Гетероструктуры с двумерным электронным газом на основе GaN с InAIN/AIGaN-барьером

© Д.С. Артеев¹, А.В. Сахаров¹, А.Е. Николаев¹, Н.А. Черкашин², А.Ф. Цацульников³

¹ Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

² CEMES-CNRS and Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, CEDEX 4,

F-31055 Toulouse, France

³ Научно-технологический центр микроэлектроники и субмикронных гетероструктур

Российской академии наук,

194021 Санкт-Петербург, Россия

E-mail: ArteevDS@mail.ioffe.ru

Поступила в Редакцию 4 мая 2024 г. В окончательной редакции 9 октября 2024 г. Принята к публикации 30 октября 2024 г.

Экспериментально продемонстрирована возможность получения гетероструктур на основе GaN с композитным InAlN/AlGaN-барьером со значением слоевого сопротивления ~ 220–230 Ом/квадрат при комнатной температуре методом газофазной эпитаксии из металлорганических соединений, что сопоставимо с коммерческими структурами с InAlN-барьерами. На основе численных расчетов показано, что серьезный вклад в снижение подвижности двумерного электронного газа дает рассеяние на сплавном потенциале твердого раствора в слое AlGaN.

Ключевые слова: нитрид галлия, транзистор, InAlN.

DOI: 10.61011/FTP.2024.10.59386.6627A

1. Введение

Полевые транзисторы на основе соединений III-N представляют большой интерес для высокомощных и высокочастотных применений. В настоящее время подобные транзисторы преимущественно изготавливают на основе гетероструктур AlGaN/GaN с мольной долей алюминия, обычно не превышающей 30%. В таких структурах за счет разницы спонтанной и пьезоэлектрической поляризации между слоями AlGaN и GaN на гетерогранице возникает двумерный электронный газ (ДЭГ) с концентрацией $N_{\rm 2D} \sim 1 \cdot 10^{13} \, {\rm cm}^{-2}$ и подвижностью $\mu_{2D} \sim 2000 \, \text{см}^2 / (\text{B}^{-1} \cdot \text{c}^{-1})$. Типичные значения слоевого сопротивления R_S таких структур обычно не превышают 300 Ом/квадрат. Увеличение мольной доли алюминия в барьерном слое позволяет получить концентрации ДЭГ до $6 \cdot 10^{13} \,\text{см}^{-2}$ для чистого AlN [1]. Однако сильные механические напряжения, возникающие из-за разницы параметров кристаллической решетки GaN и AlN, сильно ограничивают критическую толщину барьерного AlN-слоя, а также негативно влияют на надежность конечного устройства. К тому же рост чистого AlN методом газофазной эпитаксии из металлорганических соединений (МОГФЭ), являющимся основным промышленным методом выращивания III-N структур, практически невозможен из-за непреднамеренного встраивания атомов Ga [2].

Альтернативным материалом барьерного слоя может служить InAlN, позволяющий получать ДЭГ с концентрацией $\sim (2.0-3.5)\cdot 10^{13}\,{\rm сm}^{-2}$ [3]. Однако InAlN требует роста при существенно пониженных температу-

рах, что негативно сказывается на его кристаллическом совершенстве и качестве гетерограницы, что вкупе с большим значением потенциала сплавного рассеяния приводит к невысоким значениям подвижности, так что итоговое значение R_S оказывается сопоставимым или даже большим, чем в стандартных AlGaN/GaN-структурах. Использование тонкого 1–2 нм AlN-слоя между InAlN и GaN обычно позволяет увеличить подвижность, несмотря на то что проблемы увеличения шероховатости гетерограницы и непреднамеренного встраивания атомов Ga при росте МОГФЭ при этом остаются.

Интересным подходом видится использование гетероструктур с тонким композитным InAlN/AlGaNбарьерным слоем, которые теоретически могут иметь концентрации ДЭГ, сопоставимые со структурами с InAlN-барьером, и подвижности, сопоставимые со структурами с AlGaN-барьерами. В данной работе приводятся результаты экспериментальных исследований и моделирования подобных гетероструктур.

2. Структуры и методика эксперимента

Исследуемые структуры были выращены МОГФЭ на установке Dragon-125 на сапфировых подложках. Структуры состояли из GaN:Fe-буферного слоя и нелегированного канального слоя толщиной ~ 1 мкм [4,5], поверх которого выращивались барьерные слои — 1 нм номинально чистый AlN, 1-2 нм AlGaN-спейсер и InAlN-барьер различной толщины. Исследования электрофи-

Рис. 1. *а* — изображение структуры, полученное методом STEM-HAADF; *b* — карта деформаций кристаллической решетки по отношению к ненапряженному слою GaN; *с* — распределение мольной доли алюминия по глубине структуры.

Рис. 2. Зависимости концентрации (*a*), подвижности (*b*) и слоевого сопротивления (*c*) от толщины слоя InAlN. Линии — расчет, символы — эксперимент. Сплошные линии и закрашенные символы соответствуют комнатной температуре; пунктирные линии и незакрашенные символы — 77 К. На вставке: *1*, 2 — подвижности, ограниченные рассеянием на сплавном потенциале и шероховатостях интерфейса в структуре с 2-нанометровым AlGaN-спейсером; *3*, *4* — они же в структуре без AlGaN-спейсера.

