09

Рентгеноструктурный анализ порошков многокомпонентных оксидов со структурой пирохлора методом Ритвельда: особенности, приемы, ограничения

© А.А. Левин¹, М.С. Ломакин^{1,2}, О.В. Проскурина^{1,3}

Санкт-Петербург, Россия

E-mail: lomakinmakariy@mail.ioffe.ru

Поступила в Редакцию 30 апреля 2024 г. В окончательной редакции 28 октября 2024 г. Принята к публикации 30 октября 2024 г.

Разработан комплекс приемов анализа порошков многокомпонентных оксидов со структурой пирохлора методом Ритвельда, позволяющий проводить прецизионное уточнение состава соединений при наличии атомов разного сорта в каждой из двух структурно-неэквивалентных кристаллографических позиций (A и B). Разработанная методика была апробирована на примере системы $Bi_2O_3-Na_2O-Fe_2O_3-WO_3$ и позволила определить прецизионный состав соединения со структурой пирохлора в образце, полученном методом гидротермального синтеза — ($Bi_{1.08}Na_{0.08}\square_{0.84}$)($Fe_{0.44}W_{1.56}$)О7, где \square — катионная вакансия.

Ключевые слова: многокомпонентные оксиды, структура пирохлора, рентгеноструктурный анализ порошков, метод Ритвельда.

DOI: 10.61011/FTT.2024.12.59596.6523PA

Сложные оксиды со структурой пирохлора проявляют ряд важных физико-химических свойств, среди которых магнитные, транспортные, фотокаталитические и другие свойства. Структура пирохлора $(A_{2-x}B_2{\rm O}_6{\rm O}_{1-\delta}')$ построена двумя взаимопроникающими подрешетками $A_2{\rm O}'$ и $B_2{\rm O}_6$. Позицию A занимают катионы $Me^{1+,2+,3+}$ относительно большого радиуса, позицию B — катионы $Me^{4+,5+,6+}$ меньшего радиуса. Катионы $Me^{2+,3+}$ относительно малого радиуса располагаются преимущественно в позиции B. Прецизионное определение химического состава многокомпонентных пирохлоров методом Ритвельда является нетривиальной задачей: требуется уточнение заселенностей позиций, в которых одновременно располагаются атомы разного сорта и могут присутствовать вакансии.

Целью настоящей работы является разработка методики уточнения состава многокомпонентных пирохлоров методом Ритвельда. В роли модельного объекта выступает пирохлор в системе ${\rm Bi_2O_3-Na_2O-Fe_2O_3-WO_3}$, полученный методом гидротермального синтеза [1].

Валовый химический состав образца в виде атомных соотношений был определен на растровом электронном микроскопе Tescan Vega 3 SBH с приставкой Oxford Instruments для энергодисперсионного ренттеновского анализа (ЭДС): Bi/W=0.81(2), Fe/W=0.53(1), Bi/Fe=1.53(3) и Na/W=0.06(1). Порошковая рентгеновская дифрактограмма образца была получена при комнатной температуре на рентгеновском дифрактометре

Rigaku SmartLab 3 (Брэгг-Брентано геометрия, Си- K_{α} излучение рентгеновской трубки с Cu анодом, Ni K_{β} фильтр, $2\theta - \theta$ режим сканирования). Предварительный анализ дифрактограммы проводился с целью определения параметра а кубической элементарной ячейки пирохлора по углам Брэгга $2\theta_{\rm B}$ рефлексов и их индексам Миллера hkl и параметров микроструктуры (среднего размера D кристаллитов (областей когерентного рассеяния рентгеновских лучей) и абсолютных значений средних микродеформаций $\varepsilon_{\rm s}$ в них) графическими методами Вильямсона—Холла (WHP, Williamson—Hall plot) и "Размер-Микродеформация" (SSP, Size-Strain plot) с учетом псевдо-Фойгтовского (pV, pseudo-Voigt) типа наблюдаемых рефлексов. Метод Ле Бойла (LB, Le Bail) и метод Ритвельда (Rietveld) применялись с использованием программы TOPAS, версия 5 (Bruker AXS, Германия). Подробное изложение деталей рентгеновских измерений, предварительного анализа и обработки дифрактограмм, процедуры применения методов LB и Ритвельда, а также используемых программ дано в работах [1,2].

