09

Низкотемпературное люминесцентное исследование образования радиационных дефектов в 4*H*-SiC диодах Шоттки

© В.Ю. Давыдов¹, А.Н. Смирнов¹, И.А. Елисеев¹, А.А. Лебедев¹, М.Е. Левинштейн¹, В.В. Козловский^{1,2}

 ¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
 ² Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия
 E-mail: valery.davydov@mail.ioffe.ru

Поступила в Редакцию 30 апреля 2024 г. В окончательной редакции 28 октября 2024 г. Принята к публикации 30 октября 2024 г.

С использованием метода низкотемпературной фотолюминесцентной спектроскопии исследовано влияние температуры облучения электронами и протонами на образование радиационных дефектов в 4*H*-SiC диодах Шоттки. Установлено, что температура, при которой проводится облучение, существенно влияет на процесс формирования радиационных дефектов в базовом слое *n*-4*H*-SiC диодов. Это наблюдение хорошо согласуется с результатами изменения электрических свойств тех же образцов под воздействием протонного и электронного облучения.

Ключевые слова: 4*H*-SiC диод Шоттки, протонное облучение, электронное облучение, фотолюминесценция, проводимость.

DOI: 10.61011/FTT.2024.12.59593.6589PA

Воздействие радиационного облучения на свойства полупроводников и полупроводниковых приборов важно как с прикладной точки зрения, так и с точки зрения исследования фундаментальных физических процессов дефектообразования. Ранее в работах [1,2] были выполнены исследования по изучению влияния температуры электронного и протонного облучения на образование радиационных дефектов в *n*-4H-SiC. В этих исследованиях использовались такие методики как нестационарная емкостная спектроскопия, измерения вольтамперных и вольтфарадных характеристик и т.д. Такие исследования позволяют делать заключения о характеристиках вводимых в результате облучения дефектов из измерений интегральных параметров исследуемых объектов. Микрофотолюминесцентные (µ-ФЛ) исследования являются эффективным методом изучения локальной структуры вводимых в 4H-SiC радиационных дефектов. Цель настоящей работы заключалась в получении с использованием низкотемпературной μ-ΦЛ новой информации о спектре генерируемых в 4H-SiC диодах Шоттки дефектов, созданных протонами и электронами высоких энергий в широком диапазоне температур облучения.

Исследовались 4*H*-SiC диоды Шоттки JBSCPW3-1700-S010B с блокирующим напряжением 1700 V, исходной концентрацией электронов в базе $n_0 \approx 3.4 \cdot 10^{15}$ cm⁻³, и толщиной базы $W \approx 20$ mkm. Образцы облучались протонами с энергией 15 MeV дозой $1.0 \cdot 10^{14}$ cm⁻² при четырех температурах: 23, 150, 300 и 500°C на изохронном циклотроне МГЦ-20 и электронами с энергией 0.9 MeV дозой $1.3 \cdot 10^{17}$ cm⁻² при трех температурах: 23, 100 и 200°C на ускорителе электронов РТЭ-1В в СПбПУ Петра Великого.

Измерения μ -ФЛ проводились при $T = 5 \,\mathrm{K}$ с помощью спектрометра LabRAM HREvo UV-VIS-NIR-Open (Horiba, France), оснащенного криостатной системой замкнутого цикла RC-102 (Cryo Inc., USA). Для возбуждения спектров *µ*-ФЛ использовалась линия $\lambda = 325 \,\text{nm}$ (3.81 eV) Не-Сd-лазера. Лазерный луч фокусировался зеркальным объективом в пятно диаметром ~ 4 mkm на поверхности образца. Плотность возбуждения менялась в диапазоне от 1 до 50 kW/cm². Спектральное разрешение спектрометра было не хуже 0.3 meV во всех спектральных диапазонах. Глубина проникновения излучения в 4H-SiC на используемой длине волны при $T = 5 \,\mathrm{K}$ составляла примерно 8.6 mkm [3]. Наши экспериментальные результаты по измерению µ-ФЛ относятся именно к этой глубине базового слоя 4H-SiC диода Шоттки, полная толщина которого составляла $W \approx 20 \,\mathrm{mkm}$.

На рис. 1 представлен спектр µ-ФЛ необлученного 4H-SiC диода Шоттки (#5) в области энергий 3.26-3.13 eV (380-396 nm), в которой присутствуют линии, обусловленные рекомбинацией свободных (*I*_{76.4}) и связанных на примесях (Q₀) экситонов вблизи края запрещенной зоны 4H-SiC. Их наличие свидетельствует о хорошем качестве базового слоя 4H-SiC. На этом же рисунке представлены спектры, измеренные на образцах облученных протонами дозой 1 · 10¹⁴ cm⁻² при различных температурах: 25°С (#1), 150°С (#2), 300°С (#3), 500°С (#4). Хорошо видно, что наиболее сильные изменения в интенсивности и форме спектральных линий произошли в спектре ФЛ образца облученного при 25°С. Это указывает на то, что облучение при комнатной температуре обусловливает наиболее сильное радиационное воздействие на параметры 4H-SiC. Облучение при повышенных температурах вызывает существенно меньшие изменения в спектрах исследуемых образцов, и, следовательно, свидетельствует о более слабых радиационных повреждениях. Из данных, представленных на рис. 1, следует, что наименьшему радиационному воздействию подвергся образец, облученный протонами при температуре 300°С.

