Контролируемое отклонение состава от стехиометрии в высокотемпературных сверхпроводниках для повышения критического тока в сильных магнитных полях

© В.В. Гурьев¹, В.Е. Крылов¹, И.В. Куликов¹, И.М. Абдюханов², М.В. Алексеев², Ю.Н. Белотелова², П.В. Коновалов², П.А. Лукьянов², М.В. Мальцева², С.Н. Николаев¹, С.В. Шавкин¹

¹ Национальный исследовательский центр "Курчатовский институт", Москва, Россия ² АО "ВНИИНМ" им. Бочвара, Москва, Россия E-mail: GuryevVV@mail.ru

Поступила в Редакцию 30 апреля 2024 г. В окончательной редакции 28 октября 2024 г. Принята к публикации 30 октября 2024 г.

> Исследовано влияние отклонения химического состава мишени от стехиометрического оксида иттрийбарий-медь (YBCO) Y:Ba:Cu = 1:2:3 на характеристики высокотемпературных сверхпроводящих (ВТСП) проводов второго поколения, полученных импульсным лазерным осаждением. Экспериментально определена мишень с оптимальным химическим составом, позволяющая как снизить степень анизотропии, так и увеличить величину критического тока при гелиевых температурах и сильных магнитных полях.

Ключевые слова: ҮВСО, ВТСП-2, центры пиннинга, анизотропия, мишень.

DOI: 10.61011/FTT.2024.12.59565.6507PA

1. Введение

Технология высокотемпературных сверхпроводников второго поколения (ВТСП-2) заключается в эпитаксиальном выращивании химического соединения семейства (RE)Ва₂Си₃О_{7-*x*} (REBCO, где RE — редкоземельный элемент) на текстурированных буферных слоях, покрывающих гибкую металлическую ленту-подложку. Эта технология имеет потенциал революционизировать многие отрасли промышленности, такие как электрические моторы и генераторы для авиации и космоса, накопители энергии, медицинские томографы и другие. Особо выделяется перспектива использования ВТСП-2 в магнитных системах компактных установок термоядерного синтеза (УТС). Ключевое значение для УТС имеет возможность получения высоких магнитных полей ~ 20 Т и выше, что обуславливает снижения рабочей температуры ВТСП-2 до гелия. Было показано [1,2] что наибольшего критического тока (I_c) при таком уровне температур удается добиться при использовании оксида иттрий-барий-медь (ҮВСО). Дальнейшее улучшение токонесущей способности ҮВСО может быть обеспечено с помощью внедрения искусственных центров пиннинга.

Известно, что в отличие от кислородного индекса [3,4], отклонение индексов Y, Ва и Си мишени от номинального значения в $YBa_2Cu_3O_{7-x}$, приводит к существенному изменению характеристик ВТСП покрытия. Избыток Ва считается нежелательным, поскольку образующиеся фазы нестабильны, и негативно сказываются на эксплуатационных свойствах [5]. Влияние избытка Си до сих пор исследовано не достаточно, а имеющееся результаты противоречивы. Установлено, что избыток меди приводит к образованию на поверхности ВТСПслоя довольно больших (> 1 µm) частиц CuO, которые практически отсутствуют в объеме REBa₂Cu₃O_{7-x}. Поэтому эти частицы не могут выступать в качестве центров пиннинга. Однако, в то же время, сообщалось о положительной корреляции между появлением CuO и повышением І_с [5]. Умеренный избыток У приводит к образованию мелкодисперсных частиц У2О3, которые выступают в роли эффективных центров пиннинга. Это довольно привлекательный способ увеличения критического тока, поскольку относительно просто поддается масштабированию [2]. Кроме того, при попеременном распылении нескольких мишеней можно добиться выделений в ВСТП слое частиц не сверхпроводящей фазы Y₂BaCuO₅ (Y211), что также приводит к увеличению критического тока [6].

В настоящей работе мы представляем промежуточные результаты исследований, направленных на определение оптимального отклонения от стехиометрии мишени для повышения токонесущей способности ВТСП-2проводников в сильных магнитных полях.

2. Эксперимент

Образцы ВТСП-проводов, шириной 4 mm, изготовлены на экспериментальной технологической линии в НИЦ "Курчатовский институт" [7,8]. ВТСП-слой выращивался с помощью импульсного лазерного осаждения (PLD) на стальной подложке с буферными слоями YSZ (оксид циркония, стабилизированный иттрием) и СеО₂. Мишени для распыления были изготовлены в АО "ВНИИНМ" с применением оксалатного соосаждения из смеси азотнокислых растворов Y, Ba и Cu, CBЧсушки, пиролиза, прессования и высокотемпературной обработки. Отклонение от стехиометрии создавалась несколькими способами. В первой мишени исходные растворы для совместного осаждения брались с недостатком бария, чтобы брутто-формула смеси соответствовала У:Ва:Си = 1:1.8:3. Во вторую мишень для увеличения избытка иттрия дополнительно вводили добавку У2О3, чтобы мольная доля У2О3 составляла 8%. Наконец, в третьей мишени керамический порошок YBCO стехиометрического состава смешивался с дополнительно изготовленным порошком Y₂BaCuO₅ (Y-211), чтобы мольная доля У-211 составляла 8%.