Порошковая рентгеновская дифрактограмма образца содержит набор достаточно узких рефлексов, принадлежащих фазе кубической сингонии со структурой пирохлора [1]. Результаты предварительного анализа структурных и микроструктурных параметров пирохлора приведены в таблице. Оба графических метода, WHP (рис. 1,a) и SSP (рис. 1,b), дают схожие результаты:

¹ Физико-технический институт им. А.Ф. Иоффе,

² Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина), Санкт-Петербург, Россия

³ Санкт-Петербургский государственный технологический институт (технический университет), Санкт-Петербург, Россия

Таблица. Финальные микроструктурные (D и ε_s) и структурные ($a; x, y, z; B_{iso}; p$ и q (суммарный коэффициент заполнения для близких эквивалентных позиций)) параметры, полученные в профильном анализе РД рефлексов графическими методами WHP и SSP, а также в уточнениях методами LB и Ритвельда для фазы пирохлора (пространственная группа $Fd\bar{3}m$ (227), установка 2) в системе $Bi_2O_3-Na_2O-Fe_2O_3-WO_3$. Также указаны величины средних критериев $FWHM/B_{int}$ типа наблюдаемых рефлексов (pV-тип) и коэффициенты детерминации R_{cod} для графиков WHP и SSP, и коэффициенты согласия (R_{wp} и R_B) для методов LB и Ритвельда. Остальные обозначения приводятся в тексте и в подписях к рисункам

Профильный анализ РД рефлексов: $a=10.36836(10)$ Å,	WHP $(R_{cod} = 73.88\%)$	$D = 1876 \mathrm{nm^{a,b}}, \ arepsilon_{\mathrm{s}} = 0.057(6)\%^{\mathrm{b}}$	
рефлексы pV-типа: $FWHM/B_{int} = 0.75(7)$	SSP $(R_{cod} = 0.58\%)$	$D=\infty^{\mathrm{b}}, \ arepsilon_{\mathrm{s}}=0.057(10)\%^{\mathrm{b}}$	

Уточнение методом LB: a=10.36867(7) Å, D=608(24) nm^b, $\varepsilon_{\rm s}=0.0543(5)\%$ b,c, $R_{\rm wp}=3.096\%$, $m_{\rm e.s.d.}=4.819^{\rm d}$

Уточнение методом Ритвельда: a=10.36866(8) Å, D=627(32) nm $^{\rm b}$, $\varepsilon_{\rm s}=0.0541(5)\%$ $^{\rm b,c}$, $R_{\rm wp}=3.169\%$, $R_{\rm B}=0.510\%$, $m_{\rm e.s.d.}=5.288^{\rm d}$

Атом	Wyckoff позиция	x	у	z	p	q	$B_{\rm iso}$, Å ²
Bi	96 <i>g</i>	0.4785(6)	0.5163(4)	у	0.0902(4)	0.541(2) ^e	1.63(9)
Na	96 <i>g</i>	x_{Bi}	<i>у</i> ві	уві	0.007(3)	0.042(16) ^e	$B_{ m isoBi}$
W	16 <i>c</i>	0	0	0	0.779(4)	0.779(4) ^e	1.55(4)
Fe	16 <i>c</i>	0	0	0	$0.221(4)^f$	0.221(4) ^e	$B_{ m isoW}$
O ₁ (O)	48 <i>f</i>	0.3130(10)	1/8	1/8	1	1	0.2(4)
O ₂ (O')	8 <i>b</i>	3/8	3/8	3/8	$1.00(1)^g$	1.00(1)	10(2)

 Π римечание. ^а О.с.о. не указано, т. к. больше, чем полученное значение D.