Спектры ФЛ исследуемых образцов в диапазоне энергий 2.92-2.83 eV (424-438 nm) представлены на рис. 2. Для необлученного образца (#5) в этой области спектра не наблюдается никаких особенностей. Однако в спектрах облученных образцов появляются многочисленные узкие линии, число и интенсивность которых зависят от условий облучения. Эти особенности в спектрах 4H-SiC обусловлены рекомбинацией экситонов на структурных дефектах, созданных в результате радиационного воздействия (межузельные дефекты, вакансии, дивакансии, антисайты). В литературе за ними закрепилось название "линии алфавита" [4]. В соответствующих спектрах мы можем четко различить 12 люминесцентных пиков, которые следует отнести к сериям *b*-*g* "линий алфавита". Из представленных на рис. 2 данных следует, что наибольшему радиационному воздействию подвергся базовый слой диода Шоттки, облученного при комнатной температуре. Облучение при повышенных температурах вызывает существенно меньшие радиационные повреждения. В целом, эти заключения согласуются с выводами, сделанными ранее на основе анализа спектров, представленных на рис. 1. Из данных представленных на рис. 2 следует, что наименьшее количество структурных дефектов, ответственных за появление "линий алфавита" в ФЛ спектрах 4H-SiC возникло при температуре облучения 500°C, что хорошо согласуется с результатами исследования электрических характеристик облученных протонами диодов [2].

На рис. 3 представлены спектры ФЛ в широком энергетическом диапазоне 3.0-1.7 eV. Как видно из рисунка, в спектре необлученного диода Шоттки присутствует широкая полоса с максимумом вблизи 2.2 eV (565 nm), которая типична для политипов SiC и обусловлена наличием глубоких примесных центров [5]. После облучения протонами, возникает новая широкая полоса с пиком 2.6 eV (477 nm), природа которой обусловлена излучательной рекомбинацией с участием донорного уровня азота и акцепторного центра, возникающего в процессе облучения [6]. Имеющиеся в литературе результаты исследований этой полосы свидетельствуют об увеличении ее интенсивности с увеличением интенсивности радиационного воздействия. С учетом этого, из данных представленных на рис. З можно сделать вывод, что наибольшему радиационному воздействию подвергся базовый слой диода Шоттки, облученного при $T_{irr} = 25^{\circ}$ C.

Анализ аналогичных спектров для облученных электронами 4*H*-SiC диодов Шоттки (не представлены в данной работе) показал, что максимальному радиационному воздействию также подвержены образцы, облученные при комнатной температуре. Обнаружено,

Рис. 1. Спектр μ -ФЛ вблизи края собственного поглощения базового слоя необлученного 4*H*-SiC диода Шоттки (#5) и эволюция спектров μ -ФЛ 4*H*-SiC диодов Шоттки под влиянием облучения протонами дозой $D = 1 \cdot 10^{14}$ сm⁻² при температурах T_{irr} , °C: 25 (#1), 150 (#2), 300 (#3), 500 (#4). На вставке показана трансформация линии Q_0 , которая обусловлена рекомбинацией экситона, связанного с нейтральным азотным донором, находящимся в кубическом окружении.

Рис. 2. Спектры μ -ФЛ базового слоя 4*H*-SiC диодов Шоттки, измеренные при температуре 5 К в области "линий алфавита" необлученного (#5) и облученных протонами дозой $D = 1 \cdot 10^{14}$ cm⁻² при температурах T_{irr} , °C: 25 (#1), 150 (#2), 300 (#3), 500 (#4). Для удобства анализа фон, сформированный частью широкой полосы с максимумом ~ 2.6 eV, вычтен в этой спектральной области и спектры нормированы на интенсивность линии ~ 2.89 eV с указанием соответствующих нормировочных коэффициентов.

что температура, при которой происходит протонное и электронное облучение, существенно влияет на процесс формирования радиационных дефектов. Это наблюдение хорошо согласуется с результатами, представленными в

Рис. 3. Спектры μ -ФЛ базового слоя необлученного диода Шоттки (#5) и диодов Шоттки облученных протонами дозой $D = 1 \cdot 10^{14}$ cm⁻² при температурах T_{irr} , °C: 25 (#1), 150 (#2), 300 (#3), 500 (#4). Широкая полоса с максимумом ~ 2.6 eV обусловлена излучательной рекомбинацией с участием донорного уровня азота и акцепторного центра, возникающего в процессе облучения.

