Измерение времени жизни экситона в двойной полумагнитной квантовой яме с помощью магнитооптического эффекта Керра

© Г.Р. Дейсадзе¹, М.М. Афанасьев¹, Б.Ф. Грибакин², G. Karczewski³, К.В. Кавокин², Ю.Г. Кусраев¹, В.К. Калевич¹

¹ Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

² Санкт-Петербургский государственный университет,

199034 Санкт-Петербург, Россия ³ Institute of Physics, Polish Academy of Sciences,

02-668 Warsaw, Poland

E-mail: kalevich@solid.ioffe.ru

Поступила в Редакцию 3 мая 2024 г. В окончательной редакции 20 августа 2024 г. Принята к публикации 30 октября 2024 г.

Магнитооптический эффект Керра, возникающий в слабом переменном магнитном поле в геометрии Фарадея, использован для измерения радиационного Γ_0 и нерадиационного Γ уширения экситонного резонанса в полумагнитной квантовой яме $Cd_{0.984}Mn_{0.016}$ Те, отделенной от более широкой немагнитной ямы CdTe туннельно-прозрачным барьером. Измеренные значения, выраженные в энергетических единицах, составили $\hbar\Gamma_0 \approx 114$ мкэВ и $\hbar\Gamma \approx 4.6$ мэВ. Большому значению Γ соответствует туннелирование носителей заряда из узкой ямы за время < 0.1 пс.

Ключевые слова: полумагнитные полупроводниковые наноструктуры, магнитооптический эффект Керра.

DOI: 10.61011/FTP.2024.10.59381.6621A

1. Введение

Экситонные эффекты оказывают существенное влияние на оптические свойства квантово-размерных полупроводниковых структур и должны учитываться при проектировании перспективных устройств оптоэлектроники. Теория экситонных вкладов в спектры поглощения, отражения и фотолюминесценции [1], ключевыми параметрами которой являются радиационное, $\hbar\Gamma_0$, и нерадиационное, $\hbar\Gamma$, уширения экситонной линии, хорошо развита и подтверждается многочисленными экспериментами [1-5]. В то же время экспериментальное определение ключевых параметров экситонных резонансов в конкретных структурах может сталкиваться со значительными трудностями. В частности, в двойных квантовых ямах (КЯ), разделенных тонким барьером, туннелирование фотовозбужденных носителей из узкой ямы в широкую может приводить к существенному сокращению времени жизни экситонов [6] и уширению экситонного резонанса в узкой яме, что затрудняет использование стандартных методов спектроскопии люминесценции и отражения.

Настоящая работа посвящена измерению величин $\hbar\Gamma_0$ и $\hbar\Gamma$ в узкой (8 нм) квантовой яме из $Cd_{0.984}Mn_{0.016}$ Те, отделенной от более широкой (20 нм) ямы из CdTe туннельно-прозрачным (1.6 нм) барьером из $Cd_{0.88}Mg_{0.12}$ Te.

2. Структура и методика эксперимента

Структура выращена методом молеулярно-лучевой эпитаксии (МЛЭ) на (100)-подложке из GaAs. Буферный слой из $Cd_{0.88}Mg_{0.12}$ Те толщиной ≈ 4 мкм отделяет

широкую яму от подложки. Узкая яма и, следовательно, вся структура прикрыта слоем $Cd_{0.88}Mg_{0.12}$ Те толщиной 50 нм.

Недавние исследования спектров экситонного отражения в изолированных (одиночных) КЯ А^{II}В^{VI} показали, что радиационное уширение $\hbar\Gamma_0$ практически не зависит от ширины ямы и составляет несколько десятков мкэВ (см., например, данные для КЯ CdTe/CdZnTe в [5]). Величина нерадиационного уширения $\hbar\Gamma$ может меняться в широких пределах в зависимости от условий эксперимента. Так, экситонное рассеяние, связанное с резервуаром темных экситонов, сопровождается увеличением $\hbar\Gamma$ до нескольких сотен мкэВ [5]. Можно предположить, что в двойной КЯ этот эффект существенно ослабляется для экситонов в узкой яме за счет их ухода в широкую яму. С другой стороны, само по себе туннелирование в широкую яму должно приводить к увеличению $\hbar\Gamma$ за счет сокращения эффективного времени жизни экситонов. При этом радиационное уширение $\hbar\Gamma_0$ не должно существенно меняться.