уширение рефлексов в основном обусловлено наличием микродеформаций в кристаллитах "бесконечного" (субмикронного) размера.

Полученные таким образом значения a, D и ε_s пирохлора использовались в качестве стартовых для полнопрофильной подгонки LB (см. таблицу). Два аморфных гало (с центрами на $2\theta \approx 25.6$ и 52.5° , относительными максимальными интенсивностями $I_{\rm max} \sim 0.7$ и 0.3%, соответственно, и полной шириной на половине максимума интенсивности (FWHM, full width at half $maximum) \sim 8.5^{\circ}$) описывались путем подгонки параметров широких рефлексов pV-типа, которые рассматривались как добавка к фону, описываемому полиномом Чебышева 6-ого порядка с гиперболической добавкой. Для лучшей подгонки рентгенодифракционной (РД) картины, три неидентифицированных слабых рефлекса (с углами Брэгга $2\theta_{\rm B}=21.13,\,23.98$ и 24.71°) задавались как рефлексы pV-типа и параметры их уточнялись. Финальное достигнутое значение весового профильного фактора согласия составило $R_{wp} = 3.096\%$.

Значения a, D и $\varepsilon_{\rm s}$ пирохлора, полученные в результате полнопрофильной подгонки методом LB, использовались в качестве стартовых для уточнения структуры пирохлора методом Ритвельда. В качестве стартовых координат атомов структуры пирохлора была взята одна из структурных моделей из [3] (пространственная группа $Fd\bar{3}m$ (227), установка 2) с атомами Ві и О в позициях A 96g (x, y, y) и O' 8b (3/8, 3/8, 3/8), соответственно. Было положено, что позиция B 16c (0,0,0) заполнена без вакансий катионами W^{6+} и Fe^{3+} (по полученным данным Мессбауэровской спектроскопии), вакансии на позиции О 48f(x, 1/8, 1/8) отсутствуют, а в позиции Aнаряду с катионами Bi³⁺ имеются вакансии, и могут находиться катионы Na+. Заселенность позиции О' рассчитывалась по принципу электронейтральности из полученных заселенностей катионных позиций (при условии, что коэффициент заполнения $p_{O'} \leq 1$). Ключевым приемом, позволившим произвести прецизионное уточнение заселенностей позиций А и В атомами разного сорта, являлось попеременное варьирование этих засе-

 $^{^{\}rm b}$ При вычислениях использовались коэффициенты $K_{\rm Scherrer}=0.94$ и $K_{\rm strain}=4$ для уравнений Шеррера (Scherrer) и Вильсона—Стокса (Wilson—Stokes), отвечающих соответственно вкладам FWHM-компонент в уширение рефлексов из-за размера кристаллита и из-за величины микродеформации, см. [1,2].

 $^{^{\}rm c}$ Величина $\varepsilon_{\rm s}$ связана с величиной e_0 , получаемой в уточнениях по методам LB и Ритвельда программой TOPAS, как $\varepsilon_{\rm s}(\%)=2e_0\cdot 100\%$.

^d Все о.с.о., полученные в уточнениях методами LB и Ритвельда, скорректированы на занижение из-за сериальных корреляций путем умножения на коэффициент *m*_{e.s.d.}, вычисленный по процедуре Берара (Bérar), см. [2].

 $^{^{\}mathrm{e}}$ Для атомов Ві и Nа в позиции A 96g (x,y,y), атомы распределены по шести близким эквивалентным позициям, поэтому q=6p — это суммарный коэффициент заполнения шести близких эквивалентных позиций A, в которых могут располагаться атомы Ві и Na $(0 \le q \le 1)$. В случае атомов W и Fe, расположенных в позиции B, q=p — это коэффициенты заполнения этой позиции атомами W и Fe соответственно $(0 \le p \le 1)$.

 $^{^{\}rm f}$ Вычислено как $p_{\rm Fe} = 1 - p_{\rm W}$.