работах [1,2]. Однако следует отметить существенные различия в формировании радиационных дефектов при электронном и протонном облучении проявляющиеся в спектрах μ-ΦЛ. Особенно сильно они заметны в области "линий алфавита", а также в степени воздействия на линию Q_0 , обусловленную рекомбинацией экситона, связанного с нейтральным азотным донором, находящимся в кубическом окружении. Исследования поляризованных спектров ФЛ в спектральной области 1.45-1.30 eV, в которой проявляются бесфононные линии V₁-1.440 eV $(V_1'-1.444 \,\mathrm{eV})$ и $V_2-1.354 \,\mathrm{eV}$, обусловленные наличием двух типов изолированных кремниевых вакансий в 4H-SiC, также выявили значительную разницу в создании таких радиационных дефектов различными типами облучения. Было установлено, что при электронном облучении возникает только один тип вакансий — кубический, характеризуемый линиями $V_1(V'_1)$, в то время как при протонном облучении возникают оба типа вакансий — кубический и гексагональный, на что указывает появление линий $V_1(V_1')$ и V_2 соответственно. Были выполнены детальные исследования температурной зависимости интенсивностей бесфононных линий V₁(V'₁) и V₂ в диапазоне температур 5-300 К. Установлено, что однородность вводимых дефектов при электронном облучении намного выше, чем при протонном облучении. Детальное описание результатов исследований образцов, подвергнутых электронному облучению, будет представлено в расширенной публикации.

Изменения электрических свойств 4*H*-SiC под влиянием протонного облучения, хорошо коррелируют с результатами оптических измерений, представленных на рис. 1–3. При одной и той же дозе протонного облучения $D = 1.0 \cdot 10^{14}$ сm⁻² изменение проводимости максимально при облучении при температуре $T_{irr} = 25^{\circ}$ C и монотонно уменьшается с ростом температуры облучения. При повышении температуры облучения, концентрация электронов в зоне проводимости n_p монотонно возрастает и составляет ~ 10^8 сm⁻³ при $T_{irr} = 23^{\circ}$ C, ~ 10^{11} сm⁻³ при $T_{irr} = 300^{\circ}$ C, и ~ 10^{13} сm⁻³ при $T_{irr} = 500^{\circ}$ C.

Необходимо отметить также, что протонное облучение, проведенное при всех указанных выше значениях *T_{irr}*, приводит к появлению в облученных образцах долговременной релаксации проводимости. Подобное явление наблюдалось в целом ряде полупроводников. Однако во всех ранее опубликованных работах установление стационарной проводимости происходило как результат монотонного спада тока после приложения к образцам импульса прямого напряжения. Нами впервые наблюдалась качественно иная временная зависимость: при приложении импульса прямого напряжения ток сначала спадает со временем, а затем начинает нарастать. Диапазон постоянных времени, характеризующий оба процесса, лежит в пределах от десятков и сотен миллисекунд до сотен секунд. Такой результат свидетельствует о появлении в результате облучения протонами в запрещенной зоне не одной, а двух примесных зон. Анализ возможного влияния появления второй примесной зоны на оптические спектры представляется важной и интересной задачей.

Облучение электронами также приводит к уменьшению проводимости 4H-SiC. При этом скорость удаления носителей под воздействием электронного облучения в 200-300 раз меньше, чем при протонном облучении. Как и в случае протонного облучения, концентрация электронов в базовом слое после электронного облучения, n_e , тем выше, чем выше температура облучения T_{irr} . Однако необходимо отметить, что ни при каких условиях облучение электронами не приводит к долговременной релаксации проводимости. Это свидетельствует о том, что в результате электронного облучения в запрещенной зоне полупроводника не возникают примесные зоны. Облучение электронами создает в запрещенной зоне только локальные уровни.

Суммируя вышеизложенное, можно сделать заключение, что последовательное сопоставление результатов по изменению локальных оптических и интегральных электрических характеристик 4*H*-SiC под воздействием протонного и электронного облучений может эффективно способствовать выяснению природы дефектов, возникающих в результате радиационного воздействия.

Финансирование работы

Исследования поддержаны Российским научным фондом (проект № 22-12-00003).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- А.А. Лебедев, В.В. Козловский, М.Е. Левинштейн, Д.А. Малевский, Г.А. Оганесян, А.М. Стрельчук, К.С. Давыдовская. ФТП, 56, 441 (2022). DOI: 10.21883/FTP.2022.04.52201.9777
- [2] А.А. Лебедев, Д.А. Малевский, В.В. Козловский, М.Е. Левинштейн. ФТП, 57, 743 (2023).
 род. 10 (1011/JTIP 2022 00 5 (080 5778))
 - DOI: 10.61011/FTP.2023.09.56989.5778
- [3] S.G. Sridhara, R.P. Devaty, W.J. Choyke. J. Appl. Phys., 84, 2963 (1998). DOI: 10.1063/1.368403
- [4] T. Egilsson, A. Henry, I.G. Ivanov, J.L. Lindström, E. Janzén. Phys. Rev. B, 59, 8008 (1999).
 DOI: 10.1103/PhysRevB.59.8008
- [5] Ю.А. Водаков, Г.А. Ломакина, Е.Н. Мохов, М.Г. Рамм, В.И. Соколов. ФТП, 20, 2153 (1986).
- [6] A.A. Lebedev, B.Ya. Ber, N.V. Seredova, D.Yu. Kazantsev, V.V. Kozlovski. J. Phys. D: Appl. Phys., 48, 485106 (2015). DOI: 10.1088/0022-3727/48/48/485106

Редактор А.Н. Смирнов