Экспериментально проверить эти предположения, применив обычно используемые для этой цели методы, основанные на измерении ширины экситонной линии в спектрах фотолюминесценции или пропускания, оказалось невозможным. Дело в том, что фотолюминесценция из узкой ямы не наблюдается вследствие быстрого туннелирования фотовозбужденных носителей заряда в широкую яму. Исследованная структура выращена на подложке из GaAs, поэтому она является непрозрачной для длин волн в области экситонного резонанса в узкой яме. Использовать стандартный метод отражения

Рис. 1. Спектр отражения исследованной структуры, измеренный в нулевом магнитном поле при температуре T = 6 К (сплошная линия). Вертикальные стрелки показывают резонансные длины волн для экситонов X_{WQW} и X_{NQW} в широкой и узкой ямах, штриховой прямоугольник показывает область возбужденных состояний в широкой яме. В качестве источника света использовалась лампа накаливания. Штриховая кривая представляет спектр отражения, рассчитанный по формуле (3) с учетом зависимости показателя преломления в эпитаксиальном слое Cd_{0.88}Mg_{0.12}Te от длины волны.

излучения лампы накаливания также оказалось затруднительным, поскольку экситонный резонанс в узкой яме сильно уширен за счет короткого времени жизни экситонов, а спектр отражения структуры сильно искажен в результате интерференции со светом, отраженным от GaAs-подложки (рис. 1).

Поэтому для измерения $\hbar\Gamma_0$ и $\hbar\Gamma$ мы воспользовались тем обстоятельством, что материал узкой квантовой ямы, Cd_{0.984}Mn_{0.016}Te, является магниторазбавленным (полумагнитным) полупроводником, и использовали магнитооптический эффект Керра, который эффективен для изучения намагниченности и определения параметров экситонов в структурах на основе магниторазбавленных полупроводников [1,7]. Обменное взаимодействие носителей заряда с *d*-электронами ионов Mn²⁺ значительно усиливает расщепление спиновых состояний носителей и экситонов при приложении магнитного поля [7], что позволяет регистрировать магнитооптические эффекты даже в слабых магнитных полях ~ 1 Гс.

3. Обсуждение результатов

В основе использованного нами метода лежит то обстоятельство, что измеряемый в эффекте Керра малый угол поворота плоскости линейной поляризации отраженного луча равен $\theta = (I_1 - I_2)/2(I_1 + I_2)$, где I_1 и I_2 — интенсивности отраженных компонент, линейно поляризованных под углами +45 и -45° к плоскости поляризации падающего света, которые одновременно регистрируются фотодиодами 1 и 2, входящими в состав балансного фотоприемника. Обычно угол θ мал, поэтому $I_1 \approx I_2$, и влияние нечувствительной к поляризации интерференционной компоненты отраженного света на измеряемый угол существенно подавлено.

Эффект Керра возникает из-за различия фаз амплитудных коэффициентов отражения от структуры световых волн, поляризованных по правому (r_+) и левому (r_-) кругу [1,8]. В условиях нашего эксперимента, когда вклад экситона в узкой квантовой яме в общий амплитудный коэффициент отражения структуры $r_0 = (r_+ + r_-)/2$ мал, керровский угол равен (см. главу 3 в [1]):

$$\theta = -\mathrm{Im}\left[\frac{r_+ - r_-}{2r_0}\right].\tag{1}$$

При вычислении r_0 можно пренебречь вкладом квантовой ямы и учесть только отражение от поверхности структуры и от гетерограницы с подложкой. В результате с учетом формулы (3.242) в работе [1] получаем

$$r_0 = -\frac{n-1}{n+1} \frac{1 - \frac{n+1}{n-1} |r_m| \exp(2i\varphi_{m0} + i\varphi_m)}{1 - \frac{n-1}{n+1} |r_m| \exp(2i\varphi_{m0} + i\varphi_m)}, \quad (2)$$