^g Вычислено из принципа электронейтральности, предполагая заряды ионов: Bi³⁺, Na¹⁺, W⁶⁺, Fe³⁺ и O²⁻.

Рис. 1. (a) WHP и (b) SSP графики, построенные для рефлексов фазы пирохлора по процедурам для рефлексов pV-типа (см. [1]). Аппроксимационные прямые Y = A + BX показаны на (a) и (b), где аналитические выражения для величин Y и Xуказаны, соответственно, в подписях к осям ординат и абсцисс. Символ d означает межплоскостное расстояние, отвечающее рефлексу с индексами Миллера hkl и углу Брэгга $2\theta_{\rm B}$ (величины $2\theta_{\rm B}$ скорректированы на угловые поправки на сдвиг нуля счетчика (zero shift) и на смещение поверхности образца из фокальной плоскости дифрактометра (displacement)), FWHM_{corr} — это наблюдаемая FWHM рефлекса, исправленная на инструментальное уширение по процедуре для наблюдаемого pV-типа рефлексов, $\lambda = 1.540598 \,\mathrm{A}$ — длина волны Си- $K_{\alpha 1}$ излучения (после корректировки вклада Cu- $K_{\alpha 2}$). Другие символы объяснены в тексте. FWHM и B_{int} — это наблюдаемая FWHM рефлекса (без корректировок) и интегральная ширина рефлекса соответственно.

ленностей вручную при уточнении всех неструктурных и структурных параметров и построение графиков зависимости весового профильного фактора согласия $R_{\rm wp}$ от задаваемых коэффициентов p заполнения позиций. Из минимума зависимости $R_{\rm wp}(p)$, имеющей характерный вид параболической функции, на каждом цикле

определялась заселенность уточняемой позиции. Далее этот найденный коэффициент p заполнения позиции дополнительно уточнялся (меняясь при этом лишь слабо) и фиксировался на следующем цикле при построении графика $R_{\rm wp}(p)$ для другой позиции. Подобные циклы уточнения повторялись до тех пор, пока заселенности не переставали меняться в пределах оцениваемого стандартного отклонения (далее — о.с.о.). Ранее [2], подобная методика построения графиков $R_{\rm wp}(p)$ позволила успешно получить состав сегнетоэлектрика-релаксора ${\rm PbNi}_{1-x}{\rm Ta}_x{\rm O}_{3-\delta}$, в котором тяжелые атомы ${\rm Ta}~(Z=73)$ и легкие атомы ${\rm Ni}~(Z=28)$ находятся в одной кристаллографической позиции.

На первом этапе уточнения предполагалось, что для заселенностей катионных позиций A и B выполняются соотношения, найденные при анализе методом ЭДС: $q_{\rm Bi}/q_{\rm W}=0.81,\ q_{\rm Fe}/q_{\rm W}=0.53$ и $q_{\rm Na}/q_{\rm W}=0.06$, и при этом $p_{\rm Fe}=1-p_{\rm W}$. Таким образом, на первом этапе единственным варьируемым параметром заселенностей являлся коэффициент заполнения $p_{\rm W}$ позиции B атомами W, оптимальное значение которого ($p_{\rm W}=0.6536$) было определено из минимума параболической функции, описывающей зависимость $R_{\rm wp}(p_{\rm W})$. Варьирование $p_{\rm W}$ начиналось со значения, определяемого соотношением $q_{\rm Fe}/q_{\rm W}=0.53$ согласно результатам ЭДС, с последующей отменой этого соотношения и изменения величины $p_{\rm W}$ вручную. Достигнутый на этом этапе $R_{\rm wp}=3.272\%$ (и Брэгговский фактор согласия $R_{\rm B}=0.649\%$).

