влиянием эволюции микроструктуры в процессе спекания.

На рис. 7 представлена зависимость плотности ρ образцов изотропных гексаферритов SrFe₁₂O₁₉ при получении по технологии РTC от времени спекания при температуре РTC = 1300°C (*a*) и температуры РTC при временах спекания $\tau = 30 \min$ и $\tau = 60 \min$ (*b*). Характерно, что плотность SrFe₁₂O₁₉ уменьшается с ростом времени РTC (при температуре РTC 1300°C) и растет с ростом температуры РTC в пределах используемых значений температуры и времени РTC.

Следует отметить, что некоторые представленные выше результаты, полученные нами для гексаферрита стронция SrFe₁₂O₁₉, были ранее получены для других

ферритовых материалов [7–9,14–22], особенно для гексаферрита бария SrFe₁₂O₁₉ [14]. Весьма интересным является тот результат, что при использовании технологии PTC спекание феррита можно провести за несколько десятков минут. И превалирующую роль в этом процессе

Рис. 5. Рентгено-дифракционные спектры образцов изотропных поликристаллических гексаферритов SrFe₁₂O₁₉ ГСИ_8 (a), ГСИ_9 (b) и ГСИ_10 (c), полученных методом РТС.

Рис. 6. Изменение параметров решетки a (a), c (b) и объема V (c) элементарной ячейки для образцов изотропных поликристаллических гексаферитов SrFe₁₂O₁₉, синтезированных РТС при различных температурах в течение 60 и 30 min.

играет именно величина температуры РТС, значение которой — характерно для каждого вида керамики. На сегодняшний день физический механизм интенсификации процесса спекания керамики под действием потока быстрых электронов до конца не выяснен [15–18]. Наиболее распространенным и прижившемся в кругу специали-

Рис. 7. Изменение плотности образцов гексаферрита $SrFe_{12}O_{19}$ при РТС в зависимости от времени РТС (*a*) и температуры РТС (*b*).

стов является мнение, что превалирующим механизмом радиационного усиления массопереноса в ферритовой керамике является поверхностно-рекомбинационный механизм. При облучении керамических заготовок в зернах и порошковых прессовках индуцируются электронные возбуждения, стремящиеся локализоваться на границах зерен, границах фаз и там рекомбинировать, выделяя энергию и тепло. В результате указанных процессов создаются градиенты температуры, вызывающие термодиффузионные потоки, существенно способствующие ускорению реакций твердофазного синтеза феррита.

4. Заключение и выводы

Таким образом, в настоящей работе впервые методом РТС синтезированы изотропные поликристаллические гексагональные ферриты $SrFe_{12}O_{19}$. Изучены магнитная и кристаллическая структура, а также некоторые физические свойства полученных объектов исследования.

Проведенные исследования позволяют сделать следующие выводы.

1. Полученные в работе методом РТС образцы SrFe₁₂O₁₉ являлись однофазными.

2. РТС может быть использовано в качестве альтернативной технологии для получения гексагонального феррита $SrFe_{12}O_{19}$. По сравнению с традиционной керамической технологией с термическим спеканием, технология РТС показала себя в качестве высоко энергоэффективной и недорогой.

3. В технологии РТС величина температуры спекания играет существенно большую роль, чем величина времени спекания.

4. В процессе РТС гексаферритов $SrFe_{12}O_{19}$ анизотропное искажение элементарной ячейки обусловлено, по всей видимости, индуцированием в кристаллической решетке быстрыми электронами кислородных вакансий. С высокой вероятностью, для улучшения параметров образцов $SrFe_{12}O_{19}$ придется использовать дополнительную финишную операцию кратковременного отжига в атмосфере кислорода.

5. Наиболее оптимальным режимом синтеза изотропных гексаферритов $SrFe_{12}O_{19}$ является диапазон $1250-1300^{\circ}C$ и время спекания 30-60 min.