Определение критического тока проводили по критерию 1 µV/cm, достигаемому на вольт-амперных характеристиках (ВАХ) при стандартных транспортных измерениях четырехтерминальным методом. Угловые зависимости критического тока $I_c(\theta)$ снимались в т.н. конфигурации максимальной силы Лоренца: магнитное поле всегда перпендикулярно транспортному току. Угол θ отсчитывался от плоскости ленты. Исследование угловых зависимостей проведено в среде жидкого азота. Измерения критического тока в среде жидкого гелия (4.2 К) проводились при ориентации внешнего магнитного поля по нормали к ленте. Оценка критического тока при промежуточных температурах (20 и 40 К) проводилась по ширине петли намагниченности, измеренной на вибромагнитометре PPMS. Коэффициент пропорциональности между шириной петли и критическим током определялся с привлечением транспортных измерений при 4.2 К.

Образец, приготовленный с использованием мишени, обедненной по барию (YB_{1.8}CO), обозначен как "387-1", имел толщину ВТСП-слоя $1.4\,\mu$ m и критический ток в собственном поле (при 77.4 К) — 96 А. Образец из мишени с добавлением оксида иттрия (YB_{1.8}CO+Y₂O₃) — "466-4", толщина – $1.6\,\mu$ m, критический ток — 133 А. Мишень с добавлением фазы Y211 (YBCO+Y211) соответствует образцу "282", с толщиной $1.6\,\mu$ m и критическим током 91 А.

3. Результаты и обсуждение

На рис. 1, *а* представлены угловые зависимости критического тока во внешнем поле 0.5 Т. Все угловые зависимости хорошо описываются в рамках модели анизотропного пиннинга [9,10]. Отметим, что для образца 387-1 наблюдается выраженная асимметрия угловой зависимости $I_c(\theta)$, объяснение которой дано в работе [10]. Наиболее выгодной с точки зрения максимизации критического тока является ориентация поля в плоскости ленты ($\theta = 0^{\circ}$). Для этой геометрии критический ток убывает в ряду 466-1 \rightarrow 282 \rightarrow 387-1. Если не брать в расчет слабую асимметрию образца 387-1, то наибо-

Рис. 1. *а* — угловая зависимость критического тока $I_c(\theta)$ при 77.4 К во внешнем поле $\mu_0 H = 0.5$ Т; *b* — полевая зависимость анизотропии $I_c(\theta = 0^\circ)/I_c(\theta = 90^\circ)$ при 77.4 К.

лее неблагоприятной ориентацией является нормальное направление поля, где ряд убывания критического тока меняется на противоположный $387-1 \rightarrow 282 \rightarrow 466-1$. Степень анизотропии можно оценить по отношению $I_c(\theta = 0^\circ)/I_c(\theta = 90^\circ)$. Анизотропия существенно отличается для исследованных образцов (рис. 1, *b*) и растет с увеличением поля. Наименьшей анизотропией (< 4) обладает образец 387-1 изготовленный с применением мишени, обедненной по барию.

На рис. 2 показана полевая зависимость критического тока в перпендикулярной геометрии при температурах 4.2, 20 и 40 К. Образец 387-1 демонстрирует наибольший критический ток при всех температурах, несмотря на то, что его толщина $(1.4\,\mu\text{m})$ несколько меньше, чем у образцов 282 и 466-1 $(1.6\,\mu\text{m})$. Интересно сопоставить полученные результаты с современными достижениями, представленными в открытых источниках. В работе [6] собраны данные о рекордных значениях объемной силы пиннинга, полученных до 2024 г. При использовании нестехиометрической мишени на тонких пленках ($\sim 0.3\,\mu\text{m}$), выращенных на монокристаллах, удавалось

Рис. 2. Полевые зависимости критического тока при 4.2 (a), 20 (b) и 40 K (c), оцененные по ширине петли намагниченности. Крупные символы на панели (a) соответствуют значениям, полученным из транспортных измерений.