На втором этапе уточнения соотношение $q_{\rm Bi}/q_{\rm W}$ =0.81 было отменено, но условие $q_{\text{Na}} = 0.06 \cdot q_{\text{W}}$ сохранялось. В первом цикле второго этапа уточнения оптимальное значение p_{W} , найденное на первом этапе, фиксировалось, и вручную менялось уже значение $p_{\rm Bi}$ для позиции A, и строилась зависимость $R_{wp}(p_{Bi})$ (рис. 2, a), аппроксимируемая параболической функцией, минимум которой давал оптимальное значение $p_{\rm Bi}$, которое дополнительно уточнялось по завершении цикла. В свою очередь, на втором цикле фиксировалось значение $p_{\rm Bi}$, найденное на первом цикле, и варьировалось вручную уже значение p_{W} с построением опять зависимости $R_{
m wp}(p_{
m W})$ и повторением всех шагов, описанных для первого цикла. Подобная процедура повторялась до тех пор, пока величины коэффициентов заполнения $p_{\rm W}$ и $p_{\rm Bi}$ не перестали меняться с точностью до о.с.о. (N = 7 циклов). Предельные значения y_0 , полученные из аппроксимации зависимостей $p_{Bi}(N)$ и $p_{W}(N)$ по закону экспоненциального падения (рис. 2, b, c), задавались и снова уточнялись, слабо меняясь. Полученные значения заселенностей $p_{\mathrm{Bi}}^{\mathrm{opt}}=0.08972$ и $p_{\mathrm{W}}^{\mathrm{opt}}=0.7736$ являлись оптимальными при условии, что атомное соотношение Na/W отвечает результатам ЭДС. Достигнутый на этом этапе $R_{\rm wp} = 3.170\%$ (при $R_{\rm B} = 0.516\%$).

На заключительном этапе уточнения производилось определение окончательного значения содержания Na^+ и катионных вакансий в позиции A. Значения $p_{\rm Bi}^{\rm opt}$ и $p_{\rm Na}^{\rm opt}=(0.06\cdot p_{\rm W}^{\rm opt})/6$, полученные при условии, что

Рис. 2. Зависимость весового профильного фактора $R_{\rm wp}$ от коэффициента заполнения позиции A 96g атомами Bi $(p_{\rm Bi})$ в цикле N=1 второго этапа уточнения при варьировании $p_{\rm Bi}$ вручную (a). Зависимости оптимальных значений коэффициентов заполнения (b) $p_{\rm Bi}^{\rm opt}$ и (c) $p_{\rm W}^{\rm opt}$, полученных из минимумов $R_{\rm wp}(p)$, подобных изображенному на (a), от номера циклов уточнения (N), в которых эти оптимальные значения получены. На (a) показана формула параболической аппроксимирующей функции, где $Y=R_{\rm wp}$, а $X=p_{\rm Bi}$. На (a) указаны значения коэффициентов заполнения всех позиций атомами, полученые для оптимального значения $p_{\rm Bi}^{\rm opt}$, отвечающего минимуму $R_{\rm wp}(p)$. На (b,c) указаны коэффициенты y_0 , A_1 и t_1 аппроксимирующей функции экспоненциального падения $Y=y_0+A_1\exp(-X/t_1)$, где $Y=p_{\rm Bi}^{\rm opt}$ на (b) и (c), соответственно, а X=N.

атомное соотношение Na/W отвечает результатам ЭДС, пересчитывались к значению $p_{\rm Bi}^{\rm obs0}$ в предположении только атомов Bi в позиции A, рассеивающих также, как атомы Bi и Na с этими коэффициентами заполнения:

$$p_{\rm Bi}^{\rm obs0} = \frac{p_{\rm Bi}^{\rm opt} Z_{\rm Bi} + p_{\rm Na}^{\rm opt} Z_{\rm Na}}{Z_{\rm Bi}},$$
 (1)