Финансирование работы

Работа выполнена за счет средств проекта РНФ № 24-13-00268

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Л.М. Летюк, В.Г. Костишин, А.В. Гончар. Технология ферритовых материалов магнитоэлектроники. МИСИС, М. (2005). 352 с.
- [2] А.Б. Альтман, А.Н. Гербер, П.А. Гладышев, Ю.А. Грацианов, Е.Н. Зейн, Л.А. Кавалерова, Ю.М. Пятин, Ю.С. Сакатунов, В.Г. Сергеев, А.Д. Скоков, Р.Ю. Сухоруков, А.М. Чернявская. Постоянные магниты. Справочник / Под ред. Ю.М. Пятина, 2-е изд., перераб. и доп. Энергия, М. (1980). 488 с.
- [3] А. Устинов, В.Н. Кочемасов, Е.Р. Хасьянова. Электроника НТБ 148, 8, 86 (2015).
- [4] M. Shalaby, M. Peccianti, Y. Ozturk, R. Morandotti. Nature Communications 4, 1, 1558 (2013).
- [5] R.C. Pullar. Prog. Mater. Sci. 57, 7, 1191 (2012).
- [6] V.G. Harris. IEEE Transactions on Magnetics **48**, *3*, 1075 (2011).
- [7] И.М. Исаев, С.В. Щербаков, В.Г. Костишин, А.Г. Налогин, В.В. Мокляк, Б.К. Остафийчук, А.А. Алексеев, В.В. Коровушкин, Е.А. Белоконь, М.В. Калинюк, М.А. Михайленко, М.В. Коробейников, А.А. Брязгин, Д.В. Салогуб. Известия высших учебных заведений. Материалы электронной техники 20, 3, 220 (2017).

- [8] В.Г. Костишин, В.В. Коровушкин, А.Г. Налогин, С.В. Щербаков, И.М. Исаев, А.А. Алексеев, А.Ю. Миронович, Д.В. Салогуб. ФТТ 62, 7, 1028 (2018).
- [9] A.P. Surzhikov, A.M. Pritulov, E.N. Lysenko, A.N. Sokolovskii, V.A. Vlasov, E.A. Vasendina. Journal of Thermal Analysis and Calorimetry 109, *1*, 63 (2011).
- [10] В.Л. Ауслендер, А.А. Брязгин, Л.А. Воронин, Г.Б. Глаголев, И.В. Горнаков, Е.Н. Кокин, Г.С. Крайнов, Г.И. Кузнецов, А.Н. Лукин, И.Г. Макаров, С.А. Максимов, С.В. Мигинский, В.Е. Нехаев, А.Д. Панфилов, В.М. Радченко, Н.Д. Ромашко, А.В. Сидоров, М.А. Тиунов, В.О. Ткаченко, А.А. Тувик, Б.Л. Факторович, В.Г. Ческидов. Наука производству 63, 7, 11 (2003).
- [11] А.С. Комлев, И.М. Исаев, В.Г. Костишин, Д.Н. Читанов, А.В. Тимофеев. Ячейка для радиационно-термического спекания. НОУ-ХАУ. Зарегистрировано в Депозитарии ноу-хау НИТУ "МИСИС" № 81-219-2016 ОИС от 29 декабря 2016 г.
- [12] X. Obradors, A. Collomb, M. Pernet, D. Samaras, J.C. Joubert. Journal of Solid State Chemistry 56, 2, 1191 (2012).
- [13] В.Г. Костишин, В.В. Коровушкин, К.В. Похолок, А.В. Труханов, И.М. Исаев, А.Ю. Миронович, М.А. Дарвиш. Физика твердого тела 63, 10, 1496 (2021).
- [14] В.Г. Костишин, И.М. Исаев, С.В. Щербаков, А.Г. Налогин, Е.А. Белоконь, А.А. Брязгин. Восточно-Европейский журнал передовых технологий 5, 8, 32 (2016).
- [15] А.Ю. Анненков, А.С. Ивашутенко. Известия Томского политехнического университета **308**, *7*, 30 (2005).
- [16] A.P. Surzhikov, E.N. Lysenko, A.V. Malyshev, A. Petrova, S.A. Ghyngazov, A.K. Aimukhanov. Eurasian Physical Technical Journal 17, 1, 26 (2020).
- [17] O. Stary, A.V. Malyshev, E.N. Lysenko, A. Petrova. Eurasian Journal of Physics and Technology 17, 2, 6 (2020).
- [18] А.С. Комлев. Таврический научный обозреватель 17, 12, 135 (2016).
- [19] A.V. Malyshev, E.N. Lysenko, E.A. Sheveleva, O.A. Surzhikova, A.K. Aringazin. Materials science 18, 1, 3 (2021).
- [20] O. Stary, A.P. Surzhikov, A.V. Malyshev, E.N. Lysenko, E.A. Sheveleva. Eurasian Physical Technical Journal 18, 3, 11 (2021).
- [21] A.P. Surzhikov, A.V. Malyshev, E.N. Lysenko, O. Stary. Materials science 19, 1, 5 (2022),
- [22] Е.Н. Лысенко, А.П. Суржиков, А.В. Малышев, В.А. Власов, Е.В. Николаев. Известия вузов. Химия и химическая технология 61, 6, 69 (2018).

Редактор К.В. Емцев