добиться $\sim 0.9\,TN/m^3$ (9 T; 4.2 K). Для целей сравнения будем считать плотность тока постоянной по толщине ВТСП-слоя. Для образца 387-1 расчетное значение при 9 T и 4.2 K также составляет $\sim 0.9\,TN/m^3$, хотя наши покрытия значительно толще и наносятся на металли-

ческую ленту. Эта величина также хорошо согласуется с рекордными данными, о которых сообщалось в [2], где представлены экстремально высокие плотности тока сверхпроводящих лент для магнитных систем УТС.

4. Заключение

Приведены результаты исследований трех образцов, приготовленных методом импульсного лазерного осаждения на пилотной линии НИЦ "Курчатовский институт" из мишеней с различным отклонением от стехиометрии. Наибольшей токонесущей способностью в сильных полях, и при этом наименьшей анизотропией, обладают образцы, приготовленные из мишени, обедненной по барию. Для этого образца достигнуты токи, сопоставимые с рекордными значениями, встречающимися в литературе.

Финансирование работы

Работа выполнена с использованием оборудования ресурсного центра "Электрофизика" в рамках выполнения государственного задания НИЦ "Курчатовский институт".

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- В.В. Гурьев, И.В. Куликов, И.М. Абдюханов, М.В. Алексеев, Ю.Н. Белотелова, П.В. Волков, П.В. Коновалов, В.С. Круглов, В.Е. Крылов, Д.В. Лазарев, А.А. Никонов, А.В. Овчаров, Д.Н. Раков, С.В. Шавкин. ФТТ 65, 1, 12 (2023). https://doi.org/10.61011/FTT.2023.12.56725.5015k
- [2] A. Molodyk, S. Samoilenkov, A. Markelov, P. Degtyarenko, S. Lee, V. Petrykin, M. Gaifullin, A. Mankevich, A. Vavilov, B. Sorbom, J. Cheng, S. Garberg, L. Kesler, Z. Hartwig, S. Gavrilkin, A. Tsvetkov, T. Okada, S. Awaji, D. Abraimov, A. Francis, G. Bradford, D. Larbalestier, C. Senatore, M. Bonura, A.E. Pantoja, S.C. Wimbush, N.M. Strickland, A. Vasiliev. Sci. Rep. **11**, *1*, 2084 (2021). https://doi.org/10.1038/s41598-021-81559-z
- [3] S.V. Shavkin, A.K. Shikov, I.A. Chernykh, V.V. Guryev, E.S. Kovalenko, E.V. Yakovenko, M.L. Zanaveskin, D.N. Rakov, A.E. Vorobieva. J. Phys.: Conf. Ser. 507, 2, 022030 (2014). https://doi.org/10.1088/1742-6596/507/2/022030
- [4] И.А. Черных, А.М. Строев, М.Я. Гараева, Т.С. Крылова, В.В. Гурьев, С.В. Шавкин, М.Л. Занавескин, А.К. Шиков. Письма в ЖТФ 40, *1*, 58 (2014). [I.A. Chernykh, A.M. Stroev, M.Ya. Garaeva, T.S. Krylova, V.V. Gur'ev, S.V. Shavkin, M.L. Zanaveskin, A.K. Shikov. Tech. Phys. Lett. 40, *1*, 29 (2014).

https://doi.org/10.1134/S1063785014010027.]

 [5] A.E. Shchukin, A.R. Kaul'. Inorg. Mater. 58, 13, 1365 (2022). http://doi.org/10.1134/S0020168522130015

- [6] A.K. Jha, K. Matsumoto, T. Horide, S. Saini, A. Ichinose, P. Mele, Y. Yoshida, S. Awaji. Superconductivity 9, 100087 (2024). https://doi.org/10.1016/j.supcon.2024.100087
- [7] E.P. Krasnoperov, V.V. Guryev, S.V. Shavkin, V.E. Krylov, V.V. Sychugov, V.S. Korotkov, A.V. Ovcharov, P.V. Volkov. J. Eng. Sci. Tech. Rev. 12, *1*, 104 (2019). https://doi.org/10.25103/jestr.121.12
- [8] E.P. Krasnoperov, V.V. Sychugov, V.V. Guryev, S.V. Shavkin, V.E. Krylov, P.V. Volkov. Electrical Eng. **102**, *3*, 1769 (2020). https://doi.org/10.1007/s00202-020-00977-w
- [9] V.V. Guryev, S.V. Shavkin, V.S. Kruglov. J. Phys.: Conf. Ser. 2103, 1, 012096 (2021).
- https://doi.org/10.1088/1742-6596/2103/1/012096
- [10] В.В. Гурьев, И.В. Куликов, С.В. Шавкин. ВАНТ, сер. Термоядерный синтез 47, 3, 93 (2024). https://doi.org/10.2151/0202-3822-2024-47-3-93-107

Редактор Е.В. Толстякова