где $Z_{\rm Bi}=83$ и $Z_{\rm Na}=11$ — это атомные номера Ві и Nа. Данное выражение является приближенным и следует из выражения структурной амплитуды для позиции A. Используя значение $p_{\rm Bi}^{\rm obs0}=0.09587$ как стартовое для заселенности атомами Ві позиции A в модели, где Na в этой позиции отсутствует, была, как описано выше, построена зависимость $R_{\rm wp}(p_{\rm Bi})$, из минимума аппроксимирующей параболической функции которой, было найдено оптимальное "кажущееся" значение $p_{\rm Bi}^{\rm obs}=0.0911$

в модели, когда рассеяние атомов Ві и Nа в позиции А описывалось рассеянием только атомов Ві. Финальные оптимальные значения заселенности позиции A атомами Ві и Nа были получены из минимума аппроксимации зависимости $R_{\rm wp}(p_{\rm Bi})$, построенной при варьировании величины $p_{\rm Bi}$ при условии, что суммарное рассеяние атомами Ві и Nа — такое же, как и в случае описания этого рассеяния только рассеянием атомами Ві:

$$p_{\text{Na}} = \left(p_{\text{Bi}}^{\text{obs}} - p_{\text{Bi}}\right) \frac{Z_{\text{Bi}}}{Z_{\text{No}}}.$$
 (2)

Финальные значения параметров структуры и микроструктуры кристаллической фазы пирохлора ($R_{\rm wp}=3.169\%$, $R_{\rm B}=0.510\%$), полученные при уточнении методом Ритвельда, сведены в таблицу. Графические результаты финальной подгонки расчетной дифрактограммы приведены на рис. 3. Описанная

Рис. 3. Финальные графические результаты Ритвельдовской подгонки симулированной РД картины к экспериментальной $(2\theta=6-140^{\circ}\ \text{c}\ \text{шагом}\ \Delta 2\theta=0.01^{\circ},\ \text{суммарное}\ \text{время}\ \text{в}\ \text{точке}\ 2560\,\text{сек}\ (пересчет\ c\ используемого\ линейного\ детектора\ на точечный\ детектор)). На вставке показан диапазон углов дифракции <math>2\theta=18-66^{\circ}\ \text{в}\ \text{увеличенном}\ \text{масштабе}.$ Указаны индексы Миллера hkl избранных рефлексов пирохлора. Позиции неидентифицированных рефлексов указаны цифрами. Рефлексы из-за остаточного K_{β} излучения также указаны.

методика позволила определить состав кристаллической фазы пирохлора ($\mathrm{Bi}_{1.08}\mathrm{Na}_{0.08}\square_{0.84}$)($\mathrm{Fe}_{0.44}\mathrm{W}_{1.56}$)О₇, где \square — катионная вакансия. При сравнении состава пирохлора с валовым составом образца, полученным методом ЭДС, можно предположить наличие в образце рентгеноаморфной фазы состава ($\mathrm{Bi}_{1.89}\mathrm{Na}_{0.18}$) $\mathrm{Fe}_{4.05}\mathrm{O}_{9}$, что близко к составу известного соединения $\mathrm{Bi}_{2}\mathrm{Fe}_{4}\mathrm{O}_{9}$. Следует заметить, однако, что из-за ограниченной точности метода ЭДС в случае анализа порошков, состав рентгеноаморфной фазы требует дальнейшего изучения.

[3] M.W. Lufaso, T.A. Vanderah, I.M. Pazos, I. Levin, R.S. Roth, J.C. Nino, V. Provenzano, P.K. Schenck, J. Solid State Chem. 179, 12, 3900–3910 (2006). DOI: 10.1016/j.jssc.2006.08.036

Редактор Ю.Э. Китаев

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- M.S. Lomakin, O.V. Proskurina, A.A. Levin, V.N. Nevedomskiy. Nanosyst.: Phys. Chem. Math. 15, 2, 240–254 (2024). DOI: 10.17586/2220-8054-2024-15-2-240-254
- [2] А.А. Левин, Т.А. Смирнова, Е.Д. Обозова, В.Г. Залесский, А.И. Федосеев, С.Г. Лушников, Кристаллография **68**, *5*, 722–733 (2023). DOI: 10.31857/S0023476123600532