где n — показатель преломления эпитаксиального слоя $Cd_{0.88}Mg_{0.12}Te$, $|r_m|$ и φ_m — модуль и фаза коэффициента отражения световой волны от границы с подложкой, $\varphi_{m0} = 2\pi nL/\lambda$ — набег фазы световой волны при проходе через эпитаксиальный слой толщиной L, λ — длина волны света в вакууме. Соответственно, коэффициент отражения по интенсивности равен

$$R = |r_0|^2 = \left(\frac{n-1}{n+1}\right)^2$$

$$\times \frac{1 + \left(\frac{n+1}{n-1}\right)^2 |r_m|^2 - 2\frac{n+1}{n-1} |r_m| \cos(2\varphi_{m0} + \varphi_m)}{1 + \left(\frac{n-1}{n+1}\right)^2 |r_m|^2 - 2\frac{n-1}{n+1} |r_m| \cos(2\varphi_{m0} + \varphi_m)}.$$
(3)

Подгонка спектральной зависимости интенсивности отраженного от структуры света (рис. 1) этой формулой позволяет определить значения $|r_m|$, φ_m и *L*.

Экситонные вклады в коэффициент отражения структуры для двух циркулярных поляризаций [9,10] (см. также формулу (3.241) в работе [1]) даются следующим выражением:

$$r_{\pm} = r_{\pm}^{ex} \frac{4n}{(n+1)^2} \exp(2i\varphi_w) \\ \times \left(\frac{1+|r_m|\exp(2i\varphi_{mw}+i\varphi_m)}{1-\frac{n-1}{n+1}|r_m|\exp(2i\varphi_{m0}+i\varphi_m)}\right).$$
(4)

Здесь $r_{\pm}^{ex}(\omega) = i\Gamma_0/[\omega_{0,\pm} - \omega - i(\Gamma_0 + \Gamma)], \omega$ — частота световой волны, $\omega_{0,\pm}$ — частоты экситонного резонанса для право и лево поляризованных компонент, Γ_0 и Γ — радиационное и нерадиационное уширения экситонного уровня, φ_w — набег фазы световой волны, отраженной от ямы, на пути от середины КЯ до поверхности структуры, φ_{mw} — набег фазы световой волны на пути между гетерограницей с подложкой и квантовой ямой [1]. В магнитном поле *B*, приложенном в геометрии Фарадея,

 $\omega_{0,\pm} = \omega_0 \mp (\omega_e + \omega_h)/2$, где расщепление экситонного уровня складывается из наведенных магнитным полем расщеплений электронного и дырочного уровней $\hbar\omega_e$ и $\hbar\omega_h$ и равно $\hbar(\omega_e + \omega_h) = \hbar AB$. В полумагнитном полупроводнике величина A определяется s/p-d обменным взаимодействием электронов и дырок с ионами марганца и в линейном по магнитному полю приближении равна

$$A = \frac{(P_e \,\alpha N_0 - P_h \,\beta N_0)}{\hbar} \cdot \frac{S(S+1)}{3} \, x_{\text{eff}} \frac{g_{\,\text{Mn}} \mu_B}{k_B(T+T_0)}, \quad (5)$$

где $\alpha N_0 = 0.22$ эВ и $\beta N_0 = -0.88$ эВ — константы обменного взаимодействия электронов и дырок с ионами марганца, S = 5/2 и $g_{\rm Mn} = 2$ — спин и g-фактор иона Mn, $T_0 = 0.54$ K и $x_{\rm eff} \approx [0.265 \exp(-43.34x)$ $+ 0.735 \exp(-6.19x)]x = 0.013$ — феноменологические параметры, учитывающие антиферромагнитное обменное взаимодействие ионов марганца [7], x = 0.016 содержание марганца в полумагнитной яме. Значения интегралов перекрытия квадратов волновых функций электрона и дырки с полумагнитной ямой $P_e = 0.71$ и $P_h = 0.73$ мы получили путем численного расчета, в котором учитывался как квантово-размерный потенциал структуры [11], так и кулоновское взаимодействие электрона и дырки. Параметры полупроводниковых слоев взяты из работы [12].