зических свойств проводились с помощью измерений эффекта Холла методом Ван дер Пау.

3. Обсуждение результатов

На рис. 1 представлены результаты исследования структуры с AlN/AlGaN/InAlN 1/2/4 нм барьером методом просвечивающей электронной микроскопии с высокоугловым кольцевым темнопольным детектором (STEM-HAADF). На рис. 1, *а* можно отчетливо видеть слои GaN, AlGaN и InAlN с достаточно гладкими гетерограницами между ними; при этом выраженного номинально чистого слоя AlN не наблюдается. На поверхности образца также можно видеть \sim 1 нм оксидный слой. Подобный слой также наблюдался на as-deposited образце в работе [6], что говорит о предпочтительности нанесения *in situ* пассивирующих слоев, таких как Si₃N₄. На графиках распределения мольной доли алюминия в слоях (рис. 1, *c*), полученных из карт деформаций кристаллической решетки (рис. 1, *b*) также не наблюдается слоя AlN, что говорит о непреднамеренном встраивании атомов Ga.

Измеренные значения концентрации, подвижности и слоевого сопротивления ДЭГ в зависимости от толщины InAlN показаны символами на рис. 2. Видно, что увеличение толщины барьерного слоя приводит к росту концентрации ДЭГ. При этом наблюдается падение подвижности ДЭГ, и значение слоевого сопротивления при комнатной температуре (295 К) уменьшается до ~ 220-230 Ом/квадрат при увеличении толщины InAlN до ~ 3 нм и остается постоянным при дальнейшем увеличении толщины. Значение R_S при низкой температуре имеет минимальное значение ~ 67 Ом/квадрат при толщине InAlN 2.5 нм и более высокие значения для более тонких и более толстых барьерных слоев. Для сравнения также была выращена структура без AlGaN-спейсера с барьерным слоем InAlN 4 нм (обозначена символом треугольника на рис. 2). Концентрация ДЭГ в такой структуре лишь немногим ниже, чем в аналогичных структурах с AlGaN-спейсером, а вот подвижность катастрофически уменьшилась до 435 и 745 см² · В⁻¹ · с⁻¹) при 295 и 77 К, с соответствующими значениями R_S 587 и 400 Ом/квадрат.

Для анализа зависимостей были проведены численные расчеты. Зависимость концентрации от толщины InAlN была рассчитана путем самосогласованного решения уравнений Пуассона и Шредингера [7], а для расчета подвижности были использованы выражения для рассеяния на акустических и оптических фононах, дислокациях, шероховатостях гетерограницы и флуктуациях состава твердого раствора из работ [3,8]. Ключевым в данном расчете является выбор значения потенциала сплавного рассеяния. В работе [9] на основе расчетов из первых принципов было показано, что значение сплавного потенциала рассеяния U0 для твердого раствора AlGaN заданного состава хорошо совпадает с $\partial E_c / \partial x$, где E_c энергия края зоны проводимости. В нашей работе было принято значение разрыва зон $\Delta E_c / \Delta E_v = 0.7 / 0.3$ для AlGaN и InAlN во всем диапазоне составов, из чего была рассчитана зависимость $E_c(x)$. Кроме того, параметр прогиба зависимости ширины запрещенной зоны InAlN, в отличие от AlGaN, сам сильно зависит от состава [10], что также было учтено. Таким образом, использованные значения U₀ равны 1.782 и 6.305 эВ для AlGaN и InAlN соответственно. В качестве среднеквадратичной шероховатости интерфейса в соответствии с экспериментальными данными из работы [3] были выбраны усредненные значения 0.3 и 0.9 нм для AlGaN/GaN и InAlN/GaN соответственно. В расчетах было принято типичное для GaN на сапфире значение плотности дислокаций $N_{\text{disl}} = 10^9 \text{ см}^{-2}$ с фактором заполнения f = 1 [5,11].

Полученные зависимости N_{2D} , μ_{2D} и R_S представлены на рис. 2 в виде линий. Так как используемые для расчета темпов рассеяния выражения справедливы лишь для вырожденного ДЭГ, из расчетов μ_{2D} и R_S были исключены структуры без AlGaN-спейсера с толщиной InAlN < 1.75 нм. Видно, что модель в целом неплохо описывает наблюдаемые зависимости для структур с AlGaN-спейсером. Значения подвижностей, ограниченных рассеянием на сплавном потенциале и шероховатостях интерфейса для структур с AlGaN-спейсером и без него показаны на вставке рис. 2, b. Видно, что вклад рассеяния на сплавном потенциале в структуре без AlGaN-спейсера при толщинах барьера > 3 нм сильно выше, чем в структуре со спейсером. При этом темп рассеяния на шероховатостях интерфейса в структуре без спейсера по своему вкладу сравним с рассеянием на сплавном потенциале. Несоответствие расчетных и экспериментальных значений для структуры без AlGaNспейсера может быть связано с упрощениями данной модели при расчете темпов рассеяния (все электроны считаются принадлежащими основному состоянию в квантовой яме), непреднамеренным встраиванием галлия в барьерный слой (что приводит к более сильному рассеянию на флуктуациях состава твердого раствора) или еще большей шероховатостью интерфейса. Однако для соответствия расчетных значений экспериментальным требуется значение шероховатости > 1.5 нм,

что представляется нам несколько завышенным. Также нельзя исключать и комбинации приведенных выше факторов, и для однозначных выводов требуются дополнительные исследования, как экспериментальные, так и теоретические.