Для увеличения чувствительности измерения мы использовали переменное магнитное поле $B(t) = B_1 \cos(\Omega t)$ и синхронное детектирование. В этом случае $\theta(\omega, t) = \theta_0(\omega) \cos(\Omega t)$, где при выполнении условия $\Gamma_0 \ll \Gamma$

$$\theta_0(\omega) = \frac{2n|D|}{n^2 - 1} \operatorname{Im} \left\{ \frac{i\Gamma_0 AB_1 \exp[2i\varphi_w + \arg(D)]}{(\omega_0 - \omega)^2 - \Gamma^2 - 2i\Gamma(\omega_0 - \omega)} \right\}.$$
(6)

Здесь безразмерный комплексный множитель

$$D = \frac{[1 + |r_m| \exp(2i\varphi_{mw} + i\varphi_m)]^2}{\left[1 - \frac{n-1}{n+1} |r_m| \exp(2i\varphi_{m0} + i\varphi_m)\right] \times \left[1 - \frac{n+1}{n-1} |r_m| \exp(2i\varphi_{m0} + i\varphi_m)\right]}$$
(7)

учитывает отражение от подложки.

Спектральная зависимость амплитуды керровского угла $\theta_0(\omega)$, измеренная в области экситонного резонанса в полумагнитной квантовой яме в продольном магнитном поле $B(t) = B_1 \cos(\Omega t)$ при температуре T = 6 К для $B_1 = 0.8$ Гс и $\Omega = 130$ Гц, показана кружками на рис. 2. Эта зависимость имеет ярко выраженный резонансный характер. Ее аппроксимация с помощью формулы (6) (сплошная кривая) показала, что энергия экситонного резонанса $\hbar\omega_0 = 1.6531$ эВ, радиационное уширение $\hbar\Gamma_0 \approx 114$ мкэВ, а нерадиационное уширение $\hbar\Gamma \approx 4.6$ мэВ. При таком соотношении Γ_0 и Γ наблюдаемая ширина резонанса определяется нерадиационным уширением, в то время как радиационное уширение задает его амплитуду.

Рис. 2. Экспериментальная (кружки) и расчетная (сплошная кривая) спектральные зависимости амплитуды керровского угла в области экситонного резонанса в полумагнитной квантовой яме в продольном магнитном поле $B(t) = B_1 \cos(\Omega t)$ при $B_1 = 0.8 \, \Gamma c$, $\Omega = 130 \, \Gamma u$ и температуре $T = 6 \, K$.

Следует заметить, что видимая ширина экситонного резонанса может увеличиваться вследствие неоднородного уширения, обусловленного, например, технологическими флуктуациями ширины квантовой ямы. Однако в одиночных полумагнитных квантовых ямах аналогичного состава и такой же температуре кристалла неоднородное уширение экситонного резонанса составляет $\hbar\Gamma_{inh} \sim 0.7$ мэВ [13], что почти на порядок меньше измеренной нами величины $\hbar\Gamma \approx 4.6$ мэВ. Соответственно, влиянием неоднородного уширения на ширину резонанса и величины определенных в наших экспериментах параметров можно пренебречь. Поэтому можно сделать вывод, что в исследованной структуре с двойной квантовой ямой значительная ширина экситонного резонанса в узкой яме обусловлена быстрым туннелированием носителей заряда в широкую яму, характерное время которого $\tau = 1/2\Gamma \approx 0.1$ пс.

4. Заключение

Таким образом, мы продемонстрировали потенциал магнитооптического эффекта Керра в качестве метода измерения параметров экситонного резонанса, в том числе излучательного и безызлучательного времен жизни. Метод позволяет исследовать экситонные состояния в структурах с короткими безызлучательными временами, где традиционные методы спектроскопии фотолюминесценции, пропускания и отражения могут быть неприменимы или неэффективны.

Благодарности

Авторы благодарны G. Karczewski за предоставление структуры для исследования.

Финансирование работы

Измерение эффекта Керра и спектров отражения выполнены (Г.Р. Дейсадзе, М.М. Афанасевым и В.К. Калевичем) в рамках проекта Российского научного фонда № 23-12-00205; Б.Ф. Грибакин и К.В. Кавокин благодарят научный проект 122040800257-5 Санкт-Петербургского государственного университета за поддержку теоретических расчетов, анализ полученных результатов проведен при поддержке проекта Российского научного фонда № 22-12-00125 (Ю.Г. Кусраевым).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] E.L. Ivchenko. *Optical spectroscopy of semiconductor nanostructures* (Springer, 2007).
- [2] E.S. Khramtsov, P.S. Grigoryev, D.K. Loginov, I.V. Ignatiev, Yu.P. Efimov, S.A. Eliseev, P.Yu. Shapochkin, E.L. Ivchenko, M. Bayer. Phys. Rev. B, 99, 035431 (2019). DOI: 10.1103/PhysRevB.99.035431
- [3] O.V. Borovkova, F. Spitzer, V.L. Belotelov, I.A. Akimov, A.N. Poddubny, G. Karczewski, M. Wiater, T. Wojtowicz, A.K. Zvezdin, D.R. Yakovlev, M. Bayer. Nanophotonics, 8 (2), 287 (2019). DOI.org/10.1515/nanoph-2018-0187
- [4] Д.Ф. Мурсалимов, А.В. Михайлов, А.С. Курдюбов,
 А.В. Трифонов, И.В. Игнатьев. ФТП, 55 (11), 963 (2021).
 DOI: 10.21883/FTP.2021.11.51547.43
- [5] А.В. Михайлов, А.С. Курдюбов, Е.С. Храмцов, И.В. Игнатьев, Б.Ф. Грибакин, S. Cronenberger, D. Scalbert, М.Р. Владимирова, R. André. ФТП, **57** (7), 603 (2023). DOI: 10.61011/FTP.2023.07.56837.23k
- [6] V. Agekyan, N. Filosofov, G. Karczewski, A. Serov, I. Shtrom,
 A. Reznitsky. J. Phys.: Conf. Ser., 2103, 012102 (2021).
 DOI: 10.1088/1742-6596/2103/1/012102
- [7] Introduction to the physics of diluted magnetic semiconductors, ed. by J. Kossut, J.A. Gaj (Springer, 2010).
- [8] М.М. Глазов. ФТТ, **54** (1), 3 (2012).
- [9] C. Gourdon, V. Jeudy, M. Menant, D. Roditchev, Le Anh Tu, E.L. Ivchenko, G. Karczewski. Solid State Commun., 123, 299 (2002).
- [10] C. Gourdon, G. Lazard, V. Jeudy, C. Testelin, E.L. Ivchenko, G. Karczewski. Appl. Phys. Lett., 82, 230 (2003). http://dx.doi.org/10.1063/1.1534617
- [11] E. Kirstein, N.V. Kozyrev, M.M. Afanasiev, V.N. Mantsevich, I.S. Krivenko, V.K. Kalevich, M. Salewski, S. Chusnutdinow, T. Wojtowicz, G. Karczewski, Yu.G. Kusrayev, E.A. Zhukov, D.R. Yakovlev, M. Bayer. Phys. Rev. B, **101**, 035301 (2020). DOI: 10.1103/PhysRevB.101.035301
- [12] A.A. Kiselev, E.L. Ivchenko, A.A. Sirenko, T. Ruf, M. Cardona, D.R. Yakovlev, W. Ossau, A. Waag, G. Landwehr. J. Cryst. Growth, 184–185, 831 (1998).
- G.V. Astakhov, V.A. Kosobukin, V.P. Kochereshko,
 D.R. Yakovlev, W. Ossau, G. Landwehr, T. Wojtovicz,
 G. Karczewski, J. Kossut. Eur. Phys. J., B 24, 7 (2001).
 DOI: org/10.1007/s100510170016

Редактор Г.А. Оганесян

Measurement of exciton lifetime in double semimagnetic quantum well by means of magneto-optical Kerr effect

G.R. Deysadze¹, M.M. Afanasiev¹, B.F. Gribakin², G. Karczewski³, K.V. Kavokin², Yu.G. Kusrayev¹, V.K. Kalevich¹

¹ Ioffe Institute,
 194021 St. Petersburg, Russia
 ² St. Petersburg State University,
 199034 St. Petersburg, Russia
 ³ Institute of Physics, Polish Academy of Sciences,
 02-668 Warsaw, Poland

Abstract magneto-optical Kerr effect caused by weak oscillating magnetic field in Faraday geometry was used for measuring of the exciton radiative Γ_0 and nonradiative Γ damping rates in semimagnetic quantum well Cd_{0.984}Mn_{0.016}Te, separated from more wide nonmagnetic quantum well CdTe by tunnel-transparent barrier. Measured values in energetic units were found to be $\hbar\Gamma_0 \approx 114 \,\mu\text{eV}$ and $\hbar\Gamma \approx 4.6 \,\text{meV}$. Large value of Γ means that the time of carriers tunneling from narrow well to wide one is shorter than 0.1 ps.