4. Заключение

Таким образом, в данной работе экспериментально продемонстрирована возможность получения гетероструктур на основе GaN с композитным InAlN/AlGaN-барьером со значением слоевого сопротивления $\sim 220-230$ Ом/квадрат при комнатной температуре методом МОГФЭ, что сопоставимо с коммерческими структурами с InAlN-барьерами [12]. Показано, что серьезный вклад в снижение подвижности ДЭГ дает рассеяние на сплавном потенциале твердого раствора в слое AlGaN.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Y. Cao, D. Jena. Appl. Phys. Lett., 90, 182112 (2007). DOI: 10.1063/1.2736207
- B. Mazumder, S.W. Kaun, J. Lu, S. Keller, U.K. Mishra, J.S. Speck. Appl. Phys. Lett., **102**, 111603 (2013). DOI: 10.1063/1.4798249
- [3] D.S. Arteev, A.V. Sakharov, W.V. Lundin, D.A. Zakheim,
 E.E. Zavarin, A.F. Tsatsulnikov. J. Phys.: Conf. Ser., 1400,
 077009 (2019). DOI: 10.1088/1742-6596/1400/7/077009
- [4] D.S. Arteev, A.V. Sakharov, W.V. Lundin, E.E. Zavarin, D.A. Zakheim, A.F. Tsatsulnikov, M.I. Gindina, P.N. Brunkov. J. Phys.: Conf. Ser., 1697, 012206 (2020). DOI: 10.1088/1742-6596/1697/1/012206
- [5] D.S. Arteev, A.V. Sakharov, W.V. Lundin, E.E. Zavarin, A.E. Nikolaev, A.F. Tsatsulnikov, V.M. Ustinov. Materials, 15, 8945 (2022). DOI: 10.3390/ma15248945
- [6] A.M. Thron, J. Gao, B. Ercan, M.A. Laurent, S. Chowdhury, K. Van Benthem. Phys. Status Solidi A, 218, 2100304 (2021). DOI: 10.1002/pssa.202100304
- [7] D.S. Arteev, A.V. Sakharov, W.V. Lundin, E.E. Zavarin, A.F. Tsatsulnikov. J. Phys.: Conf. Ser., 2103, 012202 (2021). DOI: 10.1088/1742-6596/2103/1/012202
- [8] C.E.C. Wood, D. Jena. Polarization Effects in Semiconductors: From Ab Initio Theory to Device Applications (Springer, N.Y.-London, 2008).
- [9] N. Pant, Z. Deng, E. Kioupakis. Appl. Phys. Lett., 117, 242105 (2020). DOI: 10.1063/5.0027802
- [10] S.N. Alam, V.Z. Zubialevich, B. Ghafary, P.J. Parbrook. Sci. Rep., 10, 16205 (2020). DOI: 10.1038/s41598-020-73160-7
- [11] N.G. Weimann, L.F. Eastman, D. Doppalapudi, H.M. Ng, T.D. Moustakas. J. Appl. Phys., 83 (7), 3656 (1998).
 DOI: 10.1063/1.366585
- [12] *sweGaN*. Accessed: May 02, 2024. [Online]. Available: https://swegan.se/fe-doped/

Редактор Г.А. Оганесян

Heterostructures with two-dimensional electron gas based on GaN with InAIN/AIGaN barrier

D.S. Arteev¹, A.V. Sakharov¹, A.E. Nikolaev¹, N.A. Cherkashin², A.F. Tsatsulnikov³

¹ Ioffe Institute,
 194021 St. Petersburg, Russia
 ² CEMES-CNRS and Université de Toulouse,
 29 rue Jeanne Marvig, BP 94347, CEDEX 4,
 F-31055 Toulouse, France
 ³ Submicron Heterostructures for Microelectronics,
 Research & Engineering Center,
 Russin Academy of Sciences,
 194021 St. Petersburg, Russia

Abstract The possibility of obtaining GaN-based heterostructures with composite InAIN/AIGaN barrier with a layer resistance value of $\sim 220-230 \,\Omega/\text{sq.}$ at room temperature by gas-phase epitaxy from organometallic compounds, which is comparable to commercial structures with InAIN barriers, has been experimentally demonstrated. On the basis of numerical calculations, it was shown that a significant reduction of 2DEG mobility is due to scattering at the alloy disorder potential in the AlGaN layer.